
Computer Networks 60 (2014) 115–128
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Delay-based congestion control: Flow vs. BitTorrent swarm
perspectives
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.12.018

⇑ Corresponding author. Tel.: +33 145817563.
E-mail address: dario.rossi@enst.fr (D. Rossi).
Claudio Testa, Dario Rossi ⇑
Telecom ParisTech, 46 Rue Barrault, 75013 Paris, France
a r t i c l e i n f o

Article history:
Received 30 April 2013
Received in revised form 18 December 2013
Accepted 19 December 2013
Available online 25 December 2013

Keywords:
BitTorrent
Congestion control
Lower-than best effort congestion control
LEDBAT
TCP-LP
NICE
a b s t r a c t

BitTorrent, one of the most widespread file-sharing P2P applications, recently introduced
LEDBAT, a novel congestion control protocol aiming at (i) limiting the additional delay
due to queuing, to reduce interference with the rest of user traffic (e.g., Web, VoIP and gam-
ing) sharing the same access bottleneck, and (ii) efficiently using the available link capac-
ity, to provide users with good BitTorrent performance at the same time.

In this work, we adopt two complementary perspectives: namely, a flow viewpoint to
assess the Quality of Service (QoS) as in classic congestion control studies, and a BitTorrent
swarm viewpoint to assess peer-to-peer users Quality of Experience (QoE). We additionally
point out that congestion control literature is rich of protocols, such as VEGAS, LP, and NICE
sharing similarities with LEDBAT, that is therefore mandatory to consider in the analysis.
Hence, adopting the above viewpoints we both (i) contrast LEDBAT to the other protocols
and (ii) provide deep understanding of the novel protocol and its implication on QoS and
QoE.

Our simulation based investigation yields several insights. At flow-level, we gather
LEDBAT to be lowest priority among all protocols, which follows from its design that strives
to explicitly bound the queuing delay at the bottleneck link to a maximum target value. At
the same time, we see that this very same protocol parameter can be exploited by
adversaries, that can set a higher target to gain an unfair advantage over competitors. Inter-
estingly, swarm-level performance exhibit an opposite trade-off, with smaller targets being
more advantageous for QoE of BitTorrent users. This can be explained with the fact that
larger delay targets slow down BitTorrent signaling task, with possibly negative effect on
the swarming protocol efficiency. Additionally, we see that for the above reason, in
heterogeneous swarms, any delay-based protocol (i.e., not only LEDBAT but also VEGAS
or NICE) can yield a competitive QoE advantage over loss-based TCP.

Overall this tension between swarm and flow-levels suggests that, at least in current
ADSL/cable access bottleneck scenarios, a safe LEDBAT operational point may be used in
practice. At the same time, our results also point out that benefits similar to LEDBAT can
also be gathered with other delay-based protocols such as VEGAS or NICE.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Pioneered by Jain [22] in late 80 s, delay-based
Congestion Control (CC) has been out for a long time, with
notable proposals over the years such as VEGAS [8] in late
90s, NICE [42] and LP [25] in early 2000 and more recently
LEDBAT [35] in 2010.

The idea of this branch of protocols is to use the varia-
tion in the end-to-end delay transmission as early conges-
tion signal: in other words, a growing delay beyond a
baseline is interpreted as queuing delay building up at

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bjp.2013.12.018&domain=pdf
http://dx.doi.org/10.1016/j.bjp.2013.12.018
mailto:dario.rossi@enst.fr
http://dx.doi.org/10.1016/j.bjp.2013.12.018
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. Congestion control design space: aggressiveness vs. design
strategy.

116 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
the bottleneck link, and the amount of data to be sent at
every time frame is updated accordingly. This design
choice is orthogonal to the one adopted by loss-based pro-
tocols, such as in classic TCP NewReno [18] which instead
uses packet loss as a late congestion signal to tune the data
transmission.

Since loss-based protocols forcibly fill the buffer, this
can translate into rather large delays, especially at the ac-
cess link where buffer sizes are relatively large compared
to the narrow capacity of ADSL and cable modems. As re-
cent work pointed out, is not uncommon that queuing de-
lays exceed the Earth-to-Moon propagation delay [23,13],
for which the ‘‘bufferbloat’’ term was recently coined [12].

Clearly, such huge delays can harm the Quality of Expe-
rience (QoE) of interactive communication – including
Voice over IP (VoIP), gaming and Web browsing. Addition-
ally, since the bottleneck is placed at the user access link,
this means that the user is self-inflicting this QoE degrada-
tion, as his own traffic is competing for the bottleneck re-
sources. In other words, QoE degradation results from
sustained uploads carried on TCP, whose loss-based Addi-
tive Increase Multiplicative Decrease (AIMD) protocol
forces the buffer to fill prior to halve the congestion win-
dow due to losses.

It follows that bufferbloat can be induced by any appli-
cation transferring large data volumes over TCP, such as
any upload to the Cloud (e.g., Picasa, DropBox, Flickr,
etc.), or peer-to-peer file-sharing (e.g., BitTorrent, eDonkey,
etc.). To avoid harming contemporary interactive commu-
nication of the same user, application developers have thus
the choice to exploit alternatives to the standard loss-
based TCP behavior. This is precisely the choice of BitTor-
rent, that recently replaced loss-based TCP with delay-
based LEDBAT for data transfer.

This evolution motivates our first viewpoint. As the new
protocol is used in BitTorrent swarms, it is important to as-
sess its impact on the quality of BitTorrent users experi-
ence – mainly, their completion time [26]. Interestingly
though, the protocol has been normalized at the IETF under
the Low Extra Delay Background Transport (LEDBAT) in
late 2012 [36]. This motivates the second viewpoint: as
the protocol is normalized at the IETF, its scope is wider
than the BitTorrent ecosystem, and its impact on other
applications has to be assessed as well.

In this work, we investigate LEDBAT by means of verb
ns2 simulations, and compare it to other delay-based pro-
tocols such as LP, VEGAS and NICE, from both flow vs.
swarm perspective. Moreover, in case of LEDBAT we carry
out a sensitivity analysis over its main parameter, namely
the queuing delay target, to assess the impact of heteroge-
neous settings. This is an important study, since the
parameter can be easily modified by legitimate end-users
or legacy implementations (complying to the RFC specifi-
cation) or by malicious users and developers (violating
RFC specification) to possibly gain an unfair advantage.
At flow-level, we study the Quality of Service (QoS) of
backlogged flows, expressed as the usual network-centric
metrics of congestion control studies, such as link effi-
ciency, throughput, and packet loss. At swarm-level, we in-
stead study the Quality of Experience (QoE) of BitTorrent
users, expressed as the torrent completion time, that
collectively depends on the performance of multiple flows,
in a furthermore non-trivial way as we shall see.

Summarizing our most interesting findings, we have
that heterogeneous LEDBAT target settings yield to signifi-
cant unfairness, which is especially true for backlogged
connections, where flows with slightly higher delay target
can starve competing flows. Interestingly though, compet-
itive advantage for selfish users in the swarm case are ob-
tained for lower delay target – which suggests that safe
LEDBAT operational points may be used in practical cases.
At the same time, our results also point out that benefits
similar to LEDBAT can also be obtained with other delay-
based protocols such as VEGAS or NICE.

The remainder of this work is organized as follows. Re-
lated work are discussed in Section 2, while a detailed
overview about the congestion control protocols we con-
sider in this study is reported in Section 3. Flow vs. swarm
perspectives are then adopted in Section 4 vs. Section 5
respectively. For both perspectives, we investigate the no-
vel LEDBAT protocol (e.g., carrying out a detailed sensitiv-
ity analysis of the queuing delay target parameter, and
especially of heterogeneous target settings) and contrast
performance with that achievable under LP, VEGAS or
NICE. Finally, our findings are summarized and discussed
in Section 6.

2. Related work

While our most important findings arise in the opposite
implications of LEDBAT target settings in the flow vs.
swarm perspectives, we point out that, so far, all related ef-
fort has focused on either viewpoint in isolation. Hence, we
separately treat the above perspectives in this section. In
more details, at flow-level, we overview delay-based con-
gestion control protocols and focus on recent work target-
ing LEDBAT. At swarm-level, we overview studies of
BitTorrent performance, and focus on work targeting the
impact of packet-level dynamics on content distribution
performance.

