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Abstract. In this paper we present the problem of combining optimal
control with efficient information gathering in an uncertain environment.
We assume that the decision maker has the ability to choose among a
discrete set of sources of information, where the outcome of each source
is stochastic. Different sources and outcomes determine a reduction of
uncertainty, expressed in terms of constraints on system variables and
set-points, in different directions. This paper proposes an optimization-
based decision making algorithm that simultaneously determines the best
source to query and the optimal sequence of control moves, according to
the minimization of the expected value of an index that weights both
dynamic performance and the cost of querying. The problem is formu-
lated using stochastic programming ideas with decision-dependent sce-
nario trees, and a solution based on mixed-integer linear programming is
presented. The results are demonstrated on a simple supply-chain man-
agement example with uncertain market demand.

1 Introduction

A large number of problems in production planning and scheduling, location,
transportation, finance, and engineering design require taking optimal decisions
in the presence of uncertainty. Uncertainty, for instance, governs the prices of fu-
els, the availability of electricity, and the demand for chemicals. In general, these
uncertainties affect the constraints of the corresponding optimization problem. A
standard approach to deal with uncertain constraints is to guarantee constraint
satisfaction for all possible cases. In order to reduce the conservativeness of this
solution, additional information about the uncertainties may be gathered, for
example by carrying a demand field study to better estimate the value of future
demand of a certain product in a production planning problem. With this ad-
ditional information, the optimization problem is updated in a less conservative
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way and an improved solution is obtained. In addition, with the current de-
velopments in networked control systems (NCS) [18,7,12], efficient information
gathering has become a very relevant problem in modern industrial automation.
Possible examples of this framework are given by control over wireless networks,
where communication is subject to strong energy constraints, and more in gen-
eral by any kind of NCS in which measurement acquisition is expensive. For such
process control problems a selection criterion for the kind of information that is
convenient to retrieve is recommended.

In general, however, the outcome of these information queries is not known a
priori. Moreover, queries have fixed costs that do not depend on the quantitative
outcome of the information gathered, i.e., costs associated with the querying
process per se. This poses a difficult problem of whether a query would be
profitable or not. The difficulty increases when there are several possible queries
at hand and, even more difficult, when a whole sequence of queries must be
planned. There are different ways of approaching the problem. It can be cast as
a Markov decision problem (MDP) [13], but the cardinality of the state space
of this representation grows exponentially with the number of events, due to
the number of possible combinations of events which could take place. Hence,
the exact solution of such a problem becomes computationally intractable very
quickly, even for relatively small problems. The approach taken in [6] for a similar
problem (the bridge problem) is based on reinforcement learning, which is a set
of techniques aimed at approximating the MDP value function. We refer the
reader to the literature on the subject for further details [4,17].

In this paper we take a different route and propose a stochastic recursive
optimization scheme in which we have to decide not only an optimal sequence
of future control actions, but also which measurements/queries are worth to be
carried out. Each query is defined by its own fixed cost and a series of possible
outcomes described by a discrete probability function. The constraints on the
sequence of future actions and performance indices depend on such outcomes.
Consequently, the optimal control problem becomes stochastic as well, for which
we employ a stochastic programming formulation to minimize expected values
under stochastic constraint sets. Stochastic programming is a special class of
mathematical programming that involves optimization under uncertainty (see
[5,9,14]). The first applications of stochastic programming date back to the 50’s
and nowadays it is becoming a mature theory that is successfully applied in
several domains [15]. A stochastic programming problem is defined by a sequence
of random events and recourse decisions. Each decision is a different stage and
stages are divided by random events. In the proposed formulation, there are two
stages, that is, two sets of decision variables separated by a random event: First
the query has to be chosen without knowing the outcome of the response, then
the outcome of the query is obtained (the random event takes place) and the
second stage decision (the dynamic optimization variables) is made based on
this information.

For long optimization horizons, we advocate the use of recursive shorter-
horizon optimization to obtain suboptimal solutions within a manageable
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computational burden (see for example [3] for the application of recursive stochas-
tic hybrid optimal control in the management of power distribution networks).
The proposed scheme is demonstrated on a supply-chain management example in
which the future demand is uncertain, but additional information can be obtained
from market studies.

