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Abstract: In this paper we consider a nonlinear constrained system observed by a sensor network
and propose a distributed state estimation scheme based on Moving Horizon Estimation (MHE). In
order to embrace the case where the whole system state cannot be reconstructed from data available to
individual sensors, we resort to the notion of MHE-detectability for nonlinear systems, and add to the
MHE problems solved by each sensor a consensus term for propagating information about estimates
through the network. Under some suitable assumptions we prove convergence to zero and stability of
the state estimation error provided by any sensor.
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1. INTRODUCTION

State estimation for nonlinear systems based on distributed
sensing schemes is a challenging problem, the solution of which
is of great importance in many fields. Distributed monitoring,
exploration, surveillance and tracking of moving objects over
specific regions are topical applications, due to the wide dif-
fusion of sensor networks in the last decade. Sensor networks
are collections of small, low power consuming and possibly
cheap sensing devices, with communication and computation
capabilities.

Available methods for distributed state estimation rely on local
state estimators for linear systems combined with consensus
and sensor-fusion algorithms. Typically, each sensor provides
an estimate of the system state based on local data and con-
sensus schemes are employed either to provide a wider set of
measurement data for each individual sensor (i.e., consensus on
measurements) or to correct individual state estimates by com-
parison with neighboring nodes information (i.e., consensus on
estimates).
Approaches based on Kalman filters are discussed, e.g., in
Carli et al. (2008), Alriksson and Rantzer (2006), Olfati-Saber
(2005), Olfati-Saber (2007), Kamgarpour and Tomlin (2008),
Olfati-Saber (2009). The algorithm described in Olfati-Saber
(2005) relies on consensus on measurements, while in Olfati-
Saber (2007) a solution based on consensus on estimates is
proposed. Recently, convergence in mean of the state estimates
obtained with the algorithm presented in Olfati-Saber (2005)
has been proved in Kamgarpour and Tomlin (2008) and a sta-
bility analysis of the state estimator presented in Olfati-Saber
(2007) is provided in Olfati-Saber (2009).
A two-step optimization procedure relying on consensus on
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estimates is used in Alriksson and Rantzer (2006) and in Carli
et al. (2008).

Methods based on Kalman filtering may become suboptimal
or even unstable when constraints on noise and state vari-
ables are present. This motivated the development of central-
ized MHE schemes for linear (Rao et al., 2001; Alessandri
et al., 2003), nonlinear (Rao et al., 2003; Rawlings and Mayne,
2009; Alessandri et al., 2008, 1999) and hybrid (Ferrari-Trecate
et al., 2002) systems, capable to guarantee observer conver-
gence and/or stability in a constrained setting.
A distributed MHE (DMHE) method for linear constrained
systems has been proposed by the authors of the present paper
in Farina et al. (2009a) and Farina et al. (2009b).

In this paper we generalize our previous results to the non-
linear setting with the goal of providing a Nonlinear DMHE
(NDMHE) scheme enjoying stability properties. In order to
characterize states that can and cannot be recovered by each
sensor without communication we exploit the notion of MHE
detectability (Rawlings and Mayne, 2009). Moreover we use
a consensus-on-estimates penalty term in local MHE problems
to let each sensor learn locally MHE-undetectable parts of the
state from other sensors.

The paper is structured as follows. In Section 2 we introduce the
observed dynamical system, the structure of the sensor network,
and we recall notions of detectability for nonlinear systems. In
Section 3 we describe the distributed state estimation algorithm.
In Section 4 we investigate the stability and convergence prop-
erties of the presented observer and Section 5 reports some con-
cluding remarks. For the sake of clarity the proofs are collected
in the Appendix.

Notation. In and 000ν×µ denote the n× n identity matrix and
the ν×µ matrix of zero elements, respectively. The symbol ⊗
denotes the Kronecker product, and 1M is the M-dimensional
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column vector whose entries are all equal to 1. The matrix
diag(M1, . . . ,Ms) is block-diagonal with blocks Mi. We use the
short-hand v = (v1, . . . ,vs) to denote a column vector with s
(not necessarily scalar) components. For a discrete-time signal
w(t) and a,b ∈ N, a ≤ b, we denote (w(a),w(a + 1), . . . ,w(b))
with w[a:b]. For the definition of positive-definite, K , K∞ and
K L functions we defer the reader to Rawlings and Mayne
(2009). Finally, the notation ‖z‖2

S stands for zT Sz, where S is a
symmetric positive-semidefinite matrix.