2.1. Flow viewpoint

Congestion control is a long studied subject: as it would
be out-of-scope to provide a full review of the existing lit-
erature here, we concentrate on the subset that is most rel-
evant for our work. We present four different categories of



C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 117
congestion control protocols in Fig. 1. Those protocols can
be classified based on the design strategy (loss-based vs. de-
lay-based) and their aggressiveness (high-priority vs. low
priority) in capturing the available bandwidth. IETF en-
dorses TCP NewReno [18], a high-priority loss-based con-
gestion control algorithm. Recent evolutions of loss-based
protocols include Cubic [33] and Compound TCP [37].
Cubic has become the default TCP flavor in Linux (since
kernel version 2.6.18) and Compound TCP in Windows
operating system (since Vista). As far as the delay-based
and low-priority solutions are concerned, that are most
interesting to our work, we will focus on LP [25], VEGAS
[8], NICE [42] and LEDBAT [36], that we detail in Section 3.

Since its proposal, LEDBAT triggered the interest of the
scientific community, that started dwelling on several as-
pects via either experiments [15,31,34,20,13], simulation
[32,9,20] or analysis [10,19]. Delay related issues are ad-
dressed in [15,13]: in [15], BitTorrent developers detail
an algorithm to correct the clock drift, while we exploit
LEDBAT to gauge bufferbloat delay of remote hosts in
[13]. An experimental analysis of LEDBAT performance is
carried out in [31,34]. In [31], we use a black-box approach
to study initial closed-source versions of the protocol in its
early stage of adoption. Authors in [34] instead study their
own LEDBAT implementation in a local testbed, employing
different real ADSL modems, exposing a negative interac-
tion with Active Queue Management (AQM) in some mod-
em. We further investigate the interaction between delay-
based protocols and AQM via experiments/simulation [20]
and fluid modeling [19]: as AQM reinstate fairness among
protocols, it practically equalizes priorities and nullifies the
differences in protocol design (recall Fig. 1). A simulative
approach is instead adopted in [32,11,10,9,24]. In [32] we
unveil a latecomer issue that affect the LEDBAT protocol,
where newly arriving connections can starve already exist-
ing ones. We design and simulate [11] and analyze via fluid
modeling [10] solutions to the latecomer unfairness, while
authors in [24] compare alternative window decrease
schemes.

In our previous work [9], that is closest related to this
for what concerns the flow viewpoint, we directly compare
LEDBAT to LP and NICE, to (i) relatively weight their low-
priority level and (ii) provide a thorough sensitivity analy-
sis of LEDBAT parameters (i.e., gain and target) in both an
inter-protocol (i.e., against TCP) and intra-protocol (against
LEDBAT itself) scenarios. Building over [9], Section 4 fo-
cuses on the most relevant LEDBAT parameter (namely,
the target), and report the most interesting results addi-
tionally including the VEGAS protocol (not considered in
[9]). Simulation performed in this work are however en-
tirely new, so as to comply with the default LEDBAT set-
tings, that were updated during the RFC standardization
process and thus differ with respect to [9]. Our implemen-
tation of LEDBAT for ns2 is available at [3].

2.2. Swarm viewpoint

As the most successful peer-to-peer file-sharing appli-
cation, BitTorrent has become over the years a rather pop-
ular research subject, investigated with analytic [29],
measurement [21,43] simulative [6,7,41,17,10,38] or
experimental [5,30,39] approaches. Yet, as most studies
were carried out before the proposal of LEDBAT, it follows
that to date only few work studies LEDBAT impact on
BitTorrent performance, via either simulation [38] or
experiments [39,40].

More precisely, among the pre-LEDBAT studies, [29]
presents a fluid model of swarming performance, while
[21,43,28] use a measurement approach to shed light on
the Internet footprint of BitTorrent, either analyzing track-
er logs [21] or via large-scale crawling of the entire BitTor-
rent ecosystem [43]. Simulation is used to study the impact
of tit-for-tat [6], overlay parameters [41] and traffic local-
ity [7] on BitTorrent performance.

However, the above work limitedly consider application
dynamics but otherwise neglects the impact of packet-le-
vel dynamics, such as congestion control. A packet-level
implementation of the BitTorrent protocol for ns2 is avail-
able at [1], that is used in [17] to contrast a simplistic flow-
level to a more realistic packet-level viewpoint. Finding of
[17] is that transport-layer congestion control dynamics
actually do interact with application-level dynamics, so
that overlay-only simulation results [6,41,7] may report
optimistic completion times.

Following [17], we consider transport-layer dynamics
and assess the impact of LEDBAT on BitTorrent completion
time via simulation [38]. Yet another possibility it to
perform experiments with real BitTorrent clients
[30,5,39,40]. In particular, authors in [30] address the
problem of reproducibility and reliability testbed-driven
results, that are found to be close enough to results
gathered in the real Internet. In a joint work with authors
of [5,30], we employ an experimental methodology to
study torrent completion time under LEDBAT [39,40].
Interestingly, experimental results [39,40] validates the
simulation findings of [38], and suggest thus simulative
approach to be worthwhile, as it allows to explore a large
investigation space, as we do in this work.

Building over [38], that is closest related to this work for
what concerns the swarm viewpoint, Section 5 employs
the ns2 simulator [17] to simulate BitTorrent swarm under
a mixture of congestion control protocols. More precisely,
while [38] limited considered LEDBAT, in Section 5 we ex-
tend the current knowledge by (i) consider a broader range
of congestion control protocols, i.e., LP, NICE and VEGAS,
(ii) extend the considered swarm settings (e.g., seed leave
policies) to ensure the generality of our findings, and (iii)
perform a sensitivity analysis of heterogeneous LEDBAT
target settings, that leads to novel important findings
about LEDBAT operation.
3. Background

We perform a preliminary set of simulations, that as-
sists the description of important similarities and differ-
ences of the congestion control protocols we use in this
work. Fig. 2 reports the congestion window evolution of
two backlogged flows sharing a bottleneck link obtained
via ns2 simulation. We consider an access bottleneck of
C = 10 Mbps, a RTT = 50 ms, with a queue size of B = 100
full-size packets (larger than the bandwidth delay product



Fig. 2. Congestion control protocols at a glance: Inter (top) and Intra (bottom) protocol interaction on a simple bottleneck (C = 10 Mbps, RTT = 50 ms,
B = 100 packets).

118 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
as common in practice [23]). Top plots of Fig. 2 refer to the
heterogeneous protocol case where one flow employs
standard loss-based TCP NewReno, while the other flow
employs a delay-based protocol among (a) VEGAS, (b) LP,
(c) NICE or (d) LEDBAT. Bottom plots report the bandwidth
share in the homogeneous flow case, where thus both
flows employ (e) VEGAS, (f) LP, (g) NICE or (h) LEDBAT. Al-
ready at first sight, it is possible to gather that VEGAS, NICE
and LEDBAT have very similar behavior (with a very
smooth congestion window), while LP is more aggressive
(and saw-toothed congestion window profile). Notice fur-
ther that while LP, NICE and LEDBAT share the same low-
priority spirit, VEGAS was designed for higher efficiency
but is known to be less aggressive that TCP NewReno [4].

3.1. TCP-Vegas

TCP-Vegas (or VEGAS tout court) exploits the simple
idea that the number of bytes in transit is directly propor-
tional to the expected throughput. VEGAS maintains an
estimate RTTmin of the minimum measured Round Trip
Times (RTT), corresponding to the RTT encountered
when the bottleneck queues is empty. Then, the expected
throughput is given by ExpectedðtÞ ¼WðtÞ=RTTmin;

where WðtÞ is the size of the congestion window at time
t. Similarly, it calculates the current actual sending rate
as ActualðtÞ ¼WðtÞ=RTTðtÞ, and adjusts the cwnd according
to the difference between ActualðtÞ and ExpectedðtÞ
throughput:

DðtÞ ¼ ExpectedðtÞ � ActualðtÞ ð1Þ

For the cwnd adjustment two thresholds are defined:
a < b. When DðtÞ < a, VEGAS increases cwnd linearly dur-
ing the next RTT, while if DðtÞ > b, VEGAS decreases cwnd
linearly during the next RTT, and leave cwnd unchanged
otherwise:

cwndðt þ 1Þ ¼
cwndðtÞ þ 1 if DðtÞ < a;
cwndðtÞ � 1 if DðtÞ > b;

cwndðtÞ if a < DðtÞ < b:

8><
>:

ð2Þ
As shown in Fig. 2(a) and (e), VEGAS is less aggressive with
respect to TCP NewReno, and efficiently and fairly shares
the bottleneck link in the intra-protocol case.