2 Stochastic Querying Model

Consider the generic problem of linear programming (LP)

min
z

c′z (1)

s.t. z ∈ Z,

in which Z is a polyhedron that defines the region of feasibility. As in general
by expanding Z one improves the optimum achieved in (1), we consider the case
in which we can perform a query Q in order to obtain additional information
that allows us to enlarge the size of Z. The main idea is that in the presence of
uncertainty, if a robust approach is taken, the feasible set takes into account all
possible values of uncertain parameters. Hence, by obtaining additional infor-
mation that reduces the set of possible values of the uncertain parameters, the
size of Z increases, and hence the optimal cost is improved. We define a query
Q as follows:

Definition 1. A query Q(q) ∈ Q is defined as

Q(q) = {C(q),Vq}, q ∈ {0, 1, . . . , nq}, (2)

where q is the query index, C(q) ≥ 0 is the querying cost, and Vq = {V q
1 , V q

2 , . . . ,
V q

mq
} is the set of the mq possible outcomes.

Definition 2. A query outcome V q
v for the query q is defined as

V q
v = {Z(q, v)}, (3)

where v ∈ {1, 2, . . . , mq} is the outcome index, and Z(q, v) is the updated fea-
sibility set.

Note that, in general, the number mq of possible outcomes depends on the query
q. For compactness of notation, in the sequel we will often refer to a “query” Q(q)
directly by its corresponding query index q, and to an “outcome” V q

v directly
by its corresponding outcome index v. To model the case where the source of
information is not queried at all, we introduce the null query, indexed by q = 0
and defined below.

Definition 3. The null query is defined as

Q(0) = {0,V0}, V0 =
{
V 0

1 = {Z}} , (4)
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The query Q(q) can be chosen among the finite set Q of different queries, however
the information obtained from each query is stochastic. Each query is defined
by a cost C(q) and a set of possible outcomes Vq with a given probability, which
we assume to be available.

Definition 4. For every query q ∈ {0, 1, . . . , nq}, the outcome probability dis-
tribution is a discrete distribution given by

Pi =

⎧
⎨

⎩
pij : pij = Pr[v = V i

j |q = i], j = 1, 2, . . . , mi,

mi∑

j=1

pij = 1

⎫
⎬

⎭
. (5)

The objective is to choose the query Q(q) ∈ Q such that Jq is minimized, where
Jq is the expected value of the cost function with respect to the possible outcomes
of the query plus the cost of the query itself

min
q∈Q

Ev [Jqv|q] + C(q), (6)

with Jqv the optimal cost corresponding to the outcome v of the query q
defined as

Jqv = min
z

c′z (7a)

s.t. z ∈ Z(q, v). (7b)

Problem 7 can be posed as a two-stage stochastic optimization prob-
lem [5,9,14]. As observed earlier, here the query q is the first-stage variable,
and z is the second-stage variable which is decided after the random outcome
event v takes place. In the following section we propose to apply this general
framework to the the problem of combining optimal control with efficient infor-
mation gathering in an uncertain environment.

3 Simultaneous Optimal Control and Sensor Selection
Problem

Consider the discrete-time linear model of the process

x(t + 1) = Ax(t) + Bu(t), (8)

where the input u ∈ R
nu and the input rate Δu(t) = u(t)− u(t− 1) are subject

to known component-wise constraints1 umin ≤ u ≤ umax, and Δumin ≤ Δu ≤
Δumax. The state x ∈ R

nx is subject to uncertain constraints. The only available
a priori information on the admissible state set is given by the set-membership
relation x ∈ X , where X is a conservative estimate of the admissible state set
that guarantees robust constraint satisfaction for all possible values of queries
1 Here component-wise constraints are considered for simplicity, but it is straightfor-

ward to extend the approach to the more general case of polytopic constraints.
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and outcomes. The goal of the control action is to make the state x(t) and the
input u(t) track an uncertain reference value rx(t), ru(t), respectively, where
r(t) =

[
rx(t)
ru(t)

