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Robust Model Predictive Control With Integral
Sliding Mode in Continuous-Time
Sampled-Data Nonlinear Systems
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and Lalo Magni

Abstract—This paper proposes a control strategy for nonlinear
constrained continuous-time uncertain systems which combines
robust model predictive control (MPC) with sliding mode control
(SMC). In particular, the so-called Integral SMC approach is used
to produce a control action aimed to reduce the difference between
the nominal predicted dynamics of the closed-loop system and the
actual one. In this way, the MPC strategy can be designed on a
system with a reduced uncertainty. In order to prove the stability
of the overall control scheme, some general regional input-to-state
practical stability results for continuous-time systems are proved.

Index Terms—Constrained control, nonlinear predictive control
(NPC), sampled data control, sliding mode control (SMC), stability
of nonlinear systems.

I. INTRODUCTION

M ODEL predictive control (MPC) is a control technique
which permits to cope with a constrained system pro-

viding an optimal control strategy. MPC has been widely used
in the process industry and also studied in its theoretical aspects
by the research community (see for an overview, [1]–[3], and
the books [4]–[7]). In the last years, one of the topics of in-
terest in MPC has been the definition of robust strategies, in
order to guarantee certain stability properties and the respect of
the constraints also in the presence of uncertainties and external
disturbances. Several nonlinear MPC (NMPC) algorithms with
guaranteed robust stability with respect to different classes of
disturbances have been proposed (see, e.g., [8] and the refer-
ences therein). In order to obtain a robust controller in presence
of constraints two main approaches have been proposed in the
literature.

• The min-max approach, where the objective function is
minimized for the worst possible uncertainty realization,
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Fig. 1. Scheme of the overall hierarchical control system.

forcing the satisfaction of the constraints for any possible
perturbation [9]–[14]. This approach presents a very high
computational burden, and, at the moment, can be applied
to systems with small size or slow dynamics.

• The open-loop nominal approach with tightened con-
straints, where the real constraints are shrunk in order
to guarantee that the original constraints are fulfilled by
the real system for any possible uncertainty realization
[15]–[19]. This approach has the drawback of being too
conservative in view of the open-loop off-line approxima-
tion of the worst possible effect of the disturbance that is
required in order to compute the tightened constraints.

Exploiting the idea proposed in [16], the second approach
is here followed. The hierarchical control scheme (see Fig. 1),
composed by a NMPC algorithm and a Sliding Mode controller,
is introduced in order to improve the robustness features of the
NMPC algorithm. Sliding Mode Control (SMC) [20], [21] is
a well-known robust control technique for nonlinear systems
which guarantees the complete elimination of the effect of
“matched disturbances” (i.e. disturbances acting on the control
input channel) once the system is in the so-called “sliding
mode,” that is, the state has reached a suitable subspace of
the state space, called “sliding manifold.” Considering that
matched disturbances are very common and can represent both
parametric uncertainties and external disturbances, robustness
with respect to them is a significant benefit, also taking into
account that SMC requires a very low computational burden
and guarantees the finite-time convergence to the sliding man-
ifold, upon which the controlled system exhibits the desired
dynamics.

Different approaches to merge MPC and Sliding Mode
techniques have already been proposed in the literature. For
instance, in [22] a combined scheme was presented for linear
systems in the framework of Generalized Predictive Control.
Another approach has been proposed in [23], where MPC was
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used to update the parameters of the sliding manifold. The
Sliding Mode strategy considered in this paper is instead de-
signed according to the so-called Integral Sliding Mode (ISM)
approach [24]–[27]. This technique is a recent development of
the more classical SMC design methodology that presents the
advantage of forcing the system state to lie on the sliding man-
ifold from the initial time instant. Relying on the knowledge of
the nominal model of the system and of the control signal gen-
erated by the NMPC, the ISM controller is designed to produce
a continuous-time control action aimed to reduce the difference
between the dynamics of the nominal closed-loop system and
the actual evolution of the state. In this way the NMPC can
be designed on a system with reduced uncertainty, limiting
the conservativeness of the open-loop nominal approach. In
particular, if only matched disturbances affect the system, no
tightened constraints are required in the NMPC formulation,
while, if also unmatched disturbances are considered, then less
conservative constraints must be introduced with respect to the
pure NMPC control scheme.

