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DMyocardial reperfusion injury is mediated by several processes including increase of reactive oxygen species

(ROS). The aimof the study is to identify potential sources of ROS contributing tomyocardial ischemia–reperfusion
injury. For this purpose, we investigated myocardial ischemia/reperfusion pathology in mice deficient in various
NADPH oxidase isoforms (Nox1, Nox2, Nox4, as well as Nox1/2 double knockout). Following 30 min of ischemia
and 24 h of reperfusion, a significant decrease in the size of myocardial infarct was observed in Nox1-, Nox2-
and Nox1/Nox2-, but not in Nox4-deficient mice. However, no protection was observed in a model of chronic is-
chemia, suggesting that NOX1 and NOX2-mediated oxidative damage occurs during reperfusion. Cardioprotective
effect of Nox1 andNox2deficiencieswas associatedwith decrease of neutrophil invasion, but, on the other hand an
improved reperfusion injury was also observed in isolated perfused hearts (Langendorff model) suggesting that
inflammatory cellswere not themajor source of oxidative damage. A decrease in global post-reperfusion oxidative
stress was clearly detected in Nox2-, but not in Nox1-deficient hearts. Analysis of key signaling pathways during
reperfusion suggests distinct cardioprotective patterns: increased phosphorylation was seen for Akt and Erk in
Nox1-deficientmice and for Stat3 and Erk inNox2-deficientmice. Consequently, NOX1 andNOX2 represent inter-
esting drug targets for controlling reperfusion damage associated with revascularization in coronary disease.

© 2013 Published by Elsevier Ltd.
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O1. Introduction

The prolonged interruption of the coronary blood supply results in
myocardial tissue death and jeopardized ventricular function. This
physiopathological event is defined as acute myocardial infarction and
represents one of the leading causes of morbidity worldwide [1]. The
recommended initial treatment is directed toward the promptmechan-
ical restoration of myocardial perfusion by coronary angioplasty. This
approach is essential for the cardiomyocyte salvation, resulting in the
improvement of myocardial damage and cardiac dysfunction [2].
However, the reperfusion itself is harmful for the cardiac tissue. Indeed,
the restoration of blood flow and the supply of nutrients and oxygen
increases post-ischemic detrimental inflammatory and oxidative
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processes [1]. At the onset of reperfusion, several studies showed that
a fast and marked increase of ROS generation occurs in post-ischemic
tissues [3–5]. Although multiple sources of ROS have been identified,
evidence supports Nicotinamide Adenine Dinucleotide Phosphate
(NADPH) oxidases (NOXs) as major contributors to oxidant generation
during hypoxia-reoxygenation in different organs [6].

The NOX family is composed of sevenmembers (Nox1–Nox5, Duox1,
and Duox2) that transfer electrons across the biological membranes to
generate ROS [7]. Nox isoforms have different patterns of expression
within the cardiovascular tissues. In particular, Nox1 is expressed in en-
dothelial cells, smooth muscle cells, and cardiomyocytes, while Nox2 is
also expressed in adventitial and cardiac fibroblasts and leukocytes. Im-
portantly, Nox4 is expressed in cardiomyocytes, but not in circulating
leukocytes, suggesting that different isoforms might selectively contrib-
ute to ROS generation within cardiac and recruited inflammatory cells
[8–10]. Several regulatory subunits are essential for the activity of Nox1
(NOXO1, NOXA1, Rac) andNox2 (p47phox, p67phox, p40phox, Rac),where-
as NOX4 is constitutively active [11]. While Nox1 and Nox2 generate
large amounts of superoxide anion as primary product, NOX4 appears
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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to generate hydrogen peroxide enzymes without apparent detection of
superoxide [12].