]
∈ R. The set R is a conservative estimate of all the possible

values that the reference can take2.
Without additional information, a recursive optimal control problem formu-

lation based on model (8), the conservative estimates X and R, and a min-max
cost function can be formulated using standard min-max model predictive con-
trol ideas [16,1,11]. We refer to this problem as the standard min-max problem.
However, in this paper, we assume that every T time steps the decision maker is
allowed to reduce the conservativeness by querying additional sources of infor-
mation at a certain cost. This additional information in general may provide a
reduced conservativeness on the admissible state sets (i.e., a larger domain X ),
and/or a better estimate of the reference r(t) (i.e., a smaller domain R). In both
cases, the obtained solution is less conservative, with consequent improvement
of the overall performance of the process. By following the problem formulation
of Section 2, the outcome v related to the query q is denoted by

V q
v = {X (q, v|t),R(q, v|t)}, (9)

where X (q, v|t), R(q, v|t) are the updated state constraints and reference sets,
such that X (q, v|t) ⊇ X (t), R(q, v|t) ⊆ R(t). Moreover, the outcome set for the
null query is

V 0
1 = {X (t),R(t)}, (10)

where X (t), R(t) is the available information at time t on state constraints and
reference set. Note that we consider here problems in which the estimates of the
uncertain sets are time varying. This may be the case for instance in which the
outcomes obtained after each query accumulate.

The querying mechanism can be modeled in different ways, for example by
introducing delays between the query transmission and the availability of the
outcome. For simplicity, in the following sections we restrict ourselves to the
following assumption.

Assumption 1. The outcome V q
v of a query Q(q) performed at time step t is

immediately available, and the provided information is supposed to be significant
only for time step t + 1.

We aim at defining a stochastic optimal control setup that, at each time step t,
provides at the same time a sequence of optimal input values u(t), u(t + 1), . . .,
u(t + N − 1), N ≥ 1, and the most profitable query q(t), by taking into account
model (8), the set of possible outcomes (9), and the corresponding probability
distributions (5). As mentioned before, we assume that a query can be done
every T time steps, where T is constant and such that T ≥ 1. We also assume
that a query is done at time step t = 0. This implies that a query will be done
2 Note that this setup can be easily extended to the case of bounded additive dis-

turbances, as they can be modeled without loss of generality by means of more
conservative state or input constraints.
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at time steps t = kT , k ∈ Z, k ≥ 0. Given a generic time t, the next query will
be henceforth carried out at time t + H , where

H =
⌈

t

T

⌉
T − t, (11)

and where �a� denotes the smallest integer greater than or equal to a. When H
is smaller than the optimal control horizon N , the future query has to be decided
by the optimal decision mechanism, otherwise a standard min-max problem (no
query) is solved.

Note that in general, instead of choosing off-line a constant value for T , any
time-varying, state-dependent interval T (t) could be considered, as long as the
condition 0 < H(t) < N ⇒ H(t + 1) ≤ H(t) − 1 is enforced to preserve the
consistency of the receding horizon control.

Based on the above description, at time step t ∈ N the simultaneous optimal
control and sensor selection problem is defined as

min
q

Ev [Jqv|q] + cC(q) (12a)

s.t.
{

q ∈ {0, 1, 2, . . . , nq} if H < N,
q = 0 otherwise, (12b)

with

Jij = min
Δu

{

max
r

N−1∑

k=0

�(x(t + k, i, j|t) − rx(t + k, i, j|t),

u(t + k, i, j|t) − ru(t + k, i, j|t), Δu(t + k, i, j|t))}
(13a)

s.t. x(t + k + 1, i, j|t) = Ax(t + k, i, j|t) + Bu(t + k, i, j|t), (13b)
u(t + k, i, j|t) = u(t + k − 1, i, j|t) + Δu(t + k, i, j|t), (13c)
umin ≤ u(t + k, i, j|t) ≤ umax, (13d)
Δumin ≤ Δu(t + k, i, j|t) ≤ Δumax, (13e)

x(t + k, i, j|t) ∈
{X (i, j|t) if k = H + 1,
X (t) otherwise, (13f)

r(t + k, i, j|t) ∈
{R(i, j|t) if k = H + 1,
R(t) otherwise, (13g)