The continuous-time setting is the most appropriate if the
plant model is derived from first principle continuous-time
equations. Nonetheless, since solving an optimization problem
in continuous time would be computationally untractable,
some MPC algorithms which use continuous-time models with
sampled data systems have been proposed [28]–[30]. In this
paper, following the approach analyzed in [29] for systems not
affected by uncertainty, the optimization is performed in dis-
crete-time with respect to piecewise-constant control signals.
The continuous-time control law of the ISM is then added to
the piecewise-constant signal generated by the NMPC. In order
to prove the stability of the overall control scheme, the regional
Input-to-State Stability (ISS) and Input-to-State practical Sta-
bility (ISpS) results introduced respectively in [31] and [32] for
discrete-time systems are proved for continuous-time systems.

A preliminary version of the theoretical development here
proposed, without mathematical proofs, can be found in [33].
The organization of the paper is the following: the notations
used in the paper are reported in Section II, while Section III
deals with the description of the system. In Section IV the
overall control strategy, including the robust NMPC control
strategy and the ISM controller is presented. Section V studies
the stability properties of the control system. The simulation
results and the conclusions are reported in Sections VI and
VII, respectively. Finally, for the readers’ convenience, all the
proofs are in the Appendix, together with the introduction of
the concept of regional ISpS in continuous-time.

II. NOTATIONS

The Euclidean norm is denoted as . For any symmetric
matrix , and denote the largest and the
smallest eigenvalue of matrix , respectively. Given a signal

, let be a signal defined from time to time . In
order to simplify the notation, when it is inferrable from the
context, the subscript of the sequence is omitted. The set of sig-
nals , the values of which belong to a compact set
is denoted by , while . Moreover

where denotes the values that
the signal takes in correspondence to the time . The symbol

id represents the identity function from to . Given a set
, is the point-to-set distance

from to while denotes the boundary of . Given
two sets , then the Pontryagin difference set

is defined as .
The floor function is defined as follows:

. A function is of class (or
a ” -function”) if it is continuous, positive definite and strictly
increasing, and . A function is of
class if it is a -function and as .
A function is of class if, for
each fixed , is of class , for each fixed ,

is decreasing and as . Given a matrix
with , then its orthogonal complement is

.

III. PROBLEM STATEMENT

In this paper, it is assumed that the plant to be controlled is
described by the continuous-time nonlinear model

(1)

where is the state, is the current control
vector, is the disturbance term, and is a
compact set containing the origin as an interior point. Given
system (1), which is assumed to be forward complete, assume
also that denotes the nominal model,
being , with ,

, . The system can then be expressed
as

(2)

where and
denotes the additive uncertainty. The solution of system (2) with
initial state and the uncertain signal is denoted by

.
Remark 1: The control-affine form

is required in order to obtain an explicit
control law for the ISM strategy that will be presented in the
sequel.

System (2) is supposed to fulfill the following assumption.
Assumption 1:

1) System (2) is forward complete.
2) .
3) The state and control variables are restricted to fulfill the

following constraints

(3)

(4)

where and are compact sets containing the origin
as an interior point.

4) The uncertainty is such that

(5)
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where is a compact set containing the origin, with
known.

Remark 2: This last property can be obtained starting from
system (1), if it is assumed that the disturbance is such that

, where is a compact set containing the origin, with
known. Given (3), (4), one can state that can be modeled

as a bounded uncertainty as well.
Given a suitable sampling period , and letting , with

, be the sampling instants, the control objective consists in de-
signing a piecewise-constant control law that steers the system
state to (a neighborhood of) the origin fulfilling the constraints
on the input and the state itself along the system evolution for
any possible uncertainty satisfying Point 4 in Assumption 1, and
yielding an optimal closed-loop performance according to a cer-
tain performance index.

Assumption 2: System (2) is defined such that, considering a
generic time instant , ,

1) given two different initial conditions and at
time 0, and a signal , it yields

(6)

where is a positive continuous function defined
in , such that . The term stands
for raised to the -th power.

2) given an initial condition at time 0, the signals
and , one has that

(7)

where is a constant value and .

In order to evaluate the discrepancy between the nominal and
perturbed evolutions of the system at a generic time instant, the
following lemma can be stated.

Lemma 1: Suppose that Assumptions 1 and 2 are satisfied.
Then, given and , one has that

for all , all and .
Proof: See Appendix C.