2. THE SYSTEM AND ITS OBSERVABILITY
PROPERTIES

2.1 System and sensor network

We assume that the observed process obeys to the dynamics
xt+1 = f (xt ,wt) (1)

where xt ∈X⊆Rn is the state vector and the term wt ∈W⊆Rn

represents an unknown disturbance term. We assume that the
sets X and W are convex and that W contains the origin.
Furthermore, f (x,w) has continuous partial derivatives with
respect to the components w j of w, j = 1, . . . ,n, and is globally
Lipschitz with respect to w i.e., ∃l > 0 : ∀x ∈ X and ∀w1,w2 ∈
W

‖ f (x,w1)− f (x,w2)‖ ≤ l‖w1−w2‖ (2)
Measurements on the state vector are performed by M sensors,
according to the sensing models (in general different from
sensor to sensor)

yi
t = hi(xt)+ vi

t , i = 1, ...,M (3)
where the term vi

t ∈ Rpi represents an unknown measurement
error.

The communication network among sensors is modeled by
the directed graph G = (V ,E ), where the nodes in V =
{1,2, . . . ,M} are sensors and an edge ( j, i) in the set E ⊆V ×V
models that sensor j can transmit information to sensor i. We
assume (i, i) ∈ E , ∀i ∈ V . We denote with Vi the set of the
neighbors to node i, i.e., Vi = { j ∈ V : ( j, i) ∈ E }.
We associate to the graph G the stochastic matrix K ∈ RM×M ,
with entries

ki j ≥ 0 if ( j, i) ∈ E (4a)
ki j = 0 otherwise (4b)

M

∑
j=1

ki j = 1, ∀i = 1, ...,M (4c)

Any matrix K with entries satisfying (4) is said to be compati-
ble with G .

At a generic time instant t, sensor i collects measurements
produced by itself and its neighboring sensors. Moreover, each
sensor transmits and receives information once within a sam-
pling interval i.e., measurements available to node i are y j

t , with
j ∈ Vi.
Three types of quantities can be distinguished: individual, re-
gional, and collective. Specifically, a quantity is referred to as:
(a) individual (with respect to sensor i) when it is related to
the node i solely; (b) regional (with respect to sensor i) if it is
related to the nodes in Vi; (c) collective, if it is related to the
whole network. For the sake of clarity, we use different nota-
tions for individual, regional and collective variables. Namely,
given a variable z, zi, z̄i and z represent its individual, regional
and collective version, respectively. For instance, we refer to yi

t

in (3) as individual measurement. On the other hand, if Vi = { ji
1,

..., ji
vi
}, the regional measurement of node i is given by

ȳi
t = h̄i(xt)+ v̄i

t (5)

where ȳi
t = (y ji1

t , . . . ,y
jivi
t ), h̄i(xt) = (h ji1(xt), . . . ,h

jivi (xt)), and

v̄i
t = (v ji1

t , . . . ,v
jivi
t ). The dimension of vectors ȳi

t and v̄i
t is p̄i =

∑
vi
k=1 p jik

.

2.2 Detectability properties

In the sequel we employ the notion of MHE detectability for
nonlinear systems introduced in Rawlings and Mayne (2009)
Definition 1. The system xk+1 = f (xk,w1

k), yk = h(xk) is MHE
detectable if the system augmented with an extra disturbance
w2

k

xk+1 = f (xk,w1
k)+w2

k (6a)
yk = h(xk) (6b)

is incrementally input-output-to-state-stable (δ IOSS) with re-
spect to the augmented disturbances w̃k = (w1

k ,w
2
k). Namely,

there exist functions βD ∈K L , γ1,γ2 ∈K such that, for every
two initial states z and z∗ and two disturbance sequences w̃[0:k]
and w̃∗[0:k] and, given the corresponding output sequences y[0:k]

and y∗[0:k], it holds that

‖xt − x∗t ‖ ≤ βD(‖z− z∗‖, t)+ γ1(‖w̃k− w̃∗k‖[0:t−1])+
+γ2(‖yk− y∗k‖[0:t])

where xk and x∗k are the state sequences stemming (through
system (6a)) from z, w̃[0:k] and from z∗, w̃∗[0:k], respectively. �

According to the terminology presented in the previous section,
three different MHE detectability notions can be introduced.
Definition 2. The system is individually MHE detectable by
sensor i (sensor i is individually MHE detectable) if the sys-
tem xk+1 = f (xk,wk), yi

k = hi(xk) is MHE detectable. The
system is regionally MHE detectable by sensor i (sensor i is
regionally MHE detectable) if the system xk+1 = f (xk,wk),
ȳi

k = h̄i(xk) is MHE detectable. The system is collectively MHE
detectable if the system xk+1 = f (xk,wk), y∗k = h∗(xk), where
y∗k = (y1

k , . . . ,y
M
k ) and h∗(xk) = (h1(xk), . . . ,hM(xk)) is MHE

detectable. �

Notice that, for a given sensor i, individual detectability implies
regional detectability, and regional detectability of any sensor
implies collective detectability, while all opposite implications
are false.