x(t, i, j|t) = x(t|t), (13h)
Δu(t + h, i, j|t) = Δu(t + h, w, z|t), ∀w �= i, ∀z �= j, (13i)
h = 0, 1, . . . , min(H, N) − 1,

k = 0, 1, . . . , N − 1,

for i = 0, 1, . . . , nq, j = 1, 2, . . . , mi, where x(t|t) = x(t) is the current state,
used as the initial condition for the optimal control problem, x(t + k, i, j|t),
r(t+k, i, j|t), u(t+k, i, j|t), Δu(t+k, i, j|t) are the predicted state, the input, the
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Fig. 1. Optimization tree structure for different time steps t, where to enforce causality
the inputs are not branched until the query is performed (N = T = 3, circled dots
denote decisions taken on q)

input rate and uncertain reference at time step t + k corresponding to making a
query i with the outcome j at time t+H , r = [ rx

ru
], c ≥ 0 is the tradeoff coefficient

between performance and querying costs, N is the prediction horizon, T is the
time period between two consecutive queries, and the stage cost � : R

nx+2nu → R

is a nonnegative function.
The positive scalar H defined in (11) represents the time step at which a query

decision will take place. Until that time, the causality constraint (13i) enforces
the same input sequence for all the possible sequences of states, regardless of the
dependence on future decision on q. Note that the optimization problem has the
time-varying structure depicted in Figure 1, as the imposed constraints at time
t depend on the current value of H =

⌈
t
T

⌉
T − t.

In principle, Problem 13 is an infinite dimensional optimization problem, due
to the maximization part that involves an infinite number of realizations of the
reference r. However, it is well known that when the process is linear and the
constraints and the cost function are convex, the max problem can be solved by
considering only the “extreme” realizations, namely the vertices of the reference
set R (see, e.g., [16]). In the next section we will exploit this property to refor-
mulate Problem 13 as a stochastic mixed-integer linear programming (MILP)
problem.

According to the aforementioned stochastic optimization nomenclature [5],
Problem 12 is a two-stage optimization problem in which the second-stage
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variables are Δu’s. Since only one decision on q is modeled in the problem,
the proposed formulation is exact with respect to the system behavior only
for N ≤ T . For N > T a more complex multi-stage stochastic programming
formulation would be necessary. By using the two-stage formulation (12) also
when N > T , i.e., by modeling just the first decision on q, one gets a conservative
solution which does not exploit all the available information, but nonetheless is
computationally more viable.

The following Algorithm 1 summarizes the proposed recursive stochastic si-
multaneous optimal control and sensor selection decision mechanism.

Algorithm 1. Recursive stochastic simultaneous optimal control and sensor
selection.

For all t ≥ 0:
1. get x(t) and compute H as in (11);
2. solve Problem 12 and get the optimal solution q∗(t), u∗(t, i, j|t), ∀i, j;
3. if H = 0

3.1. perform the query q∗(t) and get the query outcome v∗(t);
3.2. set u(t) = u(t, q∗, v∗|t) in (8);

4. else
4.1. set u(t) = u(t, 0, 1|t) in (8);

5. end.

Next section focuses on computational methods for solving Problem 12. A
closed-loop stability analysis of the receding horizon control scheme proposed by
Algorithm 1 is beyond the scope of this paper and will addressed in future works,
based on an adaptation of convergence properties existing for deterministic min-
max model predictive control schemes [16] to the present stochastic min-max
setting.

4 Solution Methods

Let the stage cost � be based on infinity norms

� (x − rx, u − ru, Δu) = ||Qx(x− rx)||∞ + ||Qu(u− ru)||∞ + ||QΔuΔu||∞, (14)

and, for the sake of generality, assume that a terminal cost

� (x(t + N, i, j|t) − rx) = ‖QN (x(t + N, i, j|t) − rx)‖∞ (15)