3.2. TCP-LP

TCP-LP (or LP tout court) measures the One-Way Delay
(OWD) and employs a simple delay threshold-based meth-
od for early inference of congestion. More specifically, LP
estimates the minimum OWDmin and maximum OWDmax

delays, filtering the instantaneous measure OWDðtÞ by
means of an exponentially weighted moving average

~OWDðtÞ with smoothing parameter a, updated packet-by-
packet. The smoothed average ~OWDðtÞ and the condition
for early-congestion detection are:

~OWDðtÞ ¼ ð1� aÞ ~OWDðt � 1Þ þ aOWDðtÞ ð3Þ
~OWDðtÞ > OWDmin þ ðOWDmax � OWDminÞd ð4Þ

where d 2 ð0;1Þ is a custom threshold parameter. Through-
out this paper, we use the default values a ¼ 1=8; d ¼ 0:15
as in [25].

In the absence of early-congestion indication, LP be-
haves like standard TCP NewReno, i.e., performing an addi-
tive increase of cwnd as shown by the saw-tooth behavior
in Fig. 2(b) and (f). Whenever an early-congestion is de-
tected, according to the rules outlined above, LP halves
cwnd and enters an inference phase that last for a precon-
figured time. During this period, LP only observes re-
sponses from the network and avoids increasing the
congestion window. If congestion persists at the end of this
phase, LP reduces cwnd to 1 and restarts a slow-start phase
as evident from Fig. 2(b). Finally, in case of losses, LP be-
haves like TCP NewReno.

3.3. TCP-NICE

TCP-NICE (or NICE tout court) instead maintains mini-
mum RTTmin and maximum RTTmax estimates of the round
trip delay. Congestion is detected when more than a given



1 Given the bottleneck capacity, this buffer size corresponds to a about
1.2 s worth of queuing delay, or equivalently to the Earth-to-Moon
propagation delay early mentioned. Notice that according to [23], this
scenario correspond to Internet queuing delays that are significantly lower
than those observed in practice.

2 As we consider backlogged sources only, dynamics of LEDBAT are well
described by means of Eq. (7) only; in case of non-backlogged sources, the
dynamics changes slightly to avoid cwnd increase indefinitely [35].

C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 119
fraction / of packets during the same RTT experiences a de-
lay exceeding:

RTT > RTTmin þ ðRTTmax � RTTminÞd ð5Þ

where d and / are protocol parameters set to
d ¼ 0:2 and / ¼ 0:5 as in [42]. Notice that Eq. (5) is the
same formula of LP Eq. (3), but computed on the RTT vari-
able, and using the fraction-trick instead of a moving
average.

In the absence of congestion, NICE behaves like VEGAS.
Whenever early-congestion is signaled, NICE simply halves
its congestion windows and sending rate, practically antic-
ipating the multiplicative decrease behavior. Finally, when
a loss is detected NICE behaves like TCP NewReno. We
point out that NICE allows cwnd to be a fraction of 1 by
sending one packet after waiting for the appropriate num-
ber of RTTs: the use of fractional values for cwnd guaran-
tees non-intrusiveness even in the case of many NICE
flows sharing the same bottleneck.

As clearly emerges from the smooth cwnd behavior in
Fig. 2(c) and (g), NICE inherits its congestion control algo-
rithm from VEGAS (rather than from TCP NewReno as LP),
so that the throughput stabilizes around the effective
capacity in the intra-protocol case.

3.4. LEDBAT

Finally, LEDBAT maintains a minimum OWD estimation
OWDmin, which is used as base delay to infer the amount of
queuing delay. Each flow has a target queuing delay s, i.e.,
they aim at introducing a small, fixed, amount of delay in
the queue of the bottleneck buffer. The flow continuously
monitors the variations of the queuing delay
OWDðtÞ � OWDmin to evaluate the distance DðtÞ from its
target as in Eq. (6):

DðtÞ ¼ ½s� ðOWDðtÞ � OWDminÞ�=s ð6Þ
cwndðt þ 1Þ ¼ cwndðtÞ þ cDðtÞ=cwndðtÞ ð7Þ

where c is a parameter responsible for the steepness of
the cwnd update. In the absence of early-congestion indi-
cation, i.e., when the target s has not been reached yet,
DðtÞ > 0 in Eq. (6) and thus cwnd grows as defined by
Eq. (7). As soon as the target is reached, DðtÞ ¼ 0, thus
cwnd settles. Values of DðtÞ < 0 are perceived as early-
congestion indication (i.e., other traffic is increasing the
queuing delay OWDðtÞ � OWDmin > 0), to which LEDBAT
reacts by reducing cwnd proportionally to the offset from
the target. Finally, in case of losses, it behaves like TCP
NewReno.

Note that as per Eq. (6) the ramp-up is limited to at
most match the TCP NewReno ramp-up in congestion
avoidance (i.e., 1 packet per RTT), which happens when
the queue is empty (i.e, OWDðtÞ � OWDmin ¼ 0). Note also
that s > 0 is necessary in order for the capacity to be fully
exploited. At the same time, s should be as small as possi-
ble to avoid harming interactive communication. Early ver-
sion of the draft used a mandatory s ¼ 25 ms value, though
this was too small to be used in practice and the RFC later
recommend s 6 100 ms. As we will see in the following,
this possibly opens an arm race between applications/
implementations using LEDBAT, since flows with higher
s (even though complying to RFC specifications) have a fas-
ter ramp-up and can starve the other flows. Additionally,
while system-wide options (as TCP parameters) need
super-user privileges to be tweaked, the value of s is the
lTorrent implementation can be easily overridden by
users (by simply modifying the net.utp_target_delay
value in the GUI), extending the arm race to users.

Overall, LEDBAT shares similarities with, and exhibits
differences from, the other protocols: (i) as LP, it relies on
OWD estimation to detect congestion, but unlike LP it does
not employ a smoothing average; and (ii) as NICE and VE-
GAS its congestion window dynamics are based on the de-
lay, but unlike them, it defines a fixed target delay. As we
can see from Fig. 2, the behavior of LEDBAT is however clo-
ser to NICE and VEGAS than to LP.
4. Flow perspective

This section has three main aims. We first (i) compare
the different protocols from a flow-level perspective, using
different network-centric (e.g., link utilization, packet loss)
and user-centric (e.g. traffic share, queuing delay) QoS
metrics. We then perform a sensitivity analysis of the LED-
BAT target delay parameter s on the system performance.
Sensitivity is carried out in both (ii) an inter-protocol case,
where a TCP NewReno flow and a LEDBAT flow share the
bottleneck and (iii) an intra-protocol case, where two LED-
BAT flows compete against each other.

The aim of (i) is to precisely quantify similarities and
differences among protocols, that were qualitatively
shown early in Fig. 2. Then, we assess whether (ii) s offers
the chance to tune the level of aggressiveness in LEDBAT,
and (iii) further aims at verifying whether unfairness
may arise among legacy LEDBAT implementations (e.g.,
different releases of the same code, different implementa-
tions or parameter settings, etc.).

Performance figures are gathered via ns2 simulations.
While TCP NewReno, VEGAS and LP protocols are already
implemented, we implement both NICE and LEDBAT, that
we make available at [3]. As reference network scenario,
we use a dumbell topology where the capacity of the bot-
tleneck is fixed to C = 1 Mbps, the one-way propagation de-
lay equals 25 ms (thus round trip delay is equal to
RTT = 50 ms), and the buffer size is set to Bmax ¼ 100
packets,1 as depicted in Fig. 3. We consider backlogged
sources,2 that use a fixed packet size equal to S = 1500 Bytes.
All flows start simultaneously, so that we avoid
potential latecomer issues [32], and last for 120 s. For
the time being, we fix the LEDBAT target delay to
s ¼ 100 ms, i.e., the maximum value compliant to RFC
recommendations.



Fig. 3. Synoptic of the flow-level simulations.

(a)

(b)

120 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
Performance are expressed in terms of the link utiliza-
tion (g), i.e., the ratio between the sum of the throughput
of each flow xi over the bottleneck capacity g ¼

P
ixi=C.

We quantify priority (in the inter- or intra- protocol cases)
with the traffic share of a given flow f (or set of flows)
Pf ¼

P
i2f xi=

P
jxj. Finally, we report average buffer size

E½B� (correlated to the user delay) and loss probability.
We point out that a more systematic and detailed com-

parison in terms of scenarios (e.g., including a set of more
realistic and diverse scenarios, sensitivity of more LEDBAT
parameters, etc.) and metric (e.g., the short- and long-term
Jain fairness index among the flows, queue size, packet loss
probability, etc.) can be found in [9]. In this section though,
we do report the most interesting findings, that we further
extend to include the VEGAS case.
Fig. 4. Relative assessment of delay-based protocols: (a) TCP share and
(b) packet loss rate as a function of the number of delay-based flows.
4.1. Relative protocol assessment

We first provide a relative assessment of each delay-
based protocol against TCP NewReno. We consider a typi-
cal scenario where N 2 ½1;10� low-priority flows (e.g., due
to P2P or other Cloud services) share the same bottleneck
with a single TCP NewReno connection, (representative of
a generic high-priority service), for a total of N þ 1 flows.
We perform several sets of simulations separately and,
for reference purpose, we also simulate the case where
N þ 1 TCP NewReno flows share the same bottleneck.