In the sequel, we consider the case where the system state is
not necessarily MHE detectable by individual sensors, and that
there exist, for each sensor node, a suitable change of coordi-
nates allowing regionally detectable and undetectable states to
be clearly identified. Given the regional model (1),(5), for sen-
sor i we assume that there exists a diffeomorphism Ti : Rn→Rn,
T−1

i : xt 7→ ξ i
t = T−1

i (xt) such that, by changing coordinates,
and being ξ i

t = (ξUD,i
t ,ξ D,i

t ) the state of the equivalent system,
one has

ξ
UD,i
t+1 = f UD,i(ξUD,i

t ,ξ D,i
t ,wi

t) (7a)

ξ
D,i
t+1 = f D,i(ξ D,i

t ,wi
t) (7b)

ȳi
t = h̃i(ξ D,i

t )+ v̄i
t (7c)
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where the subsystem (7b), (7c) is MHE detectable. It follows
that ξ

UD,i
t and ξ

D,i
t denote regionally MHE undetectable and

regionally MHE detectable components of ξ i
t , respectively. We

define f i
ξ

= ( f UD,i, f D,i). Furthermore, we will assume that the
functions Ti satisfy the following assumption.
Assumption 1. For all i ∈ V , there exist αT ,αT−1 > 0 such that∥∥∥∥∥ ∂Ti(ξ )

∂ξ

∣∣∣∣
ξ̃ i

∥∥∥∥∥≤ αT (8a)∥∥∥∥∥ ∂T−1
i (x)
∂x

∣∣∣∣∣
x̃

∥∥∥∥∥≤ αT−1 (8b)

for ξ̃ i = T−1
i (x̃), for all x̃ ∈ Rn.

Let P̄i
UD and P̄i

D be the n× n orthonormal projection matrices
defined in such a way that P̄i

UDξ i
t = (ξUD,i

t ,0) and P̄i
Dξ i

t =
(0,ξ D,i

t ), respectively. Furthermore, let the map T : RM·n →
RM·n be such that, for ξξξ t = (ξ 1

t , . . . ,ξ M
t ), one has T(ξξξ t) =

(T 1(ξ 1
t ), . . . ,T 1(ξ M

t )). Finally, we define
PUD =diag(P̄1

UD, . . . , P̄M
UD) and PD =diag(P̄1

D, . . . , P̄M
D ). Note

that, if the system is regionally MHE-detectable by sensor i,
then P̄i

UD = 000n×n and P̄i
D = In.

3. THE DISTRIBUTED ESTIMATION ALGORITHM

Our aim is to design, for a generic sensor i ∈ V , an algorithm
for computing an estimate of the system state based on regional
measurements ȳi

t and further pieces of information provided
by sensors j ∈ Vi. The proposed solution relies on the use of
Moving Horizon Estimation (MHE), (Rao et al., 2001, 2003;
Rao and Rawlings, 2000; Alessandri et al., 1999; Goodwin
et al., 2005; Rao et al., 1999), in view of its capability to handle
state and noise constraints. More specifically, we propose a
Distributed MHE scheme for nonlinear systems (NDMHE)
where each sensor solves an individual MHE problem.

3.1 The individual minimization problem

Each node i ∈ V , for a given estimation horizon N ≥ 1, at time
t determines the estimates x̂i and ŵi of x and w, respectively, by
solving the constrained minimization problem MHE-i defined
as

Θ
∗i
t = min

x̂i
t−N ,{ŵi

k}
t
k=t−N

Ji(t−N, t, x̂i
t−N , ŵi, ˆ̄vi,Γi

t−N) (9)

under the constraints
x̂i

k+1 = f (x̂i
k, ŵ

i
k) , k = t−N, . . . , t (10a)

ȳi
k = h̄i(x̂i

k)+ ˆ̄vi
k (10b)

ŵi
k ∈W (10c)

x̂i
k ∈ X (10d)