Given the feedback control law

(8)

following the idea used in [29], the description of the hold mech-
anism implicit in (8) calls for a state augmentation. Letting

, the closed loop system (2), (8) is given by

and its solution from initial time 0 and initial state
is given by . Moreover, the first and the last

components of will be denoted by and
, respectively.

IV. ROBUST NMPC WITH ISM: THE

OVERALL CONTROL STRATEGY

Robust NMPC with tightened constraints can lead to very
conservative solutions or even to unfeasible problems. In order
to mitigate the conservativeness of the approach, the hierar-
chical control scheme represented in Fig. 1 is here proposed,
where the ISM controller is introduced in order to reduce the
uncertainty that must be taken into account by the NMPC con-
troller.

The control variable , according to Fig. 1, is composed
by two parts, i.e.

(9)

where the component is generated by the NMPC con-
troller, while is generated by the ISM controller to com-
pensate for the uncertain terms. As a cost to pay for the uncer-
tainty reduction, one has that part of the control effort must be
used by the ISM controller so that the input constraints imposed
in the NMPC optimization problem are smaller than the actua-
tors limits. The ISM controller, based on the knowledge of the
nominal continuous-time model of the system and of the control
signal generated by the NMPC control law, produces a control
action in order to reduce the difference between the dynamics
of the nominal closed-loop system and the actual evolution of
the state. Moreover, the ISM, having a negligible computational
burden, can be used in continuous-time.

A. Integral Sliding Mode Strategy

Given system (2), define a sliding manifold, i.e. a set
, where, as in [34]

(10)
and is a projection matrix, defined such that the
matrix product is invertible. It is important to note that the
initial state belongs to the sliding manifold, i.e.

. The uncertain term can always be seen as the sum of two
different parts

where , , and .
The uncertainty is the matched uncertainty, and can be
perfectly compensated by the SMC action [20]. The other term
is called “unmatched uncertainty” and cannot be compensated
by a sliding mode strategy. The control variable can
be defined in several ways, for instance by relying on to the
so-called unit-vector approach

(11)
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where is the controller gain (considered constant here for the
sake of simplicity) large enough to keep from
the initial time instant. The choice of this particular gain as

will permit to dominate the matched uncertainty
term: in principle, one could also choose a larger value for , but
this would induce useless wear in the system and would subtract
some usable control amplitude to the NMPC controller. How-
ever, some variations of this technique, e.g. letting be a func-
tion of the states and/or a time-varying value can be found in
the literature (see, e.g. [21]). To determine the motion equations
at the sliding manifold, the equivalent control method [20] is
used. The equivalent control is the continuous signal which can
be determined by solving, with respect to , the equation

, taking into account (2) and (10). Substituting the
value of the equivalent control in (2), it yields

where

Note that the perturbation has been re-
placed by . So, the amount of reduction of the uncertain
term depends on the choice of .

Lemma 2: Applying to system (2) the control law (11) based
on the sliding manifold (10), with , one has that the
choice minimizes the norm of , i.e.

Then, the resulting system that the NMPC controller has to con-
sider is

(12)

where the matched uncertainty has been eliminated, while the
unmatched one has not changed.

Proof: See Propositions 2 and 3 in [27].
For each component of the control variable

, , given the approach
selected to design the ISM component, the value of the ampli-
tude of the terms can be computed, and then a new set

can be accordingly found as

(13)

Defining as in (11), a quantity equal to must be sub-
tracted to each component of the control bounds for the NMPC
controller.

Remark 3: It is very important to note that it would be pos-
sible to use the ISM strategy here described even if the term

were state dependent; nonetheless, no solution has been pro-
posed up to now in the literature to find the optimal realiza-
tion of the sliding manifold that can avoid any increasing of
the unmatched uncertainty. So, in case , depending
on the specific system, one would have that the elimination of

the matched uncertainty could imply an increasing of the un-
matched one, which must be kept as small as possible with the
choice of a suitable sliding manifold.

Remark 4: In case no unmatched uncertainties are present
(i.e. , or , ), then this strategy will com-
pletely eliminate the uncertain terms, so that the NMPC con-
troller has to control a system without uncertain terms. If this is
the case, a robust NMPC strategy is no longer needed, and one
can use the technique described in [29].