The TCP share reported in Fig. 4(a), states that e.g., in
the N ¼ 10 LEDBAT case, the single TCP NewReno con-
sumes about 90% of the link capacity (since g ’ 1), leaving
thus each of the N ¼ 10 LEDBAT flows a mere 1% of the
capacity each. Comparing this result with NICE (about 3%
each) VEGAS (about 4% each) or LP (about 5% each) under
the same N ¼ 10 settings, we gather that LEDBAT achieves
the lowest priority, closely followed by NICE and VEGAS.

Further differences are stressed by the packet loss prob-
ability reported in Fig. 4(b), that reflects differences among
delay-based versus loss-based congestion control princi-
ples: indeed, packet loss rate increases proportionally to
the number of connections for TCP NewReno and LP, but is
not affected by the number of NICE, VEGAS, or LEDBAT flows,
since they all try to avoid losses as much as possible (so that
a non-zero loss rate is due to the single TCP NewReno flow).
4.2. LEDBAT target sensitivity

Since LEDBAT is the most recent, and thus less known
among the congestion control protocols we consider in this
work, we need to check correctness of operation according
to its low-priority goal (Section 4.2.1), as well as investi-
gate if target heterogeneity leads to unfair competitive
advantages (Section 4.2.2).
4.2.1. Inter-protocol: LEDBAT vs. TCP
We start our sensitivity analysis by considering two

flows, a standard TCP NewReno and a LEDBAT one, that
start simultaneously and vary the values of the
s 2 ½24;1800�ms which corresponds to T 2 ½2;150�% of
the buffer size. Given the large span of uplink capacities,
and that also the amount of available buffer space in mod-
ems spans over an order of magnitude (e.g., 34 KB–384 KB
[16]), the same LEDBAT queuing delay target may corre-
spond to different buffer occupancy ratios: hence, more
than the absolute value (top x-axis) this investigation
should be interpreted according to the relative value (bot-
tom x-axis) with respect to the buffer size.

The importance of this analysis is motivated as follows.
As previously underlined, the mandatory value for target
increased from s ¼ 25 ms (transmission time of about 1
full size packet at 500 kbps) to s 6 100 ms during the pro-
tocol evolution. The choice of s is somewhat arbitrary (e.g.,
based on unreported experiments) or motivated by practi-
cal constraints (e.g., clock precision, etc.) so that s is often
referred to as ‘‘magic number’’ in LEDBAT WG discussion
[2]. It is thus imperative to individuate not only those
working modes that correspond to legitimate and compli-
ant settings, but also to malicious or erroneous configura-
tions, or similarly, to changes in the underlying hardware



C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 121
(e.g., modem buffer size) or hardware configuration (e.g.,
buffer size limited in software to alleviate bufferbloat).

Fig. 5(a) reports the value of link utilization g and
Fig. 5(b) the share of the TCP flow as a function of the
target s. From Fig. 5(a) we see that the efficiency g is
practically unaffected by variations of target and remains
always close to the total link capacity. This is a positive,
though expected, finding: even if the target is misconfig-
ured, either LEDBAT or TCP NewReno can take advantage
of the unused bandwidth, which result in an overall effi-
cient use of the link capacity.

Considering instead the TCP share reported in Fig. 5(b),
we can identify four working regions. When the target is
very small s� 100 ms the LEDBAT protocol is not always
able to reach the target delay, which leads to shaky behav-
ior (e.g., as very low target delays may be exceeded already
by having a single packet in the queue). In a second region
(fairly large in terms of s settings), LEDBAT completely
yields to the TCP NewReno flows, working in low-priority
mode and thus attaining its goal. In a third region where
the LEDBAT target approaches (but does not exceed) the
queue size T3 2 ½65;100�%, LEDBAT aggressively starts to
erode bandwidth to the TCP NewReno flow: this causes
losses in the TCP NewReno flow, which progressively backs
off. As a consequence, the TCP share starts decreasing until
LEDBAT has the monopoly of the buffer, which happens
when it aims at precisely filling the buffer T ¼ 100% and
TCP NewReno starves (TCP% tends to 0%). As soon as the
target exceeds the buffer size, LEDBAT revert to standard
(a)

(b)
Fig. 5. LEDBAT vs. TCP NewReno: inter-protocol sensitivity analysis: (a)
link utilization and (b) TCP share for varying target s.
loss-based TCP NewReno behavior, and both flows com-
pete fairly for the bottleneck resources.

Overall, the inter-protocol sensitivity analysis suggests
that, although LEDBAT spans a wide range of low-priority
levels (especially in the third region, that exhibits a sharp
transition phase), a precise tuning is highly impractical
(as slight variation of s leads to completely different sce-
narios, where either LEDBAT or TCP NewReno exhibits
starvation). As such, LEDBAT seems to have a single low-
priority level (second region, with a fairly large range of
s values) that is furthermore the lowest among all the de-
lay-based protocols examined in the previous section.

4.2.2. Intra-protocol: LEDBAT vs. LEDBAT
The sensitivity analysis in the inter-protocol case is re-

ported in Fig. 6. Top plot of Fig. 6(a) depicts, as a function
of the s1=s2 target ratio, the link utilization g, the
Ps2 ¼ x2=ðx1 þ x2Þ share of the LEDBAT flow with the smal-
ler target (as s1 > s2 ¼ 100 ms), and the normalized buffer
length E½B�=Bmax. Is immediate to see that even slight differ-
ences in the target settings may have strong consequences
on the protocol fairness. Indeed a sharp transition phase on
the breakdown happens as soon as s1=s2 > 1, where the
share of the second flow rapidly drops to Ps2 ¼ 0. As a mat-
ter of fact, if both flows start at the same time, they both
measure the same base delay, and the higher-target flow
converges faster to its target and stabilizes: as the amount
of queuing is now larger than the one of the less aggressive
flow, the latter backs off and starves. This holds irrespec-
(a)

(b)
Fig. 6. LEDBAT vs. LEDBAT: Intra-protocol sensitivity analysis. (a) Impact
of target heterogeneity on performances of two LEDBAT flows and (b)
time evolution of the congestion window in case s1=s2 ¼ 1:2. In both
figures, 100 ms ¼ s2 6 s1.



122 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
tively of whether the higher-target flow operates in delay-
based (white shaded region) or loss-based regime (gray
shaded region): under both regimes, the higher-target flow
will always be advantaged prior than losses occur, and so
the unfairness persists.

An example of the congestion window evolution in case
s1=s2 ¼ 1:2 is represented in Fig. 6(b), and it can be seen
that whenever s1 > s2 the first flow will starve the second.
While the picture shows an homogeneous RTT scenario,
actually, unfairness due to target heterogenity always
dominates the unfairness due to RTT heterogenity: this is
because RTT unfainess just drives the rate at which
changes happen, whereas target heterogenity drives the
amount of change. It follows that backlogged flows with
larger targets, by design, will starve flows with smaller tar-
get (only, starvation will take more if larger-target flows
also have a larger RTT). At the same time, we point out that
starvation is surely reached whenever flows are back-
logged, though unfairness is less dramatic in case of
short-lived flows [10] Notice indeed that in Fig. 6(b), the
second flow share reaches 0 after about 2 min. Thus, we
expect latecomer unfairness (for which, by the way, known
solution exists [11,10]) to be a second-order detail in the
case of BitTorrent experiments of Section 5.

Overall, we see that tuning of the protocol priority via
the target parameter is highly impractical, as even small
difference in that value for two flows produces an extre-
mely unfair situation. Notice that this situation may hap-
pen also with non-malicious users with heterogeneous
s1; s2 targets settings that are both complying with the
LEDBAT RFC (i.e., s1 – s2 6 100ms). It follows that is not
possible to enforce multiple, finer-grained, levels of prior-
ity among LEDBAT flows in parallel. Yet, an interesting
observation is that two priority levels are possible: flows
with the largest s dominate the other flows, so that trans-
fers of heterogeneous target flows happens sequentially (as
if flows were scheduled according to their priority).
Fig. 7. Synoptic of the swarm simulation model.
5. Swarm perspective

As before, this section has three main aims. We first
compare the different delay-based protocols from a
swarm-level perspective, using torrent completion time
as the main metric, in a (i) homogeneous and (ii) heteroge-
neous peers population. We then perform (iii) a sensitivity
analysis of the LEDBAT target delay parameter s on the in-
tra-protocol case, letting peers have heterogeneous target
s settings in all-LEDBAT swarm.