Let t1 verify t −N ≤ t1 ≤ t. We define the transit cost of a
generic state z ∈ Rn at time t1, computed at instant t as

Ξ
i
t1/t(z) = min

x̂i
t−N ,{ŵi

k}
t
k=t−N

{
Ji(t−N, t, x̂i

t−N , ŵi, ˆ̄vi,Γi
t−N)

subject to (10) and x̂i
t1 = z

} (11)

Note that the associated optimization problem is feasible for
all z ∈ Z = f (X,W)∩X and therefore Z is the domain of
Ξi

t1/t(z). The individual cost function Ji is given by

Ji(t−N, t, x̂i
t−N , ŵi, ˆ̄vi,Γi

t−N) =
t

∑
k=t−N

Li( ˆ̄vi
k, ŵ

i
k)+Γ

i
t−N(x̂i

t−N)

Γ
i
t−N(x̂i

t−N) = Γ
C,i
t−N(x̂i

t−N ; ˆ̄xi
t−N/t−1)+

+Γ
0,i
t−N(x̂i

t−N ; x̂i
t−N/t−1)+Θ

∗i
t−1

(12)

In (12), the function Li is the stage cost, Γ
C,i
t−N is the consensus

initial penalty and Γ
0,i
t−N is the regularization initial cost. They

should be defined in order to satisfy the following assumption.

Assumption 2. The stage costs Li and the initial penalties Γ
C,i
t−N

and Γ
0,i
t−N are continuous, bounded, positive definite and they

satisfy the following inequalities for all w ∈ Rn, v̄ ∈ R p̄i ,
x̂i

0, ˆ̄xi
0/N−1 ∈ Rn

γ
L
(‖(v̄,w)‖)≤ Li(v̄,w) (13a)

Γ
C,i
0 (x̂i

0; ˆ̄xi
0/N−1)≤ γ0(‖x̂i

0− ˆ̄xi
0/N−1‖) (13b)

Γ
0,i
0 (x̂i

0; x̂i
0/N−1)≤ γ0(‖x̂i

0− x̂i
0/N−1‖) (13c)

where γ
L

and γ0 are suitable K∞ functions.

We denote with x̂i
t−N/t and with

{
ŵi

k/t

}t

k=t−N
the optimizers to

(9) and with x̂i
k/t , k = t−N, ..., t the individual state sequence

stemming from x̂i
t−N/t and

{
ŵi

k/t

}t

k=t−N
. Furthermore

ˆ̄xi
k/t =

M

∑
j=1

ki j x̂
j
k/t (14)

denotes the weighted average of the state estimates produced
by sensors j ∈ V i.

Similarly to Rao et al. (2003) and Farina et al. (2009a), suit-
able choices of Γ

C,i
t−N and Γ

0,i
t−N fulfilling Assumption 2 are

the quadratic functions Γ
C,i
t−N = ‖x̂i

t−N − ˆ̄xi
t−N/t−1‖

2
(ΠC,i

t−N)−1 and

Γ
0,i
t−N = ‖x̂i

t−N− x̂i
t−N/t−1‖

2
(Π0,i

t−N)−1 where the matrices Π
C,i
t−N and

Π
0,i
t−N must be definite positive and bounded. Furthermore, they

must be assigned in order to satisfy conditions guaranteeing
stability, which will be discussed later on.

The penalty term Γ
C,i
t−N embodies a consensus-on-estimates

term, in the sense that it penalizes the deviation of x̂i
t−N from

ˆ̄xi
t−N/t−1. Consensus, besides increasing accuracy of the indi-

vidual estimates, is fundamental to guarantee convergence of
the state estimates to the state of the observed system even
if regional MHE detectability does not hold. In other words,
it allows sensor i to reconstruct components of the state that
cannot be estimated by the i-th regional model.

Finally notice that, since the cost (12) and the constraints (10)
depend only upon regional variables, the overall estimation
scheme is decentralized.