B. Robust NMPC Strategy

The robust NMPC controller must be designed for system
(12) formed by the system under control complemented with
the ISM control law. Following the idea behind the control al-
gorithm presented in [16] for discrete-time systems and consid-
ering that system (12) is a particular case of system (2), a new
robust NMPC control algorithm for continuous-time systems in
form (2) is described in this subsection. Some preliminary defi-
nitions and results are first introduced. In particular, in order to
describe a key ingredient of the robust NMPC controller, i.e. the
tightened constraints, define the tightened set

(14)

where

This definition of the tightened set guarantees that, if the nom-
inal state evolution belongs to in (14), then the perturbed
trajectory of the system fulfills (3), as will be proved in the se-
quel.

The proposed NMPC controller is based on the following Fi-
nite-Horizon Optimal Control Problem (FHOCP) that consists
in minimizing, at any sampling time instant , a suitable cost
function with respect to the control sequence

, with being the predic-
tion horizon. The associated finite horizon piecewise-constant
control signal is such that

for all and all .
Definition 1 (FHOCP): Consider system (2) with .

Given the positive integer , the quadratic stage cost
( and being positive defi-

nite matrices), the quadratic terminal penalty
(being a symmetric positive definite matrix) and the terminal
set , the FHOCP problem consists in minimizing with
respect to the cost function
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subject to
1) the state dynamics (2) with , for all

;
2) the state constraint , for all ;
3) the control constraint (4);
4) the terminal state constraint .

Remark 5: Since and are bounded, the stage cost is a
Lipschitz function with respect to both the state and the control
values, i.e., there exist and such that

(15)

(16)

for all and all .
It is now possible to define the NMPC algorithm:

at any sampling time instant , find the optimal con-
trol sequence by solving the FHOCP.
Then, according to the Receding Horizon strategy, define

, and apply the control law

(17)

The following assumption on the choice of the design param-
eters is introduced.

Assumption 3: The design parameters and are such
that, given a compact set and an auxiliary control law ,

1) , , such that
and is a positive real number;

2) , being , and
;

3) , for all , with
and .

4) is Lipschitz with respect to the state variable in the
domain with Lipschitz constant , i.e.

(18)

5) if , then
for all . Moreover, one has that

;
6) the following inequality holds:

for all ;
7) consider a generic time instant , ; system

(2) is such that

(19)

for all , where is a positive con-
tinuous function defined in such that .

Since is a compact set, no additional assumption is needed
to state that is Lipschitz with respect to the state variable
in the domain , i.e.

(20)

Remark 6: In the FHOCP, continuous-time state constraints
are considered. It can appear that this approach is only concep-
tual, because a numerical implementation would need a time
discretization and the constraints satisfaction could be checked
only at the integration time instants. Nonetheless, this is not
a significant limitation: choosing an integration step small
enough in the optimization phase to simulate the plant (i.e.

), one can still have guarantees on the convergence properties
of the control system without increasing the conservativeness
due to the numerical approximation (see Theorem 3 in [29] for
a detailed analysis).

V. INPUT-TO-STATE PRACTICAL STABILITY

OF THE CLOSED-LOOP SYSTEM

In this section, the Input-to-State practical Stability of the
closed-loop system (12), (17) is proved. In order to improve the
readability, the concept of continuous-time regional ISpS, that
will be used along this section, is introduced and analyzed in
Appendix C.

In the following, let denote the set of states for which
a solution of the FHOCP exists, and consider the following
assumption.

Assumption 4: Suppose that the system parameters have been
chosen obtaining a value of such that

(21)

Lemma 3: [Feasibility] Suppose that system (2) satisfies As-
sumptions 1–4. Then, is a robust positively invariant set
(see Definition 3 in Appendix B) for the closed-loop system (2),
(17).

Proof: See Appendix C.
Lemma 4: [Regional ISpS] Suppose that system (2) fulfills

Assumptions 1–4. Then, the closed-loop system (2), (17) is re-
gional ISpS in .

Proof: See Appendix C.
Remark 7: Note that Lemmas 3 and 4 are proved for a system

in the general form , and then their
applicability is not limited to control-affine systems.

We are now ready to introduce the main stability result for the
overall control scheme.

Theorem 1: Suppose that system (2) fulfills Assumptions 1–4
with and . Then, the hierarchical
closed-loop system defined by (2), (9), (11), (17) (computed
with respect to system (12)) is regional ISpS in .

Proof: See Appendix C.
Note that, with respect to Lemmas 3 and 4, the assumptions

must be verified with a modified disturbance . This is due to
the presence of the ISM inner loop that, using part of the control
energy, rejects the matched disturbance.
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Fig. 2. Graphical representation of the simulation example.