Due to this complex background, controversial results have been
published on the potential role of Nox isoforms in ischemia–reperfusion
injury in different organs [6]. In acute myocardial infarction, previous
studies have shown no difference in infarct size between knock-out
mice for Ncf1, which is the gene coding for the p47phox subunit of
Nox2, and heterozygous controls following 24 h of reperfusion [13],
neither in Nox2-deficient mice following short reperfusion (2 h) [14],
nor an ex vivo model of MIR [15]. In the present study, we compared
Nox1, Nox2, Nox4 and Nox1/Nox2 double deficient mice with control
mice in in vivo and ex vivo models of reperfusion injury and chronic
myocardial ischemia for infarct size, inflammation and oxidative modi-
fications.We show that deficiency in Nox1 andNox2, but not in Nox4, is
strongly protective formyocardial reperfusion injury through activation
of different molecular pathways.

2. Materials and methods

2.1. Animals

Adult males (aged 8–12 weeks) from the C57Bl/6 background were
used. Nox-deficient andwtmalemice (aged 10–12 weeks)were inbred
in specific pathogen-free conditions. Theywere healthywithout signs of
disease during the study and all experiments were approved by local
authorities. Nox1Y/− and Nox4−/− mice were generated and geno-
typed as described [16,17], while Nox2Y/− mating couples were
purchased from Jackson laboratories. Breeding was performed using
Nox1Y/− males bred with Nox1+/− females, Nox2 Y/− bred with
Nox2+/− females andNox4+/−males bredwith Nox4+/− females,
thereby generating littermate controls. Ncf1 mutant mice were in the
B10.Q background as well as the controls used for the subset of this
study as described [18,19]. The investigation conforms to the Guide for
the Care and Use of Laboratory Animals published by the US National In-
stitutes of Health (NIH Publication No. 85–23, revised 1996) and has
been approved by the local and ethics authorities (Geneva Veterinary
Office and the Ethic Commission of Animal Experimentation of the Uni-
versity of Geneva).

2.2. In vivo ischemia–reperfusion protocol

2.2.1. Surgery
Mice were anesthetized with 4% isoflurane and intubated. Mechani-

cal ventilation was performed (150 μl, 120 breaths/min) using a rodent
respirator (model 683; Harvard Apparatus). Anesthesiawasmaintained
with 2% isoflurane delivered in 100% O2 through the ventilator. During
surgery adequacy of anesthesiawasmonitored by careful visual and tac-
tile control of mouse consciousness (changes in breathing rate and vol-
ume, heart rate, sweating and tearing). Body temperature was
maintained at 37 °C using a rectal thermometer coupled with a heating
pad (TCAT-2 Temperature Controller, Physitemps Instruments Inc). Be-
fore surgical procedure, buprenorphine HCl (0.05 mg/kg in 100 μl) was
subcutaneously administered. Then, a thoracotomy was performed and
the pericardial sac was removed. An 8–0 prolene suture was passed
under the left anterior descending (LAD) coronary artery at the inferior
edge of the left atrium and tied with a slipknot to produce occlusion. A
small piece of polyethylene tubingwas used to secure the ligaturewith-
out damaging the artery. Ischemiawas confirmed by the visualization of
blanching myocardium, downstream of the ligation. After 30 min of is-
chemia, LAD coronary artery occlusion was released by removing the
polyethylene tube and reperfusion occurred. The suture thread was
left in place. Reperfusion was confirmed by visible restoration of red
color to the ischemic tissue. The chest was closed and pneumothorax
was evacuated from the chest cavity. The ventilator was removed and
normal respiration was restored. At different reperfusion time points,
animals were anesthetized with 4% isoflurane and sacrificed (by
Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
E
D
 P

R
O

O
F

intraperitoneal injection of ketamine/xylazine [4 mg/0.2%]) for infarct
size determination and immunohistochemical analysis.