is added in the cost function (13a), where Qx, Qu, QΔu, QN are full row-rank
matrices, and ‖Qx‖∞ = maxi=1,...,nx |Qix| with Qi the ith row of Q3. In this
case Problem 12 can be solved using an MILP problem by following the so-called
“scenario enumeration” approach of stochastic programming [5], as detailed be-
low, where we exploit the convexity of (14), (15), to get rid of the max problem
3 The results of this paper extend to any convex piecewise affine function �.
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in (12) through enumeration of vertices, introduce slack variables that upper
bound each stage term of the stage cost [1], and use big-M techniques to trans-
form a multiplication between a binary variable and a continuous variable into a
set of linear constraints [19]. The case of quadratic cost in (14) can also be han-
dled similarly, by using mixed-integer quadratic programming (MIQP). Then,
Problem 12 can be formulated as the following MILP

min
δ,Δu,F,γ

nq∑

i=0

Fi (16a)

s.t. x(t + k + 1, i, j|t) = Ax(t + k, i, j|t) + Bu(t + k, i, j|t),
u(t + k, i, j|t) = u(t + k − 1, i, j|t) + Δu(t + k, i, j|t),
umin ≤ u(t + k, i, j|t) ≤ umax,

Δumin ≤ Δu(t + k, i, j|t) ≤ Δumax,

x(t + k, i, j|t) ∈
{X (i, j|t) if k = H + 1,
X (t) otherwise,

x(t, i, j|t) = x(t|t),
Δu(t + h, i, j|t) = Δu(t + h, w, z|t), ∀w �= i, ∀z �= j,

γkx
ij ≥ ‖Qx(x(t + k, i, j|t) − rx(t + k, i, j|t))‖∞,
k = 0, . . . , N − 1,

γku
ij ≥ ‖Qu(u(t + k, i, j|t) − ru(t + k, i, j|t))‖∞,
k = 0, . . . , N − 1,

γkΔu
ij ≥ ‖QΔuΔu(t + k, i, j|t)‖∞,
k = 0, . . . , N − 1,

γNx
ij ≥ ‖QN(x(t + N, i, j|t) − rx(t + N, i, j|t))||∞,

︸ ︷︷ ︸

∀r(t + k, i, j|t) ∈
{Rv(i, j|t) if k = H + 1,
Rv(t) otherwise,

(16b)

−Mδi ≤ Fi ≤
mi∑

j=1

pij(t)

(

γNx
ij +

N−1∑

k=0

γkx
ij + γku

ij + γkΔu
ij

)

+ cC(i) + M(1 − δi), (16c)

Mδi ≥ Fi ≥
mi∑

j=1

pij(t)

(

γNx
ij +

N−1∑

k=0

γkx
ij + γku

ij + γkΔu
ij

)

+ cC(i) − M(1 − δi), (16d)
nq∑

i=0

δi = 1, δi ∈ {0, 1}, i = 0, . . . , nq,

h = 0, 1, . . . , min(H, N) − 1,

i = 0, 1, . . . , nq, j = 1, 2, . . . , mi, k = 0, . . . , N − 1.

where the array of binary variables δ = {δ0, δ1, . . . , δnq}, δi ∈ {0, 1}, i =
0, . . . , nq, one for every possible query choice, is used to choose the query to
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be done among all possibilities; that is, if query i is chosen, then δi = 1 and the
rest are equal to zero. The slack variables γkx

ij , γku
ij , γkΔu

ij , γNx
ij in (16b) define the

value of the min-max problem (13) for every couple (i, j), where Rv(t), Rv(i, j|t)
are the sets of the vertices of R(t) and R(i, j|t), respectively. Note that (16b)
are linear constraints, since in general γ ≥ ‖z‖∞ can be rewritten as γ ≥ ±zi,
∀i. By means of the big-M constraints (16c)-(16d), all the continuous variables
Fi take zero value, except for the one referred to the chosen query. Then, the
cost function (16a) is equivalent to (12a). M is a large enough positive scalar,
satisfying the condition

M ≥∑mi

j=1 pij(t)
(‖QN(x(t + N, i, j|t) − rx(t + N, i, j|t))||∞

+
N−1∑

k=1

‖Qx(x(t + k, i, j|t) − rx(t + k, i, j|t))‖∞ + ‖Qu(u(t + k, i, j|t)
− ru(t + k, i, j|t))‖∞ + ‖QΔuΔu(t + k, i, j|t)‖∞

)
+ cC(i),

for all i = 0, 1, . . . , nq. Note that it is not strictly necessary to model the in-
put sequences for all the possible pairs (q, v), since only maxq (mq) scenarios
are evaluated simultaneously. However, in this case a number of additional con-
straints would be needed, resulting in a higher computational burden. Reducing
the number of the inputs can be desirable if some or all of them are integer
variables.