3.2 The collective minimization problem

The individual estimation problem (9) can be given a collective
form. To this end, let J be the collective cost function given by

J(·) =
M

∑
i=1

Ji(t−N, t, x̂i
t−N , ŵi, ˆ̄vi,Γi

t−N) (15)

NOLCOS 2010
Bologna, Italy, September 1-3, 2010

911



Define the collective vectors x̂t =(x̂1
t , . . . , x̂

M
t ), ˆ̄vt =( ˆ̄v1

t , . . . , ˆ̄vM
t ),

ŵt = (ŵ1
t , . . . , ŵ

M
t ), the matrix K = K⊗ In, the quantity ΘΘΘ

∗
t =

∑
M
i=1 Θ∗it and the collective costs

L( ˆ̄vk, ŵk) =
M

∑
i=1

Li( ˆ̄vi
k, ŵ

i
k) (16a)

ΓΓΓ
C
t−N(x̂t−N ;Kx̂t−N/t−1) =

M

∑
i=1

Γ
C,i
t−N(x̂i

t−N ; ˆ̄xi
t−N/t−1) (16b)

ΓΓΓ
0
t−N(x̂t−N ; x̂t−N/t−1) =

M

∑
i=1

Γ
0,i
t−N(x̂i

t−N ; x̂i
t−N/t−1) (16c)

ΓΓΓt−N(x̂t−N) = ΓΓΓ
C
t−N(x̂t−N ;Kx̂t−N/t−1)+ (16d)

+ΓΓΓ
0
t−N(x̂t−N ; x̂t−N/t−1)+ΘΘΘ

∗
t−1

Then, the collective cost function J can be rewritten as

J(t−N, t, x̂t−N , ŵ, ˆ̄v,ΓΓΓt−N) =
t

∑
k=t−N

L( ˆ̄vk, ŵk)+ΓΓΓt−N(x̂t−N)

(17)

Defining f(x̂k, ŵk) = ( f (x̂1
k , ŵ

1
k), . . . , f (x̂M

k , ŵM
k )),

ȳk = (ȳ1
k , . . . , ȳ

M
k ) and h(x̂k) = (h̄1(x̂1

k), . . . , h̄
M(x̂M

k )), also the
constraints (10) can be written in the following collective form

x̂k+1 = f(x̂k, ŵk) , k = t−N, . . . , t (18a)

ȳk = h(x̂k)+ ˆ̄vi
k (18b)

ŵk ∈WM (18c)

x̂k ∈ XM (18d)

It is easy to show that solving the problem

Θ
∗
t = min

x̂t−N ,{ŵk}tk=t−N

{
J(t−N, t, x̂t−N , ŵ, ˆ̄v,ΓΓΓt−N) subj. to (18)

}
(19)

is equivalent to solve the MHE − i problems (9), in the
sense that x̂i

t−N/t ,{ŵ
i
k/t}

t
k=t−N is a solution to (9) if and only

if x̂t−N/t ,{ŵk/t}t
k=t−N is a solution to (19), where ŵk/t =

(ŵ1
k/t , . . . , ŵ

M
k/t).

The transit cost of a generic state x ∈RnM at time t1, computed
at instant t is defined as

ΞΞΞt1/t(x) = min
x̂t−N ,{ŵk}tk=t−N

{
J(t−N, t, x̂t−N , ŵ, ˆ̄v,ΓΓΓt−N)

subject to (18) and x̂t1 = x}
(20)

and it holds that

ΞΞΞt1/t(x̂t1) =
M

∑
i=1

Ξ
i
t1/t(x̂

i
t1) (21)

In view of Assumption 2 and (16a), the cost function L is con-
tinuous, bounded, positive definite, and satisfies the following
inequalities for all w ∈ RM·n, v̄ ∈ R∑

M
i=1 p̄i

γγγ
L
(‖(v̄,w)‖)≤ L(v̄,w) (22)

where γγγ
L
∈K∞.

Furthermore, the initial penalties Γ
C,i
t−N and Γ

0,i
t−N must be de-

fined in order to fulfill the following collective condition.
Assumption 3. There exists γγγ

0
∈ K∞ such that the following

inequalities are verified

γγγ
0
(‖x−Kx̂t−N/t−1‖)≤ ΓΓΓ

C
t−N(x;Kx̂t−N/t−1), ∀x ∈ XM (23a)

γγγ
0
(‖x− x̂t−N/t−1‖)≤ ΓΓΓ

0
t−N(x; x̂t−N/t−1), ∀x ∈ XM (23b)

ΓΓΓt−N(z)≤ ΞΞΞt−N/t−1(z), ∀z = 1M⊗ z, z ∈Z
(23c)

Assumption 3 is similar to Assumption 4.17 in Rawlings
and Mayne (2009). However, there are two key differences.
First, inequalities in (23c) must hold only for the consensus
states z. In particular, we highlight that if x̂t−N/t−1 = z then
Kx̂t−N/t−1 = z and hence ΘΘΘ

∗
t−1 is a global lower bound to ΓΓΓt−N .