VI. SIMULATION RESULTS

In this section, the proposed control strategy is applied to a
cart moving on a plane (Fig. 2). The structure of the model is
the same as in [35], and is represented by

where is the displacement of the cart with respect to the equi-
librium position, and is its velocity. is the mass of the cart,

is the stiffness of the spring, and is the damping
factor. The control variable is the force applied to the cart,
while is the load force given by the wind. The presence of
another disturbance term is assumed. The values of the pa-
rameters are , , .
The uncertain terms are bounded as follows:
and , while the control and state constraints are

, , , respectively. The con-
sidered system is a control-affine system with matched
and unmatched disturbances. The matched one is quite
common in mechanical systems, when both the control variables
and the disturbances are forces or torques. The sampling time of
the NMPC control law is chosen as , while the predic-
tion horizon is . The matrices in the stage cost defined in
the FHOCP are chosen as and . As for Assump-
tion 3, the auxiliary control law and the matrix which defines

are found following the approach suggested in [29], and are
equal to

and

respectively. The auxiliary control law is Lipschitz with respect
to the state value because it is a proportional control law applied
in a bounded state region.

Example 1: NMPC Only, No Matched Disturbance: Consider
, . In this case, Assumption 1 is satisfied.

As for Assumption 2, the values of the parameters required for
the controller design have been numerically found. They are

, , . With and
, all the points of Assumptions 3 are satisfied. Indeed,

since , one obtains that Assumption 4 is fulfilled. In
Fig. 3, the evolution of the state, the control, and the unmatched
disturbance is depicted, in a simulation example obtained using
only the NMPC controller with initial condition

. If all the assumptions are fulfilled, it is also interesting to

Fig. 3. Time evolution of the state variables (� : dashed line, � : solid line), of
the control variable and of the unmatched disturbance for the NMPC controller.

Fig. 4. Region of attraction for both Examples 1 and 3.

analyze the region of attraction, i.e. the region formed by the
states for which a solution of the FHOCP exists. In Fig. 4 the
region of attraction for this example is reported.
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Example 2: NMPC Only, Full Disturbance: We allow now
the matched disturbance to assume values different from zero,
i.e. , using again the NMPC controller only. The
function is the same as in the previous example, while the
numerical evaluation of the needed parameters leads to ,

, , , which implies the non-fulfilment
of Assumption 4, and the consequent loss of the regional ISpS
property. As a practical test, we decided to perform a simulation
example in the same conditions of Fig. 3, but with the increased
disturbance (knowing that there is no a-priori guarantee of con-
vergence). As a result, no feasible solution of the FHOCP can
be found at the initial time instant.

Example 3: NMPC-ISM, Full Disturbance: Following the
procedure of [27], the sliding manifold in (10) is chosen as

, where . In this way the effect of a
matched disturbance is eliminated and the effect of is un-
changed. A pseudo-sliding mode technique, which makes use of
an approximation of the sign function [21], is used to define the
ISM control variable, the maximum amplitude of which is equal
to the maximum amplitude of . In practice, this approxima-
tion is often used to avoid the so-called “chattering” effect (see
[36]–[39], and the references therein) that is a high frequency
oscillation of the sliding variable due to the discontinuous con-
trol input. In this way, the maximum control effort that must be
allocated for the ISM controller is equal to the maximum am-
plitude of that is 1 N and then only 3 N can be used by the
NMPC. The values of , , and are the same as in Ex-
ample 1. In Fig. 5, the evolution of the state and the control
variables is shown starting at the same initial condition of Ex-
ample 1 and 2. The matched disturbance term is shown in Fig. 5
as well, while the unmatched one has the same realization of
the unmatched disturbance reported in Fig. 3. Even though now
a much larger disturbance is considered (from
to ), the state trajectory is not distinguishable from the
one reported in Fig. 3. Fig. 4 shows a numerical evaluation of
the region of attraction using the combined strategy, which co-
incides with that evaluated for the Example 1. The size of the
region is not reduced because the available control amplitude
is larger than the one which the NMPC controller needs to find
a feasible solution to the FHOCP in the same region of attrac-
tion. If the total maximum control amplitude had been smaller,
then handling a matched disturbance of non-negligible magni-
tude would have caused a reduction of the region of attraction
(however, remember that using only the NMPC with the full
disturbance Assumption 4 is not satisfied, so that a region of at-
traction does not exist).