We integrate our open-source implementation of LED-
BAT with the BitTorrent open-source implementations
[17] for ns2. The [17] module runs a fully fledged BitTor-
rent protocol, implementing all the relevant aspects of
the protocol dynamics (e.g., tit for tat reciprocation, rarest
firts chunk selection, etc.). For reason of space, we assume
the reader is familiar with BitTorrent (and otherwise refer
the reader to [17,5] for a detailed overview of the protocol).
We now briefly describe the swarm-scenario with the help
of Fig. 7. As commonly assumed, we consider the bottle-
neck to be represented by peer access link, which is
also one of the main motivations that led to the design of
LEDBAT. As access technology, we consider ADSL-like con-
nections with C = 1 Mbps uplink capacity (homogeneous
for the whole peer population) and 8 Mbps downlink
capacity. Access nodes are then interconnected directly to
the Internet, that we model by means of infinite capacity,
null delay links connected through an infinite switching
capacity router, to which all ADSL modems are intercon-
nected in a star topology. Unless otherwise stated, we set
the buffer size to B ¼ 200 full-size packets (that we have
increased with respect to the buffer size in the previous
flow-level simulation to better exacerbate performance
difference), that given C ¼ 1 Mbps correspond well to the
range of bufferbloat delays observed via Netalyzr in real-
world modems [23]. Access links also model one-way
propagation delay, which is chosen uniformly at random
in the interval ½0;25�ms so that the average RTT delay of
the swarm between two peers in the swarm is about
RTT ¼ 25 ms. Unless otherwise stated, the target delay for
the LEDBAT protocol is fixed at s ¼ 100 ms.

We implement two kind of P2P nodes, that model dif-
ferent application settings as far as peer preference for
the congestion protocol used for data transfer in uplink is
concerned. We assume that the latest application versions
will by default initiate data transfers using LEDBAT on their
uplink, but that they can accept incoming TCP data connec-
tions (i.e., similar to setting bt.transp_disposition = 5
in lTorrent). Older versions initiate TCP transfers, but ac-
cept incoming LEDBAT connections anyway (i.e.,
bt.transp_disposition = 10). For the sake of simplic-
ity, irrespectively of their data transfer settings, applica-
tions use TCP for the exchange of control messages (that
do not send high volume of data). Hence, a different traffic
mixture will possibly compete for ADSL access link capac-
ity and buffer space.

Notice that, while nodes are free to decide what conges-
tion control flavor to use for their outbound connections,
they have to comply to other peers settings as far as in-
bound data connections are concerned. We point out that
this slightly differs from the lTorrent implementation
[39], whose latest releases instead implement by default
a dual-stack solution where (i) both TCP NewReno and
LEDBAT connections are attempted in parallel (ii) the TCP
NewReno connection is dropped in case the LEDBAT con-
nection is successfully established, and (iii) application-
layer throttling of aggregated LEDBAT vs. TCP bandwidth
is in place. In practice, successful opening of a LEDBAT con-
nection may depend on a number of factor (e.g., NAT tra-



C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 123
versal, different bt.transp_disposition configuration
of the remote peer, availability of LEDBAT or legacy clients,
etc.) that we prefer not to model (as their precise settings
would be arbitrary and questionable anyway). Rather, we
argue that this simple model, where peers have the
freedom to choose the uplink protocol of their choice, is
a reasonable connection management policy possibly
available in the multitude of BitTorrent clients implement-
ing LEDBAT, and need to be assessed as well. Similarly, we
argue that a too detailed simulation model, e.g., including
application-layer throttling of aggregated LEDBAT vs. TCP
bandwidth, would defeat the very same purpose of using
a simulator. More faithful performance in the case of lTor-
rent are gathered via experiments in [39,40], that is worth
pointing out to be consistent with results we achieve in
simulation.

5.1. Preliminary campaign

We carry out a preliminary campaign to further refine
the P2P simulation scenario, where for simplicity, we lim-
itedly consider TCP NewReno and LEDBAT protocol. Be-
sides, from Section 4 we know LEDBAT, NICE and VEGAS
to behave similarly with backlogged flows, so we can rea-
sonably expect similarities to hold, at least to some extent,
in the BitTorrent case as well. We simulate a mild flash-
crowd scenario, in which at time t = 0 the swarm is consti-
tuted by only one seed, and then 100 leechers join with
exponentially distributed arrival times (mean rate
0.1 Hz). During each simulation, we discard the first 50
completion samples that happen during the transient per-
iod, and consider only the subsequent 50 completion
times. Simulations end after the 100th user has completed
its download, so that users beyond the 100th participate to
swarming, but their performance are not accounted for. For
each parameter settings, we repeat each simulation 10
times, so that statistics represent 500 individual torrent
downloads per setting.

As far as the swarm population is concerned, we either
consider homogeneous swarms (i.e., all TCP or all LEDBAT)
or heterogeneous swarms where the population is equally
split, on average, among LEDBAT and TCP peers (denoted
in the following as 50–50). While in [39] we also explore
different TCP vs. LEDBAT ratios, we believe this split ratio
to be the most relevant for our purpose. Indeed recent esti-
mates of lTorrent permeation (60% in 2008 [43]) suggest
that many legacy/TCP versions are still around. Addition-
ally, a roughly equal share in terms of the traffic volume
is confirmed by our measurement at multiple vantage
point in Europe [10] and by Brahm Cohen own words
[14]. As a side effect, as the population sets size are unbi-
ased, the presentation of the results is also simpler.

As far as the peer and seed behavior is concerned, we
consider three different scenarios, namely (i) never leave,
(ii) random stay, and (iii) immediately leave. In the first
one, peers never leave the system after becoming seeds,
thus altruistically continuing to serve other leechers in a
optimistic swarm configuration. In the second, more realis-
tic, scenario newborn seeds stay in the system for a random
time. Under this conditions, each time a peer leaves, a new
leecher joins the swarm, so that the swarm size remains
constant. Specifically, peers stay in the system after
becoming seeds for an exponentially distributed time, with
mean equal to half their download time. On the one hand,
this roughly models the BitTorrent netiquette to contribute
to the system beyond the tit-for-tat; on the other hand,
missing more detailed information of share ratio from real
swarms, we decide to opt for a simple peer behavioral
model, similar to other tricks that are common in the P2P
literature [27]. Finally, a worst-case scenario is considered,
in which selfish peers immediately leave the swarm after
data completion, while new leechers join to maintain a
constant population in the torrent swarm.

Simulation results of this preliminary campaign are re-
ported in Fig. 8. Top plots of Fig. 8(a) refer to scenarios
where seeds never leave the system, middle plots of
Fig. 8(b) to random stay scenario and bottom ones of
Fig. 8(c) to immediate leave case. Taking a single run as
an example, plots on the left column depict how the com-
pletion time evolves during the simulation, ordered by
peer completion rank (dark gray background represents
the discarded initial transient period). If seeds stay forever,
completion times shrink down to a point in which leechers
are close to fully exploit their downlink capacity, which is
no longer the case when seeds stay only for a finite time or
leave as soon as they end the download.

Plots in the middle column of Fig. 8 report the comple-
tion time cumulative distribution (CDF) for the different
populations. If peers never leave the system, no difference
arises due to the congestion control algorithm: intuitively,
as there is no resource hotspot, peers are able to download
from many seeds at the same time, hence we do not expect
congestion to play a major role in this case. Conversely,
when seeds leave the system and are replaced by new lee-
chers, resources become rare, translating into longer com-
pletion times.

Notice that our interest is especially on the relative
completion time between peers with different congestion
control flavors, more than on the torrent absolute comple-
tion time. Under this light, while performance of homoge-
neous swarms are alike, completion time in random stay
and immediate leave scenarios is affected by the specific
congestion control mechanism adopted by peers in case
of heterogeneous swarms.