Second, similarly to Farina et al. (2009a), as an upper bound
to ΓΓΓt−N we use the transit cost instead of the arrival cost (see
Definition 4.16 in Rawlings and Mayne (2009)).
Note that, guaranteeing that (23) is verified is a challenging
issue, which is still an open problem in the centralized Rawlings
and Mayne (2009), as well as in the decentralied context. In the
special case when (1), (3) is a linear system, if the stage and
initial penalty cost functions are quadratic, as shown in (Farina
et al., 2009a, 2010a), it is possible to provide recursive dis-
tributed equations for updating the penalty weighting matrices
Π

C,i
t−N and Π

0,i
t−N in order to satisfy Assumption 3, and conditions

to guarantee that these matrices remain bounded, in such a way
that Assumption 2 is not violated. In the nonlinear context,
empirical solutions can be either to compute Π

C,i
t−N and Π

0,i
t−N on

the basis of quadratic local approximations of the transit costs
or to assign constant values to Π

C,i
t−N and Π

0,i
t−N .

4. COLLECTIVE STABILITY PROPERTIES OF NDMHE

The main purpose of this section is to extend the stability results
of Rawlings and Mayne (2009) for centralized MHE to the
proposed NDMHE scheme.
Definition 3. Let Σ be system (1) with w = 0 and denote by
xΣ(t,x0) the state reached by Σ at time t starting from initial
condition x0. Assume that the trajectory xΣ(t,x0) is feasible,
i.e., xΣ(t,x0) ∈ X for all t. Define also the collective vectors
x0 = 1M⊗ x0 and xΣ(t,x0) = 1M⊗ xΣ(t,x0) ∈ XM . NDMHE is
collectively stable if, for all ε > 0, there exists δ > 0 such that
‖x̂0/N−1 − x0‖ < δ implies that ‖x̂t−N/t − xΣ(t −N,x0)‖ < ε

∀t ≥ N. Also, NDMHE is collectively asymptotically stable if
it is stable and asymptotically convergent, i.e.

‖x̂t−N/t −xΣ(t−N,x0)‖
t→∞−→ 0 (24)

�

Notice that the condition (24) is equivalent to individual con-
vergence for all the nodes estimates, i.e.

‖x̂i
t−N/t − xΣ(t−N,x0)‖

t→∞−→ 0 (25)

for all i ∈ V .

Moreover, as in Rao et al. (2001), convergence is defined
assuming that the model generating the data is noiseless, but
the possible presence of noise is taken into account in the state
estimation algorithm.
Before to state our main result, we need to introduce the
following dynamical system, describing the dynamics of the
variable ηηη t ∈ Rn·M

ηηη t = PUDT−1{K [f(T(ηηη t−1 +PDξξξ Σ(t−N−1,x0)+
+ααα

ξ

t−1

)
,0
)

+ααα
w
t

]
+ααα

C
t

} (26)
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where ξξξ Σ(t,x0) = T−1(xΣ(t,x0)), and αααw
t , ααα

ξ

t , αααC
t and ξξξ Σ(t−

N − 1,x0) are input terms. In the following we resort to the
definition of incremental input-to-state stability, (Angeli, 2002).
Definition 4. System (26) is incrementally input-to-state stable
(δ ISS) with respect to the input triplet (αααξ

t ,αααw
t ,αααC

t ), if there
exist β ∈ K L , σα ∈ K∞ such that, for any t ≥ 0, any pair
of initial conditions ηηη j,0, j = 1,2 and any pair of input triplets

(αααξ

j,t ,ααα
w
j,t ,ααα

C
j,t), j = 1,2 one has

‖ηηη1,t −ηηη2,t‖ ≤ β (‖ηηη1,0−ηηη2,0‖, t)+
+σα(‖(αααξ

1,k,ααα
w
1,k,ααα

C
1,k)− (αααξ

2,k,ααα
w
2,k,ααα

C
2,k)‖[0:t])

(27)

We are now in the position to state the main result.
Theorem 1. Under Assumptions 1, 2, 3, if the system (26)
is δ ISS with respect to the input triplet (αααξ

t ,αααw
t ,αααC

t ) then
NDMHE is collectively asymptotically stable.

Note that, if the system is regionally observable by any sensor,
P̄i

ND = 000n×n for all i∈ V , and hence PUD = 000nM×nM . Therefore,
from equation (26) one has that ηηη t = 0, and the δ ISS condition
required by Theorem 1 is trivially satisfied.
As shown in the proof of Lemma 3 in the Appendix, the
dynamics (26) governs the regionally undetectable components
of the state estimates in the ξξξ -coordinates. Therefore δ ISS
of (26) implies that the regionally undetectable components of
the estimation error vanish when (αααw

t ,ααα
ξ

t ,αααC
t ) tends to zero.