VII. CONCLUSION

In this paper, a hierarchical Model Predictive Control scheme
with Integral Sliding Mode for continuous-time nonlinear sys-
tems is proposed and analyzed. The contribution of this work
can be summarized in the following three points. First, an ISM
control strategy is designed in order to reduce the conservative-
ness of the robust open-loop NMPC strategy. Second, a robust
NMPC control strategy with tightened constraints, which gen-
erates a piecewise-constant control law, is proposed for contin-
uous-time systems. Third, the concept of regional ISpS property
in continuous-time is introduced, and it is proved that the ex-
istence of a suitably defined Lyapunov function can guarantee

Fig. 5. Time evolution of the state variables (� : dashed line, � : solid line),
of the control variable and of the matched disturbance for the NMPC-ISM
controller.

the regional ISpS of a system. This concept is then exploited
to analyze, under suitable assumptions, the stability properties
of the proposed control scheme. Finally, simulation examples
are given, showing the advantages of the proposed hierarchical
scheme.

APPENDIX A
RESULT ON TIGHTENED SETS

The following lemma is useful to prove the properties of the
proposed NMPC control law.

Lemma 5: Let , such that
, then .

Proof: Let , and .
Then, one has that

,
and so . Since ,

, it is verified that . Then
.
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APPENDIX B
CONTINUOUS-TIME REGIONAL ISPS

In this subsection the ISS framework for continuous-time au-
tonomous nonlinear systems is presented and Lyapunov-like
sufficient conditions are provided. This framework is used to
prove the stability properties of the proposed NMPC control
scheme. The piecewise-constant control law introduced in Sec-
tion IV-B will make the closed-loop system time-varying: it is
then necessary to deal with time-varying systems.

Consider a time-varying continuous-time autonomous non-
linear dynamic system described by

(22)

where is nonlinear and pos-
sibly discontinuous, is the state, is an
uncertain term. The solution of system (22) with initial state

and the sequence of the uncertain terms is de-
noted by . This system is supposed to fulfill the
following assumption.

Assumption 5:
1) System (22) is forward complete.
2) The uncertainty is such that

where is a compact set containing the origin with
known.

Definition 2 (RPI Set): A set is a robust positively
invariant (RPI) set for system (22) if , for
all , all , all , and all .

A regional version of ISpS [40] is now defined.
Definition 3: [Regional ISpS in ] Given a compact set

including the origin as an interior point, system (22) with
is said to be ISpS (Input-to-State practical Stable) in

with respect to , if is a RPI set for (22) and if there exist
a -function , a -function and a constant
such that

for all and . Whenever , system (22) is said
to be ISS (Input-to-State Stable) in with respect to .

Regional ISpS will be now associated to the existence of a
suitable Lyapunov function (in general, a priori, non-contin-
uous) with respect to .

Definition 4 (ISpS-Lyapunov Function in ): A function
is called an ISpS-Lyapunov function in

for system (22) with respect to if
1) is a compact RPI set including the origin as an interior

point.
2) there exist a pair of suitable -functions and a

constant such that

(23)

(24)

3) there exist a suitable -function , a -function and
a constant such that

(25)

for all , all , and for almost all . For the
values , , for which (25) does not hold, the following
condition holds:

(26)

4) there exist suitable -functions and (with such that
is a -function) such that, given an uncertain

signal , there exists a nonempty compact set
(including the origin as an interior point) defined

as follows:

(27)

where ,

with , ,

, .

Whenever , is said to be an ISS-
Lyapunov function for system (22) in .

Then, the following sufficient condition for regional ISpS of
system (22) can be stated.

Theorem 2: If system (22) admits an ISpS-Lyapunov
function in with respect to , then it is ISpS in and

.
Proof: Let . The proof will be carried out in three

steps.
Step 1) First we show that the set defined in (27) is ro-

bust positively invariant for system (22). From the definition of
it follows that . There-

fore and hence
, . Moreover (see [41])

(28)
where is a -function. Then, the following
holds:

(29)

for all , all , and for almost all t, being

. Let us now assume that . Then, if
is robust positively invariant, , .

In order to prove this claim, assume that this is not true. Then,
there exist some and such that .
Let . Then, it
follows that:
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that implies

By substituting this in (29) we obtain

for all , all . Hence, considering also
that, where does not exist, (26) holds,

for some . This contradicts the minimality
of , and hence, as claimed, is robust positively invariant
(i.e. for all ).