5 Illustrative Example

The use of receding horizon control policies in supply chain management have
been investigated in [10,8], and approached by hybrid techniques in [2]. In this
paper we consider the supply chain shown in Figure 2, where a single product
is processed through a network of four nodes. A product is distributed, stored,
and sold to the customer. The goal of the control problem is to minimize a
performance index, mainly given by the satisfaction of customer demand and
production costs, while fulfilling constraints on production, storage and transport
capacities. The process is modeled as

F1(t + 1) = F1(t) + P1(t) − T11(t) − T12(t), (17a)
F2(t + 1) = F2(t) + P2(t) − T21(t) − T22(t), (17b)
R1(t + 1) = R1(t) + T11(t) + T21(t) − D1(t), (17c)
R2(t + 1) = R2(t) + T12(t) + T22(t) − D2(t), (17d)

where, at time t, Pi(t) is the number of products which enter the supply chain
and are stored in Factory i, Tij(t) is the number of transported products from
Factory i to Retailer j, and Dj(t) is the number of products sold by Retailer j.

We define the state vector x = [ F1 F2 R1 R2 ]′ ∈ R
4 and the input vector

u = [ P1 P2 T11 T12 T21 T22 D̄1 D̄2 ]′ ∈ R
8, where D̄i is the nominal value for the
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Fig. 2. Supply chain scheme

demand Di. Then, the dynamics (8) of the supply chain model is described by
the matrices

A =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 0 −1 −1 0 0 0 0
0 1 0 0 −1 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 1 0 −1

⎤

⎥
⎥
⎦ . (18)

The bounds on states and inputs are

xmax =
[
100 100 100 100

]′
, umax =

[
100 100 50 50 50 50 100 100

]′
,(19a)

xmin =
[
0 0 20 20

]′
, umin =

[
0 0 0 0 0 0 0 0

]′
, (19b)

respectively, and input increments are considered unbounded. In addition, the
model is subject to the following constraints on product availability:

T11(t) + T12(t) ≤ F1(t), (20a)
T21(t) + T22(t) ≤ F2(t), (20b)

D1(t) ≤ R1(t), (20c)
D2(t) ≤ R2(t). (20d)

In this example the state constraints are fully known, but customer demand is
uncertain. In particular, we assume that at every time step t customer demand
can be described by two probability distributions, called low mode and high
mode, respectively. They are essentially modeled as a mixture of Gaussians,
normalized in the demand space:

[
D1(t)
D2(t)

]
∼

⎧
⎪⎨

⎪⎩

N (μ0,Σ0)∫ 80
0

∫ 80
0 N (μ0,Σ0)dD1dD2

with 70% prob. (low mode)

N (μ0,Σ0)+0.75N (μ1,Σ1)∫ 80
0

∫ 80
0 (N (μ0,Σ0)+0.75N (μ1,Σ1))dD1dD2

with 30% prob. (high mode)

(21)
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Fig. 3. Probabilistic models for customer demand in low mode (a) and high mode (b)

where μ0 = [ 20
20 ], μ1 = [ 60

60 ], Σ0 = [ 400 200
200 400 ], Σ1 = [ 100 50

50 100 ]. The probability
distributions of the customer demand associated to each of the two modes are
shown in Figure 3. The decision maker is supposed to know the current demand
mode at each time step by freely available market polls, but to ignore the ex-
act value of the demand. Henceforth the reference values are time-varying and
uncertain. Let RD denote the subset of the reference set related to the demand
D1, D2. We assume to be able to perform two different queries to get an ap-
proximated description of the actual demand probability distribution: The first
is simpler and cheaper, the second is more accurate but more expensive. The
numerical values for available queries and their outcomes are given in Table 1.
Note that by Assumption 1 we consider a query outcome to be reliable only for
the time step following the time at which the query was sent.