For linear constrained systems δ ISS of (26) is implied by the
much simpler condition that a suitably defined matrix (matrix
Φ in (23) of Farina et al. (2009b)) is Schur. In the nonlinear
context, the system (26) can be viewed as the interconnection
of M dynamically coupled subsystems. Current research is
focusing on the application of the small gain theorem for
networks (Dashkovskiy et al., 2007) for guaranteeing δ ISS
of (26) on the basis of the δ ISS properties of individual sensors
and suitable conditions on their interconnections, see Farina
et al. (2010b), where an example of application of DMHE to
a nonlinear case study is also provided.

5. CONCLUSIONS

In this paper we have proposed a distributed state estimation
scheme for nonlinear constrained systems, based on Moving
Horizon Estimators. Convergence to zero and stability of the
state estimation error provided by any sensor can be guaranteed,
provided that suitable technical assumptions are verified.
While in the linear setting these assumptions translate in fairly
simple conditions on the observed system dynamics and on the
network topology, in the nonlinear framework they are quite
difficult to verify. For this reason, further work will be devoted
by the authors to their analysis, in order to provide simpler and
more tractable conditions allowing to check the validity of these
key assumptions in a general setting.

Appendix A. PROOF OF THEOREM 1

The following lemmas are needed for the proof of Theorem 1.
Lemma 2. If Assumption 3 holds then

t

∑
k=t−N

L( ˆ̄vk/t , ŵk/t)
t→∞−→ 0 (A.1a)

γγγ
0
(x̂t−N/t −Kx̂t−N/t−1)

t→∞−→ 0 (A.1b)

γγγ
0
(x̂t−N/t − x̂t−N/t−1)

t→∞−→ 0 (A.1c)

Lemma 3. Under Assumptions 1, 2 and 3, if the system (26)
is δ ISS with respect to the input triplet (αααξ

t ,αααw
t ,αααC

t ) then
NDMHE is asymptotically convergent.
Lemma 4. Under the assumptions of Lemma 3, then NDMHE
is collectively stable.

For lack of space, here we provide the proof of Lemma 3, while
the proofs of Lemmas 2 and 4 can be found in Farina et al.
(2010b).

Proof of Lemma 3
We create, for each sensor node i, a single estimate sequence by
concatenating MHE sequences for the equivalent system (7).
This gives the state sequences ξ̄ i

k and the corresponding aug-
mented disturbance sequences ¯̃wi

k = (w̄i,1
k , w̄i,2

k )

ξ̄
i
t+1 = f i

ξ
(ξ̄ i

t , w̄
i,1
t )+ w̄i,2

t (A.2a)

ȳi
t = h̃i(ξ̄ i

t )+ ˆ̄vt/t+N (A.2b)

where ξ̄ i
t = T−1

i (x̂i
t/t+N) and

w̄i,1
t = ŵi

t/t+N (A.3a)

w̄i,2
t = T−1

i (x̂i
t+1/t+N+1)−T−1

i (x̂i
t+1/t+N) (A.3b)

According to the introduced notation used in (7), we denote
ξ̄ i

t = (ξ̄UD,i
t , ξ̄ D,i

t ). Define a sequence

α
ξ ,i
t = P̄i

D
(
ξ̄

i
t−N−T−1

i (xΣ(t−N,x0))
)

(A.4)
In view of (7) and Definition 1, one has

‖αξ ,i
t ‖ ≤ βD(‖ξ̄ i

0−T−1
i (x0)‖, t−N)+

+γ1(‖ ¯̃wi
k‖[0:t−N−1])+ γ2(‖ ˆ̄vi

k/k+N‖[0:t−N])
(A.5)

This, according to (A.3), implies that there exist functions
γ11,γ12 ∈K such that

‖αξ ,i
t ‖ ≤ βD(‖ξ̄ i

0−T−1
i (x0)‖, t−N)+

+γ11(‖ŵi
k/k+N‖[0:t−N−1])+ γ2(‖ ˆ̄vi

k/k+N‖[0:t−N])+
+γ12(‖T−1

i (x̂i
k+1/k+N+1)−T−1

i (x̂i
k+1/k+N)‖[0:t−N−1])