Step 2) Next, we show that the state, starting from ,
tends asymptotically to . If , then

. Hence

for all , and for almost all , the last step being ob-
tained using (23). Considering also that, where does
not exist, (26) holds, then, such that

(30)

Therefore, starting from , the state will arrive close to
in a finite time and to asymptotically. Hence

.
Step 3) Finally we show that system (22) is regional ISpS in

. Let . Then, from the
robust invariance of , it follows that

, for all . By using (23), this implies
that

Noting that, given a -function ,
(see [41]) it follows that:

(31)

where and
. For , , that implies

(32)

for almost all .
First of all, this inequality guarantees that is defined

for all . Secondly, by the following generalization of
the comparison principle [42], there exists some -function

which only depends on and , such that
for .

Define for any , . This
is a strictly decreasing differentiable function on , with

. Let . Then,
the range of , and hence the domain of , is the open interval

(we allow the possibility that ). For
, define

if
if

In order to verify that , we only
need to show that

that is

which is equivalent to

By the following change of variables and taking
into account (26), denoting one sees
that the previous inequality is equivalent to

where are due to the jump discontinuities of and,
for (26), are always negative. By considering (32), the previous
inequality is always satisfied. It only remains to show that
is of class . The function is continuous since both and

are continuous in their domains, and .
It is strictly increasing in for each fixed since both and

are strictly decreasing. Finally as by
construction. So is a -function.

Hence , . By
using (23) and (24), it yields

(33)

where and .
Combining (31) and (33), one concludes that the system is

ISpS, i.e.

where .
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APPENDIX C
OTHER PROOFS

Proof of Lemma 1: Using (7), if the nominal system and the
real one start at the same point at time , then after a sampling
time interval it yields

After two sample time intervals, one has that

where and .
Using the triangle inequality together with Assumption 2, it
yields

Analogously, after sampling times, the result can be obtained
as the sum of a geometric series

Finally, in order to generalize it for a generic interval ,
it yields

Proof of Lemma 3: To get the feasibility property, one has to
prove that

(34)

Letting and the associated optimal solution
of the FHOCP at time , a possible (sub-op-

timal) solution at time for the FHOCP is

(35)

where

(36)

is the value of the state of the NMPC perturbed closed-loop
system at time . To determine the feasibility of such a solu-
tion, one must prove the following three steps.

Step 1) it is necessary to show that the state value must lay in
at , i.e.

where is the signal associated with the con-
trol sequence . In order to prove this, we show
that . To this
aim, note that Assumption 2 implies

where

(37)

is the value of the state of the NMPC nominal (without un-
certainties) closed-loop system at time . Since

, by defining

and

it yields

(38)

and then

(39)
where the last inequality is obtained applying (21). At this
point, applying , according to Assumption 3, one obtains

.
Step 2) the control variable must fulfill

. It follows from the fact that by definition,
and , since .

Step 3) in order to assure the respect of the state constraints,
it must be verified that

for all time instants in the prediction horizon,
i.e. and . Consid-
ering that

,
then by recursion, for all and for

, considering Assumption 3, it yields
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.
Then, since

according to Lemma 5 (Appendix A.), it yields

Proof of Lemma 4: In order to prove the regional ISpS of
the closed loop system, first note that Assumption 5 is satis-
fied for system (2). In order to prove the stability properties one
has to find a suitable ISpS Lyapunov function, as described in
Theorem 2. At any time instant , define

(40)

as the value of the extended state of the NMPC perturbed
closed-loop system at time , where is the extended state
defined in Section III, as well as and . Then, for a fixed
value of , introduce the following ISpS Lyapunov function
candidate:

(41)

which is defined at any time value, and takes into account the
remaining part of the stage cost until the end of the prediction
horizon. In this way, the length of the integral is varying from

at the left neighborhood of each sampling instant ,
to at each sampling instant. This choice of the Lyapunov
function is similar to the one made in [29] for the nominal case.

Now we verify that this function satisfies all the points in
Definition 4.

Point 1 is fulfilled, because includes the
origin as interior point, and is a robust positively invariant set
according to Lemma 3.