Reasons why this happens can be better understood by
looking at the queue size complementary cumulative dis-
tribution (CCDF) shown in the right column plots of
Fig. 8 (gathered by sampling all uplink queues at 10 Hz).
Notice indeed that uplink queue of LEDBAT peers is very
similar in all scenarios, as LEDBAT tries not to exceed a tar-
get delay: deviation from target are due to TCP control con-
nection sharing the same queue, and latecomer advantage
[32]. On the contrary, TCP queues can grow long: in sce-
nario (b), for about 20% of the cases queues exceed 100
packets, corresponding to more than a second of queuing
delay considering full size packets (as reported in the top
x-axis for reference). In the 50–50 case, queuing delay
aggregates both LEDBAT and TCP uplink buffers, resulting
in an intermediate average system queuing time (notice
that in the 50–50 scenario, a further deviation from
LEDBAT target is due to bursty uplink ACK traffic of TCP
connections opened by other peers in the swarm). How-



Fig. 8. Swarm performance for different seeds holding time (never leave vs. random stay vs. immediate leave) and populations (homogeneous LEDBAT vs.
homogeneous TCP vs. heterogeneous 50–50): completion time evolution and CDF, queue occupancy CCDF.

124 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
ever, in heterogeneous scenarios, queues of individual
peers are more influenced by their uplink protocols.

Interestingly indeed, in heterogeneous swarms (denoted
with 50–50 in Fig. 8) the completion time behavior
changes significantly according to peer congestion control
preferences: more precisely, we report in Fig. 9(a) the com-
pletion time CDF of LEDBAT vs. TCP peers, gathering that
LEDBAT peers have shorter download times (which holds
for both the random stay and immediate leave scenarios).
This is a counter-intuitive result, as we would not expect
completion time to be tied to the congestion control used
to handle chunks upload with the protocol of choice for
the uplink. Intuitively, the completion time metric relates
to the downlink performance of a peer, but are otherwise
unrelated to the protocol a peer uses in uplink.

We suspect this unexpected phenomenon to arise due
to (i) the coupling of the data vs. control connection, asso-
ciated to (ii) the very large size of ADSL buffers: while large
buffers are beneficial to backlogged data connections, they
can conversely harm BitTorrent signaling. Indeed, TCP con-
trol connection competes with either LEDBAT data traffic
(that strive to keep a low extra delay on the access buffer)
or TCP data traffic (that indiscriminately opens up the con-
gestion window until loss occur). To prove this fact, we
perform simulation with variable buffer size, whose results
are reported in Fig. 9(b) and confirm our intuition. As ADSL
buffers are large, queuing delay of TCP peers can grow up
to seconds (Fig. 8): hence, this possibly hampers the per-
formance of TCP peers, whose control traffic is significantly
slowed down by competing chunk upload to other peers
and by ACK traffic of downloaded chunks. Conversely, the
shorter queuing delay of LEDBAT peers lead to more
responsive control connections, that opportunistically
‘‘steal’’ download slots from TCP peers (whose request rate
is, as we just saw, slowed down due to self-induced con-
gestion in the access link), as they are faster in filling the
request buffer of other peers. This phenomenon is instead
not observed in case of homogeneous TCP swarms, as all
peers fairly compete against each other.

5.2. Relative protocol assessment

We now extend our investigation to other protocols
than LEDBAT. For the sake of brevity, we fix the random
time case, and consider both homogeneous swarms (with
TCP NewReno, VEGAS, LP, NICE and LEDBAT peers) and het-
erogeneous swarms (where half of the peers are TCP New-
Reno and half either VEGAS, LP, NICE or LEDBAT). This
analysis is motivated by the fact that delay-based conges-
tion control protocols are already available in the kernel of



(a)

(b)
Fig. 9. (a) Breakdown of completion time CDF according to the different
peer population in the heterogeneous 50–50 scenario, for different seed
holding times. (b) Swarm completion time (mean, 1st and 3rd quartiles)
as a function of the buffer size B for the 50–50 random-stay scenario, for
different peer population.

3 Quoting the uTorrent post [26] that originally introduced the LEDBAT
(then called uTP): ‘‘Same performance is what users have come to expect from
their BitTorrent application unless we can offer the same performance, then
people will switch to a different BitTorrent client’’.

C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 125
modern Operating Systems, so that is relatively easy for
application developers to use them (i.e., TCP flavors can
be specified as parameters in the socket API). Hence, in
case comparable performance could be achieved under
multiple protocols, this would allow to focus the develop-
ment effort on other issues.

In case of homogeneous swarm, as expected from the
preliminary simulation campaign, we have that comple-
tion time is roughly the same irrespectively of the conges-
tion control used as Fig. 10(a) shows. Also, as expected per
the flow-level analysis in Section 4, we can see from
Fig. 10(b) that the average buffer occupancy is higher for
TCP NewReno and LP than for VEGAS, NICE or LEDBAT.

In the case we have a mixed population of peers within
the same swarm, Fig. 11(a) represents completion time for
the TCP half-swarm with a white bar, and the remaining
half with dark shaded bar (for reference, we still report
the all-TCP swarm as well). Results confirm that TCP New-
Reno peers always experience higher completion time with
respect to the other peers – though difference is only min-
imal in the LP case. This can again be explained looking at
the average buffer occupation plotted in Fig. 11(b), that is
higher for TCP NewReno than for VEGAS, NICE or LEDBAT
peers.

Overall, we see that effects tied to the packet-level
dynamics induced by the congestion control protocol in
use by peers can have notable effects on the BitTorrent per-
formance. This is in accordance with [17], that however
limitedly focus on homogeneous TCP NewReno case.
Our results further show an unexpected advantage of
delay-based protocols, that reducing the delay experienced
by control messages, can give competitive advantage with
respect to bufferbloated TCP NewReno peers. This observa-
tion is coherent with our experimental findings [39], that
further show the completion time to be linearly correlated
with the queue size. Additionally, simulations reported in
this section show these phenomena to hold for a set of de-
lay-based protocols (namely, VEGAS, NICE and LEDBAT)
whose behavior significantly deviates from TCP NewReno.
Conversely, delay-based protocols like LP that still have
additive-increase component, suffer similar queuing de-
lays to TCP NewReno, so that they cannot gain any oppor-
tunistic advantage.

5.3. LEDBAT target heterogeneity

As we have previously seen (Section 4.2.2), LEDBAT pos-
sibly leads to QoS fairness problems in case of backlogged
connections having heterogeneous targets. As LEDBAT has
been originally been designed by BitTorrent, it is equally
important to assess whether target heterogeneity leads to
QoE unfairness3 also in terms of the BitTorrent completion
time. More precisely, we separately consider the case of
mixed TCP and LEDBAT swarms (Section 5.3.1), and of
swarms with heterogeneous LEDBAT settings (Section 5.3.2).

5.3.1. Inter-protocol case: TCP vs. LEDBAT
As for the LEDBAT sensitivity analysis in the swarm-

case, we argue that is not necessary to perform any simu-
lation in the inter-protocol case. Implicitly, such a sensitiv-
ity was already shown in Fig. 9 where, instead of letting the
target vary, we varied the buffer size.

Still, additional considerations are worth reporting. The
results just shown testify that LEDBAT flows have a com-
petitive advantage provided their queuing delay is smaller
with respect to TCP NewReno peers – which is equivalently
implied by either smaller target for a fixed buffer size, or
larger buffer for a fixed target (as in Fig. 9).

Clearly, the queuing delay of LEDBAT peers grows pro-
portionally to the target, so that the difference between
LEDBAT and TCP NewReno performance reduce as s grows.
At the limit, s exceeds the buffer size and LEDBAT becomes
loss-based as TCP NewReno, so that completion time is the
same under both protocols.

5.3.2. Intra-protocol case: LEDBAT vs. LEDBAT
We now focus on the intra-protocol case, letting s vary.

Recall that from Section 4, as far as the backlogged flow
viewpoint is concerned, even a slightly higher target can
cause starvation of a compliant flow, which can be easily
exploited by malicious users. We therefore want to study
whether such competitive advantage persists under the
swarm perspective.

The scenario we hypothesize in this case is one where
LEDBAT has taken over TCP NewReno for P2P file-sharing



(a) (b)
Fig. 10. (a) Average and standard deviation of completion time and (b) average Buffer occupancy for different homogeneous swarms.

(a) (b)
Fig. 11. (a) Average completion time and (b) average Buffer occupancy for heterogeneous swarms (50%TCP–50%other CC).

(a)

(b)
Fig. 12. Target sensitivity, swarm-level, LEDBAT intra-protocol case. (a)
Average completion time and (b) average Buffer occupancy of peers with
heterogeneous target within the same swarm.