We define ξ i
Σ
(t,x0) = T−1

i (xΣ(t,x0)),
ξξξ Σ(t,x0) = (ξ 1

Σ
(t,x0), . . . ,ξ M

Σ
(t,x0)), ξ̄ξξ t = (ξ̄ 1

t , . . . , ξ̄ M
t ) and

ααα
ξ

t = (αξ ,1
t , . . . ,α

ξ ,M
t ). Collectively (A.4) results in

PD

(
ξ̄ξξ t−N−ξξξ Σ(t−N,x0)

)
= ααα

ξ

t (A.6)

Furthermore, applying the mean value theorem for vector func-
tions (see Appendix A in Rawlings and Mayne (2009)), we can
write

x̂i
k+1/t = f (x̂i

k/t ,0)+α
w,i
k/t (A.7)

where
‖αw,i

k/t‖ ≤ l‖ŵi
k/t‖ (A.8)

l being the Lipschitz constant in (2). We define αααw
t =

(αw,1
t−N−1/t−1, . . . ,α

w,M
t−N−1/t−1) and f(x̂k) = ( f (x̂1

k), . . . , f (x̂M
k )).

Collectively we write (A.7) as
x̂t−N/t−1 = f(x̂t−N−1/t−1,0)+ααα

w
t (A.9)
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From Lemma 2 (A.1a) holds and together with (22) one has that
‖(ŵt−N/t , ˆ̄vt−N/t)‖→ 0 as t→+∞. Hence, ‖(ŵi

t−N/t ,
ˆ̄vi
t−N/t)‖→

0 as t→+∞ for all i∈V . Similarly, from (A.1c), ‖x̂i
t+1/t+N+1−

x̂i
t+1/t+N‖ → 0 as t → +∞ for all i ∈ V . In view of (A.6) and

Proposition 4.2 in Rawlings and Mayne (2009) (convergence of
the state under δ IOSS), this implies that α

x,i
t → 0 as t → +∞,

i.e.
P̄i

D
(
ξ̄

i
t−N−ξ

i
Σ(t−N,x0)

)
→ 0∀i ∈ V (A.10)

Moreover

ααα
w
t

t→+∞

−→ 0 (A.11)

Finally, from (A.1b) and (23), we obtain that

x̂t−N/t = Kx̂t−N/t−1 +ααα
C
t (A.12)

where αααC
t → 0 as t→+∞.

According to (A.9) and (A.12) the term PUDξ̄ξξ t−N can be written
as

PUDξ̄ξξ t−N = PUDT−1 (Kx̂t−N/t−1 +ααα
C
t
)

= PUDT−1 [K(f(x̂t−N−1/t−1,0)+ααα
w
t
)
+ααα

C
t
]

where, using (A.6), we can write

x̂t−N−1/t−1 = T
(

PDξξξ Σ(t−N−1,x0)+PUDξ̄ξξ t−N−1 +ααα
ξ

t−1

)
Hence, we obtain that the dynamics of PUDξ̄ξξ t−N evolves ac-
cording to (26). Analogously we obtain that the dynamics of
variable PUDξξξ Σ(t−N,x0) is given by (26), with αααw

t ,ααα
ξ

t ,αααC
t =

0. We define η̂ηη t = PUDξ̄ξξ t−N and ηηηΣ(t,x0) = PUDξξξ Σ(t−N,x0).
We introduce the function F, so that the dynamical equations
for η̂ηη t and ηηηΣ(t,x0) can be written as

η̂ηη t = F(η̂ηη t−1,PDξξξ Σ(t−N−1,x0),ααα
ξ

t−1,ααα
w
t ,αααC

t )
(A.13a)

ηηηΣ(t,x0) = F(ηηηΣ(t−1,x0),PDξξξ Σ(t−N−1,x0),0,0,0)
(A.13b)

According to Definition 4, if the system (A.13a) is δ ISS, then
there exist β ∈K L , σα ∈K∞ such that

‖η̂ηη t −ηηηΣ(t,x0)‖ ≤β (‖η̂ηη0−ηηηΣ(0,x0)‖, t)+
+σα(‖(αααξ

k ,αααw
k ,αααC

k )‖[0:t]) (A.14)

If (A.14) holds then ‖η̂ηη t − ηηηΣ(t,x0)‖ → 0 because
(αααξ

t ,αααw
t ,αααC

t )→ 0 as t → +∞. This, together with (A.11), im-
plies that x̂t−N/t → x̂Σ(t−N,x0) as t→+∞. �
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