Point 2 requires to find two -functions and
which are a lower and an upper bound, respectively, for

the ISpS Lyapunov function candidate. As for the lower bound,
one can see that, at

Being one can see
that a lower bound on the integral of the state evolution can be
obtained if the state moves towards the origin with a “velocity”
equal to and, if the origin is reached, it remains there.
Taking into account the evolution of the system with this
maximum derivative, the value of the integral is smaller if
calculated on a smaller interval, so, the minimum amount of
this interval, i.e. is considered. This means
that we can write

where

(case )
(case ).

In case , where the state reaches the origin before the end of
the interval , solving the integral, one has

In case , where the state does not reach the origin in the con-
sidered interval, solving the integral it yields

After noting that the two functions coincide at ,
that they are strictly increasing in their argument, that the
function in case is equal to zero for , and that the
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function in case tends to infinity for , it is possible
to state that

is a -function, such that .
Now, a procedure to find the upper-bound is intro-

duced. To begin with, define

where . Define also

(42)

(43)

The following cost function with horizon is defined, for

(44)

Relying on Point 6 in Assumption 3, it yields

By exploiting the optimality of the FHOCP solu-
tion, it is possible to state that

. This inequality
holds only for , that is the region where a feasible
solution for the FHOCP with prediction horizon surely
exists.

As a preliminary result, note that, taking into account (6),
(18), (19), given , one can note that

, and then

(45)

Using (15), (16), (18), (20) and (45), it yields

with , and
. Since a compact set, then the value of

can be bounded as . Then,

defining , it yields

In order to obtain the upper bound of in the re-
gion , we recall the arguments stated in [41]. The com-
pactness of and implies that the predicted evolution of
the system and the feasible control action are bounded. This
fact and Assumption 3 guarantee that the optimal cost is upper
bounded, that is, there exists a finite real number such that

, . Let ,
, be a ball such that . Note

that this ball exists since the origin is in the interior of . Let
be a positive constant . Then, defining

, one has

In fact, if , then and hence . Then
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Point 3 requires to express the derivative of the ISpS Lya-
punov function candidate. In the following the right derivative
is analyzed (the calculation of the left derivative is specular).
Such a derivative is defined as

(46)

Note that . Then, by using the definition of in
(40), in addition to

the term on the numerator of (46), provided that
, can be bounded as follows:

(47)

Taking into account that the value of the integrand in the second
line of (47) is defined for any time instant in and is also
bounded, define as its mean value in . By virtue of
(6), (7), (15), (20), after some calculation it yields

where

Substituting this upper-bound into (46), solving the limit (taking
into account that if , then coincides with the value of
the integrand in the second line of (47) at time ), one obtains

(48)

It is worth noting that the value of in this case can be calculated
considering only the current values of the state and the control
variable, independently from the past trajectory of the system.
Moreover, this term is defined so that

As for the term in the second line of (48), a time-invariant upper
bound can be obtained substituting to . So, after defining

(49)

and

(50)

where is a -function and is a -function, one
has

(51)

Note that the derivative of the Lyapunov function is defined only
almost everywhere, because at the sampling time instants a
jump discontinuity of can occur. Then, it is nec-
essary to show that .
Considering of having to solve the FHOCP at time , a fea-
sible (sub-optimal) solution can be obtained from the control
sequence defined in (35). The corresponding value of the ISpS
Lyapunov function candidate at would surely be larger than
the one that could be obtained solving the FHOCP at that time
instant. So, also taking into account (20) defining as

and as in (43) (with ), and taking into
account Point 6 in Assumption 3, it is possible to state that

which proves that .
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As for Point 4, it is necessary to guarantee that the region
defined in (27) is contained in , which coincides with
in our case. depends on through functions and con-
stants of which we are just able to compute very conservative
upper-bounds. Then, the set has to be such that the feasibility
condition (21) holds, and that . Due to the con-
servativeness in the calculation of , the last condition could
be the most stringent. However, it is necessary just to give an es-
timation of the region where the state of the closed-loop system
converges asymptotically. In order not to limit the applicability
of the method only to extremely small uncertainties, we avoid to
estimate , knowing that the actual region where the system
will converge is included in , this latter being a robust
positively invariant set.

Proof of Theorem 1: The application of the ISM to system
(2), according to Lemma 2, leads to a system in form (12), i.e.
system (2) with . Moreover, in order to apply the
ISM inner loop, the control variable in the MPC control law is
limited in the set . Then, since Assumptions 1–4 are satisfied
for system (2) with and , according to
Lemma 4 the ISpS of the overall control scheme is proved.
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