2.2.2. Evaluation of the area at risk and infarct size
At mouse sacrifice (after 24 h of reperfusion) the LAD coronary ar-

tery was re-occluded. The prolene suture thread was previously left in
place in order to re-occlude the left descending coronary artery, exactly
at the same ligation site. Evan's blue dye 2% (Sigma) was injected in the
left ventricle to delineate in vivo area at risk (AAR). Hearts were rapidly
excised, rinsed in NaCl 0.9%, frozen and sectioned into 2-mm transverse
sections from apex to base (5–6 slices/heart). To distinguish viable
(AAR) from necrotic tissue (infarction [I]), heart sections were incubat-
ed at 37 °C with 1% triphenyltetrazolium chloride (TTC) in phosphate
buffer (pH 7.4) for 15 min, fixed in 10% formaldehyde solution and
photographed with a digital camera (Nikon Coolpix). The viable myo-
cardium was visualized in red, whereas necrotic tissue appeared in
white. The different zones were determined using a computerized pla-
nimetric technique (MetaMorph v6.0, Universal Imaging Corporation).

2.3. Ex vivo ischemia/reperfusion protocol

We used the technique of Langendorff isolated buffer-perfused
mouse heart preparation that has been previously described [20].
Briefly, mice were anesthetized by intraperitoneal injection of sodium
pentobarbital (60 mg/kg). The heart was rapidly excised and placed in
ice-cold Krebs–Henseleit bicarbonate buffer consisting of (in mmol/l):
118.5 NaCl, 25 NaHCO3, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 2.5 CaCl2, and
glucose 5 and equilibrated with 95% O2/5% CO2 (pH 7.4). Following
the removal of extraneous tissues (pericardium, lung, trachea, etc.),
the aorta was cannulated with an 18-G plastic cannula (1.5 cm length;
0.95 mm, inner diameter) for a Langendorff retrograde perfusion.
After stabilization, local ischemia was induced by LAD coronary artery
occlusion. This procedure was performed as described in the in vivo
ischemia–reperfusion protocol. After 30 min of ischemia, reperfusion
was allowed for 2 h by removing the polyethylene tube. After the reper-
fusion period, the suture was re-occluded and Evan's blue dye 2%
(Sigma) was injected within the heart through the cannulated aorta to
delineate in vivo AAR. The TTC staining was performed as described be-
fore in the in vivo ischemia–reperfusion protocol section.

2.4. Immunostaining

Hearts isolated from animals were perfused with NaCl 0.9% to re-
move blood, cleaned, and frozen in OCT compound (Tissue-Tek). They
were then cut serially from the occlusion locus to the apex in 7 μmserial
sections.

Immunostainings for neutrophils (anti-mouse Ly-6B.2 antibody,
ABD Serotec) and macrophages (anti-mouse CD68, ABD Serotec) were
performed on 5midventricular cardiac sections per animal, as previous-
ly described [21]. Quantifications were performed with MetaMorph
v6.0 software (Universal Imaging Corporation). Results were expressed
as number of infiltrating cells on mm2 of total heart surface area.

Before 4-hydrox-2-nonenal (4-HNE) and 3,5-dibromotyrosine
(DiBrY) stainings, we used, according to themanufacturer's recommen-
dation, the Vector M.O.M. immunodetection kit (VECTOR Laboratories)
to block detection with anti-mouse immunoglobulin secondary anti-
body of endogenous mouse immunoglobulins in the tissue. To detect
4-HNE that is a highly toxic aldehyde product of lipid peroxidation,
mouse antibody against 4-HNE (Percipio Biosciences) has been used.
Activation of neutrophil, monocyte and eosinophil is known to catalyze
the formation of hypochlorous acid that reacts with proteins and
induces tyrosine halogenation such as 3,5-dibromotyrosine [22]. There-
fore, to assess leukocyte-derived oxidative stress, we also performed
immunostaining for 3,5-dibromotyrosine using a mouse anti-
dibromotyrosine monoclonal antibody (NNS-MBY-020P-EX; Cosmo
Bio Co., LTD). Quantification of stained areawas performed by computer
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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Fig. 1. Nox1, Nox2 and Nox1/Nox2, but not Nox4 deficient mice are protected frommyo-
cardial ischemia/reperfusion injury in vivo. Data are expressed as mean ± SEM. A. Quan-
tification of area at risk (AAR) per ventricle surface (V) in wild type (wt) (n = 23),
Nox1−/− (n = 14), Nox2−/− (n = 18), Nox1/2 double knockout (double KO) (n = 9),
and Nox4−/− (n = 9) animals. B. Quantification of infarct size (I) per AAR: ***p b 0.001
vs. wt; N.S.: not significant vs. wt. C. Representative images of TTC stained middle heart
sections used for infarct size quantifications.
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analysis using MetaMorph v6.0 (Universal Imaging Corporation). The
results of oxidative modification were expressed as percentages of
stained area on total heart surface area.