126 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
in BitTorrent, so that all legacy clients now use the open-
source LEDBAT API. Changing s settings is however very
easy for both application developers or even end-users.
Hence, in case violating the mandatory target values spec-
ified by the RFC could provide, as in flow-level, to a com-
petitive advantage, this would provide incentives to
selfish users (to reduce their download time) or application
developers (to gain a competitive advantage over other
applications). We recall that, since the LEDBAT RFC only re-
quires s 6 100, target heterogeneity arise also in the case
of RFC compliant implementations, and is thus of special
interest.

We consider an heterogeneous target among peers
within the same swarm: in this scenario, half of the popu-
lation employs the RFC-compliant target s2 ¼ 100 ms,
while the second half uses a different target s1 with
s1=s2 2 ½0:25;10�. Notice that with respect to our previous
discussion, s1=s2 2 ½0:25;1� correspond to users with RFC-
compliant s1 settings, while s1=s2 2 ½1;10� to malicious
s1 settings. Fig. 12(a) reports the average completion time
of the two set of peers, in the random stay scenario. As we
can see, for similar targets s1=s2 2 ½0:75;1:5� peers achieve
almost the same completion time on average.

Results further confirm that a lower target translates
into a lower completion time: indeed, there is an advan-
tage of selecting a lower target s1 < s2. When half of peers
in the swarm use a smaller target s1 ¼ 25 ms than the
maximum recommended value s2 ¼ 100 ms, their comple-



Fig. 13. Synaptic of LEDBAT performances for varying target settings and
workload models.

C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128 127
tion time decreases. As previously noted, this happen
because peers with a lower target setting are more respon-
sive in the control plane, as they strive to keep less data
into the buffer. Thus, they face a lower self-induced
congestion, as suggested also from the average buffer occu-
pancy E[B] reported in Fig. 12(b), which positively impacts
the user QoE of both BitTorrent as well as other interactive
applications.

On the contrary, there appears to be no incentive in
exceeding s2 > s1 the target value recommended by the
LEDBAT RFC: for large target ratios the completion time in-
creases by as much as 30% (additionally, the average delay
of peers using large target delays s1=s2 > 5 settles to
630 ms, which is more than the double of peers employing
s2 ¼ 100 ms). This is an especially interesting findings, as
settings that lead to opportunistic advantage in the
swarm-case are completely opposite (and non-harmful)
with respect to the previous flow-based case.
6. Conclusions

This work contrasts performance of a representative set
of delay based congestion control protocols (namely, LED-
BAT, NICE, VEGAS, and LP) from both a flow-level and a
swarm-level perspectives. Our investigation focuses not
only in a broad relative assessment of these protocols,
but also in a detailed analysis of the most recent one
(namely LEDBAT), that was not studied in such depth
beforehand.

In the flow-level perspective, important since LEDBAT
has been standardized at the IETF, we study classic QoS
metric (e.g., buffer size, loss, efficiency and fairness) under
a backlogged traffic model. In this scenario, we learn that
LEDBAT has the lowest priority and is followed, in order
of increasing priority, by NICE, VEGAS, and LP. It also fol-
lows that LEDBAT is the least intrusive protocol, leading
to queuing delay that are shorter than NICE, VEGAS, and
LP. Finally, LEDBAT efficiently exploits the bottleneck, so
that its design goals are met.

However, in the intra-protocol case we also find that
selfish users gain competitive advantages using higher tar-
gets s, which can happen when settings are either compli-
ant with, or in violation of, the RFC recommendations.
Since even slightly higher targets may lead compliant
flows to starvation, it follows that malicious users may
gain an unfair advantage with by only minimally hurting
its performance with respect to compliant users (at the
same time, the same considerations apply to other conges-
tion protocols, such as, e.g., TCP users with a faster rampup
with respect to the RFC recommendations).

Yet, the above findings limitedly hold in the case of
backlogged connections, for which we also analyze a more
realistic swarm-level perspective, important since LEDBAT
has been invented by BitTorrent to relieve bufferbloat of its
users. In this scenario, we faithfully simulate BitTorrent
dynamics at packet level and study how congestion control
dynamics affect the most relevant QoE metric (i.e., the tor-
rent completion time).

In this second case, we learn that LEDBAT congestion
control can be beneficial to the torrent completion time.
While surprising at first, this can be explained with the
competitive advantage gained in the timely delivery of
control plane messages. Interestingly, results confirm this
phenomenon to hold across delay-based congestion con-
trol (e.g., including NICE and VEGAS) as long as they keep
the buffer size limited.

Most interestingly, competitive advantages in terms of
completion time can be gathered in the swarm case by
employing lower targets s – a dual scenario with respect
to flow-level. Hence, in the case of BitTorrent users, perfor-
mance considerations inherently remove incentives to vio-
late the LEDBAT RFC recommendation.

This duality is summarized with the help of Fig. 13. On
the one hand, at flow-level small targets may not be feasi-
ble due to inefficient operation, while selfish users may re-
sort to higher targets to gain competitive advantage. On
the other hand, at swarm-level, selfish BitTorrent users
gain competitive advantage by setting a lower target. From
the above tradeoff it follows that, at least for BitTorrent,
feasible operational points, that lay in the dark shared area
of Fig. 13, can be found in practice.

Acknowledgement

This work has been carried out at LINCS http://
www.lincs.fr, and funded by the FP7 mPlane Project (Grant
Agreement No. 318627).

References

[1] BitTorrent in ns2. <https://sites.google.com/site/koljaeger/
bittorrent-simulation-in-ns-2>.

[2] LEDBAT Mailing List Archives. <http://www.ietf.org/mail-archive/
web/ledbat>.

[3] LEDBAT ns2 code. <http://perso.telecom-paristech.fr/�drossi/
index.php?n=Software.LEDBAT>.

[4] J.S. Ahn, P.B. Danzig, Z. Liu, L. Yan. Evaluation of TCP Vegas:
emulation and experiment, in: ACM SIGCOMM Comp. Comm. Rev.
vol. 25, ACM, 1995, pp. 185–195.

[5] Arnaud Legout, Nikitas Liogkas, Eddie Kohler, Lixia Zhang, Clustering
and sharing incentives in bittorrent systems, in: Proc. of ACM
SIGMETRICS’07 San Diego, CA, 2007.

[6] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and
improving a BitTorrent performance mechanisms, in: 25th IEEE
Conference on Computer Communications (INFOCOM 2006)
Barcelona, Spain 2006.

[7] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, A. Zhang,
Improving Traffic Locality in BitTorrent via Biased Neighbor
Selection, July 2006.

[8] L.S. Brakmo, S.W. O’Malley, L.L. Peterson, TCP vegas: new techniques
for congestion detection and avoidance, ACM SIGCOMM Comput.
Commun. Rev. 24 (4) (1994) 24–35.

http://www.lincs.fr
http://www.lincs.fr
http://https://sites.google.com/site/koljaeger/bittorrent-simulation-in-ns-2
http://https://sites.google.com/site/koljaeger/bittorrent-simulation-in-ns-2
http://www.ietf.org/mail-archive/web/ledbat
http://www.ietf.org/mail-archive/web/ledbat
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.LEDBAT
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.LEDBAT
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.LEDBAT
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0185
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0185
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0185


128 C. Testa, D. Rossi / Computer Networks 60 (2014) 115–128
[9] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, A hands-on
assessment of transport protocols with lower than best effort
priority, in: 35th IEEE Local Computer Network (LCN 2010) Denver,
CO, 2010.

[10] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, S. Valenti, Rethinking
low extra delay backtround transport protocols, Elsevier Comput.
Netw. 57 (2013) 1838–1852.

[11] G. Carofiglio, L. Muscariello, D. Rossi, S. Valenti, The quest for
LEDBAT fairness, in: IEEE Global Communication (GLOBECOM 2010),
Miami, FL, 2010.

[12] Vint. Cerf, Van. Jacobson, Nick. Weaver, Jim. Gettys, Bufferbloat:
what’s wrong with the internet?, Commun ACM 55 (2) (2012) 40–
47.

[13] C. Chirichella, D. Rossi, To the moon and back: are internet
bufferbloat delays really that large, in: IEEE INFOCOM Workshop
on Traffic Measurement and Analysis (TMA 2013), Turin, Italy, 2013.

[14] B. Cohen, How has BitTorrent as a protocol evolved over time.
<http://www.quora.com/BitTorrent-protocol-company>.

[15] B. Cohen, A. Norberg, Correcting for clock drift in uTP and LEDBAT,
in: Invited talk at 9th USENIX International Workshop on Peer-to-
Peer Systems (IPTPS 2010) San Jose, CA, 2010.

