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a b s t r a c t

A series of fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors were obtained by
attaching rhodamine B moieties to the scaffold of benzenesulfonamides. The new compounds have been
investigated for the inhibition of 12 human a-CA isoforms (hCA I–hCA XIV), three bacterial and one fun-
gal b-class enzymes from the pathogens Mycobacterium tuberculosis and Candida albicans. All types of
inhibitory activities have been detected, with several compounds showing low nanomolar inhibition
against the transmembrane isoforms hCA IX, XII (cancer-associated) and XIV. The b-CAs were inhibited
in the micromolar range by these compounds which may have applications for the imaging of hypoxic
tumors or bacteria due to their fluorescent moieties.

� 2011 Elsevier Ltd. All rights reserved.
Rhodamine dyes are extensively used in biotechnological appli-
cations such as fluorescence microscopy, flow cytometry, fluores-
cence correlation spectroscopy,1,2 as well as for staining micro-
organisms (such a Mycobacterium tuberculosis),3 due to their high
fluorescence quantum yields and rather simple chemical structure.
Together with fluorescein,4 these are the two dyes mostly used for
attaching fluorescent tags to biomolecules, such as for example en-
zyme inhibitors, PET tracers, agents to visualize mitochondrial
function, hypoxic tumors, etc.5,6

We have explored earlier4 the use of fluorescein moieties for
preparing inhibitors of the zinc enzyme carbonic anhydrase (CA,
EC 4.2.1.1).7 Sulfonamides bearing such moieties, of types A and
B, were showing enhanced affinity for the tumor-associated iso-
forms CA IX and XII compared to the cytosolic ones CA I and II,
and were used in the proof-of-concept studies which demon-
strated the involvement of CA IX in tumor acidification processes.4b

Furthermore, in vivo, in animal models of hypoxic tumors,
compounds A and B were observed to accumulate only in the
tumor6c,6d making this type of derivatives (and the entire class of
the CA IX-selective inhibitors) interesting imaging candidates of
this type of tumors. More recently, it has been also shown that
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sulfonamide B inhibits in vivo the growth of primary tumors and
metastases in a highly aggressive breast cancer cell line, in animals
harboring such tumors.8

OHO O

HN

COOH

N
H

S

S

NN

N
H

SO2NH2

A: n = 1
B: n = 2

AZA

Ac

SO2NH2

n

All these data clearly show the usefulness of fluorescently
labeled CA inhibitors (CAIs) for both in vitro and in vivo studies
with this class of pharmacological agents which have various
applications as diuretics, antiglaucoma, antiobesity, antiepileptic
and antitumor agents.7,8 Furthermore, as CAs belonging to various
classes (a-, b- and/or c-CA family) are present in many pathogenic
nematodes, bacteria and fungi,7,9,10 fluorescently labeled CAIs may
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Table 1
Inhibition data of human a- and bacterial/fungal b-CAs with sulfonamides 3–6 and
acetazolamide AAZ as standard, by a stopped-flow CO2 hydrase assay.12 hCA = human
CA isoform, mtCA = Mycobacterium tuberculosis CA, caNce103 = Candida albicans
enzyme

Isoform/inhibitor KI
a (nM)

3 4 5 6 AZA

hCA I 512 311 714 692 250
hCA II 279 21.5 980 955 12
hCA III 32,000 34,500 21,300 18,900 20,000
hCA IV 7200 6740 7450 7500 74
hCA VA 413 347 1040 996 63
hCA VB 310 321 513 427 54
hCA VI 980 543 1035 814 11
hCA VII 60.2 12.1 34.9 91.7 2.5
hCA IX 18.5 24.0 10.2 19.4 25
hCA XII 9.1 10.5 8.6 25.3 5.7
hCA XIII 280 236 515 463 17
hCA XIV 7.7 8.4 4.9 14.6 41
mtCA 1 4410 4360 4480 3700 481
mtCA 2 414 443 411 409 9
mtCA 3 342 413 469 422 104
caNce103 4990 4095 5320 4730 132

a From three different determinations. Errors were in the range of ±5–10% of the
reported value.
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have interesting applications as research tools for better under-
standing the role these enzymes play in the life cycle of these
pathogens or for eventually developing alternative pharmacologic
agents to the clinically used compounds which led in many cases
to extensive drug resistance problems.9,10

As only fluorescein-tagged CAIs have been reported up until
now,4 in this Letter we report the synthesis and inhibition studies
of CAIs of the sulfonamide type labeled with rhodamine B moieties.