2.5. Measurement of oxidative stress by hydroethidine fluorescence

Oxidative stresswas assessed inmyocardium24 h after reperfusion.
We used the ROS-sensitive dye hydroethidine (HE, Molecular Probes).
ROS rapidly oxidized HE to fluorescent ethidium, which is then interca-
lated into nucleic acids. Fluorescent ethidium is therefore a presumptive
marker of oxidative stress. Hearts of control or treated mice were
washed in cold saline and embedded in OCT for cryosectioning. Frozen
sections (7 μm) of the myocardium were stained with 10 μM HE at
37 °C for 30 min in a light-protected and humidified chamber. Stained
sections were mounted with the mounting medium for fluorescence
with DAPI (Vectashield). In situ fluorescence was assessed using fluo-
rescence microscopy. The quantification of fluorescence was performed
using MetaMorph v6.0 (Universal Imaging Corporation) on 3 fields per
section and 5 sections per animal.

2.6. Western blot analysis

After 10 min of reperfusion, proteins from hearts were harvested in
ice-cold radioimmunoprecipitation (RIPA) lysis buffer. Total protein con-
centrations were determined using the bicinchoninic acid (BCA) quanti-
fication assay (Pierce). Blots were blocked in 5% dry milk–phosphate-
buffered saline (PBS)–0.1% Tween and incubated for 1.5 h at
room temperature with the following primary antibodies: anti-ERK1/2
(R&D Systems, AF1576) and anti-phospho-ERK1/2 (T202/Y204) (R&D
Systems, AF1018). The first antibody incubation was followed by
1 hour incubation with horseradish peroxidase-conjugated secondary
antibodies (Jackson Immunoresearch). Membranes were developed
using an enhanced chemiluminescence system (Millipore) to obtain
autoradiograms. After scanning, the blots were analyzed for optical den-
sity (ImageJ 1.43u). Relative intensities were calculated by the ratio be-
tween phosphorylated and total protein amounts after stripping on the
same gel membrane.

2.7. Serum cytokine measurement

Twenty four hours after reperfusion, sera from wt, Nox1−/− and
Nox2−/− mice were collected. Flow cytometry was performed to as-
sess systemic concentration of IL-6, IL-10, IL-12p70, CCL2, TNF-α and
IFN-γ, using BDtm Cytometric Bead Array (CBA) Mouse Inflammation
Kit (BD Biosciences) as recommended by the supplier.

2.8. Statistical analysis

Statistical analysis was performedwith Sigmastat software. Data are
expressed as mean ± SEM. Paired groups were compared using either
t-test. Multiple groups were compared using one way ANOVA followed
by post-hoc Bonferroni t-tests. p values below 0.05 were considered
significant.