[16] L. DiCioccio, R. Teixeira, M. Mayl, C. Kreibich, Probe and pray: using
UPnP for home network measurements, in: Passive and Active
Measurement (PAM 2012), 2012.

[17] K. Eger, T. Hoßfeld, A. Binzenhofer, G. Kunzmann, Efficient
simulation of large-scale p2p networks: packet-level vs. flow-level
simulations, in: ACM UPGRADE-CN Monterey, CA, 2007.

[18] S. Floyd, T. Henderson, RFC 2582: the newreno modification to TCP’s
fast recovery algorithm, RFC 2582, April.

[19] Y. Gong, D. Rossi, E. Leonardi, Modeling the interdependency of low-
priority congestion control and active queue management, ArXiv e-
prints, March 2013.

[20] Y. Gong, D. Rossi, C. Testa, S. Valenti, D. Taht, Fighting the
Bufferbloat: on the Coexistence of AQM and low priority
congestion control, in: IEEE INFOCOM Workshop on Traffic
Measurement and Analysis (TMA 2013), Turin, Italy, 2013.

[21] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, L.
Garces-Erice, Dissecting bittorrent: Five months in a torrent’s
lifetime, in: 5th Passive and Active Measurement (PAM 2004),
Antibes, France, 2004.

[22] R. Jain, A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks, ACM SIGCOMM
Comput. Commun. Rev. 19 (5) (1989) 56–71.

[23] C. Kreibich, N. Weaver, B. Nechaev, V. Paxson, Netalyzr: illuminating
the edge network, in: ACM Internet Measurement Conference (IMC
2010), Melbourne, Australia, 2010.

[24] M. Kühlewind, S. Fisches, Evaluation of different decrease schemes
for LEDBAT congestion control, Energy-Aware Commun. (2011)
112–123.

[25] A. Kuzmanovic, E.W. Knightly, TCP-LP: low-priority service via end-
point congestion control, IEEE/ACM Trans. Networking (TON) 14 (4)
(2006) 752.

[26] S. Morris, lTorrent release 1.9 alpha 13485. <http://
forum.utorrent.com/viewtopic.php?pid=379206#p379206>.

[27] F. Picconi, L. Massoulié. ISP friend or foe? making P2P live streaming
ISP-aware, in: Proc. of IEEE International Conference on Distributed
Computing Systems (ICDCS’09) Montreal, Quebec, Canada, 2009,
IEEE.

[28] J. Pouwelse, P. Garbacki, D. Epema, H. Sips, The BitTorrent p2p File-
Sharing System: Measurements and Analysis, Ithaca, NY, 2005

[29] D. Qiu, R. Srikant, Modeling and performance analysis of BitTorrent-
like peer-to-peer networks, ACM SIGCOMM Comput. Commun. Rev.
34 (4) (2004) 367–378.

[30] A. Rao, A. Legout, W. Dabbous, Can realistic bittorrent experiments
be performed on clusters? in: 10th IEEE International Conference on
Peer-to-Peer Computing (P2P 2010) Delf, The Netherlands, 2010.

[31] D. Rossi, C. Testa, S. Valenti, Yes, we LEDBAT: Playing with the new
BitTorrent congestion control algorithm, in: 11th Passive and Active
Measurement (PAM 2010) Zurich, Switzerland, 2010.

[32] D. Rossi, C. Testa, S. Valenti, L. Muscariello, LEDBAT: the new
BitTorrent congestion control protocol, in: 19th IEEE International
Conference on Computer Communications and Networks (ICCCN
2010) Zurich, Switzerland, 2010.

[33] I.S. Ha, Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP
variant, in: ACM SIGOPS Operating System Review New York, NY
2008.
[34] J. Schneider, J. Wagner, R. Winter, H. Kolbe, Out of my way –
evaluating low extra delay background transport in an ADSL acciess
network, in: 22nd International Teletraffic Congress (ITC 2010)
Amsterdam, The Netherlands, 2010.

[35] S. Shalunov, Low Extra Delay Background Transport (LEDBAT), IETF
Draft, 2010.

[36] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind, RFC 6817: Low
Extra Delay Background Transport (LEDBAT), RFC 6817, December
2012.

[37] K. Tan, J. Song, Q. Zhang, M. Sridharan, A compound TCP approach for
high-speed and long distance networks, in: 25th IEEE Conference on
Computer Communications (INFOCOM 2006) Barcelona, Spain, April
2006.

[38] C. Testa, D. Rossi, The impact of uTP on BitTorrent completion time,
in: 11th IEEE Peer to Peer (P2P 2011) Kyoto, Japan, September 2011.

[39] C. Testa, D. Rossi, A. Rao, A. Legout, Experimental assessment of
BitTorrent completion time in heterogeneous TCP/uTP swarms, in:
4th Traffic Measurement and Analysis (TMA) Workshop at 13th
Passive and Active Measurement (PAM 2012) Wien, Austria, March
2012.

[40] C. Testa, D. Rossi, A. Rao, A. Legout, Data plane throughput vs control
plane delay: experimental study of BitTorrent performance, in: 13th
IEEE Peer to Peer (P2P 2013), Trento, Italy, September 2013.

[41] G. Urvoy-Keller, P. Michiardi, Impact of inner parameters and
overlay structure on the performance of BitTorrent, in: 25th IEEE
Conference on Computer Communications (INFOCOM 2006)
Barcelona, Spain, April 2006.

[42] A. Venkataramani, R. Kokku, M. Dahlin, TCP Nice: a mechanism for
background transfers, in: 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2002) Boston, MA,
December 2002.

[43] C. Zhang, P. Dhungel, D. Wu, K. Ross, Unraveling the bittorrent
ecosystem, IEEE Trans. Parallel Distrib. Syst. (TPDS) 99 (2011).

Claudio Testa received the MSc degree in
Computer and Communication Networks
Engineering from the Politecnico di Torino
(Torino, Italy), with a Master Thesis in the
network traffic analysis field. In November
2012 he received the PhD degree at the
Computer Science and Networking (INFRES)
department of Telecom ParisTech (Paris,
France) under the supervision of Prof. Dario
Rossi. His research focused in the field of low-
priority congestion control algorithms, peer-
to-peer services and content distribution

applications. Since 2013, he works as Network Engineer for Content
Delivery Network (CDN) at Orange.
Dario Rossi is a Professor at the Computer
Science and Networking (INFRES) department
of Telecom ParisTech (Paris, France) and at
Computer Science (LIX) department of the
Ecole Polytecnique (Palaiseau, France). He
received his MSc and PhD degrees from
Politecnico di Torino in 2001 and 2005
respectively, and his HDR degree from Uni-
versite Pierre et Marie Curie (UPMC) in 2010.
During 2003–2004, he held a visiting
researcher position in the Computer Science
division at University of California, Berkeley.

He is responsible for several European research projects, such as FP7
mPlane, NAPA-WINE, Celtic TIGER, TIGER2 and TRANS, ANR Connect. He
has coauthored over 100 papers in leading conferences and journals,

holds 5 patents and he participated in the program committees of over 40
conferences including ACM CoNEXT, IEEE INFOCOM, ICC, IPCCC and
GLOBECOM. His research interests include Internet traffic measurement,
information centric networks, green networking, peer-2-peer networks
and traffic engineering.

http://refhub.elsevier.com/S1389-1286(13)00429-5/h0725
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0725
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0725
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0190
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0190
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0190
http://www.quora.com/BitTorrent-protocol-company
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0195
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0195
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0195
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0200
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0200
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0200
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0205
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0205
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0205
http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0210
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0210
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0210
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0215
http://refhub.elsevier.com/S1389-1286(13)00429-5/h0215

	Delay-based congestion control: Flow vs. BitTorrent swarm perspectives
	1 Introduction
	2 Related work
	2.1 Flow viewpoint
	2.2 Swarm viewpoint

	3 Background
	3.1 TCP-Vegas
	3.2 TCP-LP
	3.3 TCP-NICE
	3.4 LEDBAT

	4 Flow perspective
	4.1 Relative protocol assessment
	4.2 LEDBAT target sensitivity
	4.2.1 Inter-protocol: LEDBAT vs. TCP
	4.2.2 Intra-protocol: LEDBAT vs. LEDBAT


	5 Swarm perspective
	5.1 Preliminary campaign
	5.2 Relative protocol assessment
	5.3 LEDBAT target heterogeneity
	5.3.1 Inter-protocol case: TCP vs. LEDBAT
	5.3.2 Intra-protocol case: LEDBAT vs. LEDBAT


	6 Conclusions
	Acknowledgement
	References