For this scope, the carboxylic acid moiety of rhodamine B 1 has
been transformed to the corresponding acyl chloride by reaction
with phosphorus oxychloride, and then coupled with amino-ben-
zenesulfonamide derivatives of type 2, bearing a free amino, meth-
ylamino or ethylamino moiety. The sulfonamide–rhodamine B
conjugates 3–6 obtained in this way (Scheme 1) were thoroughly
characterized and their structures were confirmed.11

The new compounds reported here, of types 3–6 and acetazol-
amide AZA as standard drug have been investigated for the inhibi-
tion of 12 human a-CA isoforms (hCA I–hCA XIV),7 three bacterial
and one fungal b-class enzymes from the pathogens Mycobacterium
tuberculosis (mtCA 1, 2 and 3) and Candida albicans (caNce 103).9,10

Data of Table 1 show the following structure–activity relationship
(SAR) for the inhibition of these enzymes with the investigated
sulfonamides:

(i) The human isoforms hCA I, VA, VB, VI and XIII were inhibited
by the new sulfonamides 3–6 moderately, with inhibition
constants in the low micromolar–submicromolar range.
Thus, for hCA I, the KIs were in the range of 311–714 nM,
for hCA VA in the range of 347–1040 nM; for hCA VB in
the range of 310–513 nM; in the range of 543–1035 nM
against hCA VI; and for hCA XIII in the range of 236–
515 nM, respectively, (Table 1). It may be observed that
most of the time the metanilamide derivative 4 was the
most active in the series, followed by the sulfanilamide
one 3. The longer molecules incorporating aminomethyl
and aminoethyl linkers (5 and 6) were generally the least
active inhibitors in this small series of investigated com-
pounds. Irrespective of the fact that some of these isoforms
are cytosolic (hCA I and XIII), mitochondrial (hCA VA and
VB) or secreted (hCA VI), their behavior against this class
of inhibitors is rather similar.

(ii) The physiologically dominant isoform hCA II was potently
inhibited by the metanilamide rhodamide conjugate 4 (KI

of 21.5 nM) and weakly inhibited by the remaining com-
pounds 3, 5 and 6, which showed KIs in the range of 279–
980 nM. The SAR is thus rather similar with what discussed
above for the isoforms I, VA, VB and XIII.

(iii) The cytosolic low activity isoforms hCA III was poorly inhib-
ited by all these sulfonamides (and AZA), with KIs in the
range of 18.9–34.5 lM. However, in this case, the least active
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Scheme 1. Preparation of rhodamine
compound was the metanilamide conjugate 4, whereas the
best inhibitor was the aminoethylbenzenesulfonamide
derivative 6 (and acetazolamide AZA).

(iv) The membrane-associated hCA IV was also rather weakly
inhibited by sulfonamides 3–6, with KIs in the range of
6.74–7.50 lM (Table 1). AZA on the other hand is a potent
inhibitor of this isoform (KI of 74 nM).

(v) The brain-associated, cytosolic isoform hCA VII was effec-
tively inhibited by sulfonamides 3–6 incorporating rhoda-
mine B moieties, with KIs in the range of 12.1–91.7 nM.
Again the best inhibitor was the metanilamide conjugate 4,
but followed by the aminomethyl derivative 5, whereas
the weakest one was the aminoethyl derivative 6.

(vi) The most interesting inhibition profile with derivatives 3–6
has been observed against the transmembrane isoforms
hCA IX, XII and XIV (two of them, hCA IX and XII are associ-
ated to tumors, whereas hCA XIV is not).7 Indeed, against
hCA IX these compounds showed KIs in the range of 10.2–
24.0 nM, with the metanilamide conjugate 4 being the least
effective inhibitor and the aminomethyl one 5 the best.
However, the SAR is rather flat as all these compounds are
highly effective as CA IX inhibitors (similar to AZA). Against
hCA XII the efficacy was again excellent, with KIs in the
range of 8.6–25.3 nM and a similar SAR. hCA XIV was inhib-
ited with KIs in the range of 4.9–14.6 nM, being the most
sensitive isoform to this type of CA inhibitor.
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(vii) The mycobacterial enzyme mtCA 1 was weakly inhibited by
sulfonamides 3–6, with KIs in the range of 3.70–4.48 lM,
whereas the remaining two b-CAs from this pathogen were
at least one order of magnitude more sensitive to be inhib-
ited by these compounds. Indeed, against mtCA 2 the inhibi-
tion constants were in the range of 409–443 nM, and against
mtCA 3 in the range of 342–469 nM (Table 1). Thus, the new
sulfonamides reported here are less effective than AZA as
mtCA inhibitors.

(viii) The fungal enzyme from C. albicans caNce 103 was also
weakly inhibited by the compounds investigated here,
which showed KIs in the range of 4.09–5.32 lM.

In conclusion, we report the synthesis of a series of fluorescent
CA inhibitors, which were obtained by attaching rhodamine B moi-
eties to the scaffold of benzenesulfonamides. The new compounds
have been investigated for the inhibition of 12 human a-CA iso-
forms (hCA I–hCA XIV), three bacterial and one fungal b-class en-
zymes from the pathogens M. tuberculosis and C. albicans. All
types of inhibitory activities have been detected, with several com-
pounds showing low nanomolar inhibition against the transmem-
brane isoforms hCA IX, XII (cancer-associated) and XIV. The b-CAs
were inhibited in the micromolar range by these compounds
which may have applications for the imaging of hypoxic tumors
or bacteria due to their fluorescent moieties.
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