We consider four different decision-making policies:

(1) A deterministic policy obtained by setting q(t) = 0, ∀t, corresponding to a
standard min-max problem where no additional information is retrieved by
the querying mechanism (LP);

(2) A stochastic random policy in which q(t) is picked up randomly in
{1, . . . , nq}, ∀t, and, therefore, q(t) does not depend on the current state
x(t) of the model (LP);

(3) A stochastic heuristics-based policy in which q(t) is selected according to
deterministic conditions on the market state (LP). The following rule is
applied: at time t, if the market is in high mode, select q(t) = 2, else select
q(t) = 1;

(4) The stochastic optimized policy of Problem 12 (MILP).
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Table 1. Queries and outcomes definition

(q, v) C(q) pqv in Low Mode pqv in High Mode RD(q, v|t)
(0, 1) 0 p01,L = 1 p01,H = 1 rmin = [ 0 0], rmax = [80 80]

(1, 1) 1 p11,L = 0.804 p11,H = 0.423 r11
min = [ 0 0], r11

max = [40 80]

(1, 2) 1 p12,L = 0.196 p12,H = 0.577 r12
min = [40 0], r12

max = [80 80]

(2, 1) 15 p21,L = 0.684 p21,H = 0.351 r21
min = [ 0 0], r21

max = [40 40]

(2, 2) 15 p22,L = 0.120 p22,H = 0.072 r22
min = [ 0 40], r22

max = [40 80]

(2, 3) 15 p23,L = 0.120 p23,H = 0.072 r23
min = [40 0], r23

max = [80 40]

(2, 4) 15 p24,L = 0.076 p24,H = 0.505 r24
min = [40 40], r24

max = [80 80]

Table 2. Simulation results

Control policy Performance Jexp Avg. CPU time

Deterministic min-max with null query 401.90 16.0 ms

Stochastic min-max with random query selection 360.84 16.9 ms

Stochastic min-max with heuristic query selection 345.76 16.7 ms

Stochastic min-max with optimized query selection 319.74 36.3 ms

We run Ns = 10 simulations of Tsim = 10 time steps each, using parameters
T = 1, N = 4, c = 1, QΔu = 0, Qx = QN = Diag([0.1, 0.1, 0.2, 0.2]),
Qu = Diag([10, 10, 0.1, 0.2, 0.2, 0.1, 10, 10]). The initial state is x(0) =
[40 40 60 60]′. Table 2 shows the obtained results in terms of the achieved
average performance evaluated as

Jexp =
1

NsTsim

Ns∑

i=1

Tsim∑

t=1

(‖Qx(xi(t) − ri
x(t))‖∞

+‖Qu(ui(t) − ri
u(t))‖∞ + ‖QΔuui(t)‖∞ + cC(qi(t))

)
,

(22)

where i = 1, . . . , Ns indexes the state, input, references, and query values related
to the i-th simulation. The table also reports the average CPU time for solving
Problem 12 on a Macbook 2.4GHz running Matlab 7.6 and Cplex 9.0.

As one can see from the results reported in Table 2, the proposed stochastic
min-max policy achieves the best average performance, with an improvement
of 20.4% with respect to the deterministic min-max policy, an additional 11.4%
with respect to the stochastic min-max policy with random query, and a further
7.5% with respect to the stochastic min-max policy with heuristics-based query.
Moreover, the computation times for all the policies are of the same order of
magnitude for this particular application, which demonstrates the viability of
the methodology from a computational viewpoint.

6 Conclusions

In this paper we proposed a stochastic programming approach to the prob-
lem of simultaneous optimal information gathering and decision making in an
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uncertain environment. In particular, we dealt with linear optimization prob-
lems in which the feasibility set can be enlarged via a set of possible queries
with stochastic outcomes. This class of problems was posed as a two-stage mixed
integer stochastic optimization problems with endogenous uncertainty, that can
be solved recursively in time for optimal performance of systems subject to
uncertain constraints and uncertain references, where it is possible to reduce un-
certainty bounds through queries. The proposed scheme minimizes the expected
optimal cost with respect to the chosen query, while still guaranteeing robust
constraint satisfaction. The results are demonstrated using a supply-chain ex-
ample, which also shows the viability of the methodology from a computational
viewpoint.
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