3. Results

3.1. Genetic deficiencies in Nox1, Nox2, and double Nox1/Nox2 but not in
Nox4 are associated with decreased myocardial reperfusion injury

To investigate the involvement of the ROS generating Nox enzymes
in myocardial ischemia–reperfusion physiopathology, we submitted
wild-type (wt), Nox1, Nox2, Nox1/Nox2 (double KO), and Nox4 defi-
cient C57Bl/6 mice to 30 min of ischemia followed by 24 h of reperfu-
sion. Severity of the ischemic insult was similar in the different NOX
knockoutmice aswell as controls, as shown by the comparable ratio be-
tween the area at risk (AAR) and total ventricle area (V) (Fig. 1A). In
Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
Nox1−/−, Nox2−/−, and double KO animals, we observed a signifi-
cant decrease in myocardial infarct size (I/AAR) compared to control
(wt) mice. However, no significant difference was observed between
Nox4deficientmice versuswt (Fig. 1B). Fig. 1C illustrates representative
examples of heart slices from wt, Nox1−/−, Nox2−/− (single and
double knockout), and Nox4−/−mice that have been used for quanti-
fication of the histological infarct size parameters. Considering previous
results from Hoffmeyer and co-workers showing that deletion of Ncf1
gene coding for the p47phox subunit did not influence myocardial re-
perfusion injury in vivo in mice [13], we repeated the ischemia/
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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reperfusion protocol using Ncf1 mutant mice (B10.Q background). No
difference in infarct size was observed in Ncf1 mutant compared to
wild-typemice, thereby confirming previous observations in our exper-
imental model (Supplementary Fig. 1).

3.2. The myocardial damage in chronic myocardial ischemia is not affected
by Nox1 or Nox2 deficiencies

In order to investigate whether the NOX1/NOX2-mediated protec-
tion occurred in the 30 min of ischemia or later during reperfusion, we
submitted the mice to 24 h of permanent occlusion of the left coronary
artery. The area at risk (AAR)was similar in themouse groups, indicating
that ligatures were reproducibly performed at the same level of the left
anterior coronary arteries (Fig. 2A). Infarct sizewas comparable between
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wild type control and Nox1 and Nox2 (single and double knockout)
deficient mice (Figs. 2B and C). As evidence of the permanent coronary
ligature and chronic ischemia, the heart slices showed more atrophic
ventricle walls as compared to the previous ischemia–reperfusion
model (Figs. 1C and 2C). Taken together, these results suggest that ROS
generated by Nox1 andNox2 during the reperfusion are critical determi-
nants of cardiac infarct injury. Note that additional control animals were
not included (in particular NOX4 KO animals) in order to conform to the
3R (Reduce, Refine, Replace) criteria.

3.3. The post-ischemic infiltration of neutrophils, but not macrophages is
decreased in Nox2 deficient mice

In order to investigate whether the deficiencies for Nox1 and Nox2
genes influence neutrophil and macrophage infiltration within the is-
chemic myocardium, we performed immunohistochemical stainings
of heart cryosections at 24 h of reperfusion with specific markers for
mouse neutrophils (Ly-6B.2+ cells) and macrophages (CD68+ cells).
Nox2−/− mice presented a significant decrease of neutrophil recruit-
ment within the post-ischemic myocardium when compared to con-
trols (Fig. 3A). On the other hand, although the count of infiltrating
neutrophils appeared decreased between Nox1−/− and wild type an-
imals (Fig. 3A), it did not reach statistical significance. In consecutive
cryosections, no difference in macrophage recruitment was observed
in Nox1−/− nor in Nox2−/− as compared to wt controls (Fig. 3B).
To evaluate the systemic inflammatory state of the different strains,
the serum levels of both anti- and pro-inflammatory cytokines and
chemokines were assessed at 24 h of reperfusion (Table 1). No signifi-
cant difference between the groups for all the molecules tested (IL-6,
-10, -12, CCL2, TNF-α, and IFN-γ) was shown.

3.4. Nox1−/− and Nox2−/− hearts are protected from ischemia/
reperfusion injury ex vivo (Langendorff model)

Finally, the effect of Nox1 andNox2genetic deficiencywas evaluated
in an ex vivomodel of ischemia/reperfusion injury. Since this protocol is
performed using excised buffer-perfused hearts in a system free of
blood, we were capable of evaluating the selective response of the car-
diac tissue in the absence of circulating inflammatory cells and mole-
cules. Mouse hearts were submitted to 30 min of ischemia by LAD
coronary occlusion followed by 2 h of reperfusion. AAR was similar for
all groups, proving similar ischemic insult in different groups (Fig. 4A).
Confirming in vivo results, both Nox1 and Nox2 single knockout mice
showed smaller infarct size than wt controls (Figs. 4B and C), indicating
that at least part of the protective effectmediated byNox1 andNox2de-
ficiencies during reperfusion was not due to post-ischemic inflamma-
tion, but it is rather intrinsic to the ischemic myocardium.

3.5. Myocardial ROS are differently influenced by Nox2 and Nox1 at 24 h of
reperfusion

In myocardial injury during reperfusion, ROS have been shown
as crucial mediators. We used different methods to compare relative
oxidative stress levels between Nox deficient mice and controls.
Hydroethidine (HE) is a hydrophobic compound able to cross cell mem-
branes. Inside cells, HE reacts with superoxide, hydrogen peroxide and
activity of heme-containing enzymes to form different products with
overlapping red fluorescence [23]. HE fluorescence is therefore not
specific for a single type of ROS, but represents an indicator of general ox-
idation state of a cell or tissue. 4-hydroxynonenal (4-HNE) is a marker of
lipid peroxidation and 3,5-dibromotyrosine (DiBrY) is formed by halo-
gen radicals generated by neutrophil activity. We first investigated the
basal release of ROS in myocardium of wt and Nox deficient mice and
did not observe any significant differences between the groups
(Supplementary Fig. 2). After 24 h of reperfusion, we also measured
these oxidative stress markers within sections of infarcted hearts from
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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NNox1−/−, Nox2−/− andwtmice. HEfluorescencewas significantly re-

duced in Nox2−/−, but not in Nox1−/− hearts as compared towt con-
trols (Fig. 5A). At the same reperfusion time point, no significant
difference in 4-HNE myocardial production was observed between the
mouse groups (Fig. 5B). Both Nox1 and Nox2 single knockout animals
347

348

349

350

351

352

353

354
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Table 1
Cytokine and chemokine serum levels after 30 min of ischemia and 24 h of reperfusion.

Cytokine Wt (pg/ml)
n = 4

Nox1−/− (pg/ml)
n = 9

Nox2−/− (pg/ml)
n = 5

ANOVA test

IL-6 63.84 ± 26.57 59.54 ± 9.43 76.99 ± 26.59 NS
IL-10 165.84 ± 59.75 192.6 ± 30.99 108.80 ± 36.59 NS
IL-12p70 39.19 ± 14.17 42.02 ± 7.84 28.23 ± 5.40 NS
CCL2 206.82 ± 39.17 169.32 ± 22.72 166.11 ± 5.04 NS
TNF-α 19.94 ± 1.19 20.98 ± 1.98 28.35 ± 9.63 NS
IFN-γ 39.19 ± 14.17 42.02 ± 7.84 28.23 ± 5.4 NS

Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
had a significant reduction in DiBrYmyocardial content when compared
to wt controls (Fig. 5C).

3.6. Nox1 and Nox2 deficiencies are associated with the activation of
different cardioprotective intracellular phosphorylation pathways

To identify the molecular mechanisms downstream of Nox1 and
Nox2 at an early stage (10 min) during reperfusion, we investigated
the potential concomitant activation of intracellular signaling pathways,
previously shown to salvage cardiomyocytes from ischemic injury [24].
To this end, the activation of Reperfusion Injury Salvage Kinase (RISK)
and Survivor Activating Factor Enhancement (SAFE) pathways was ex-
plored. At 10 min of reperfusion,Nox1 andNox2deficiencieswere asso-
ciated with an increase in extracellular signal-regulated kinase (ERK)
phosphorylation when compared with wt controls, suggesting that
ROS are inhibiting ERK phosphorylation at the early stage of reperfusion
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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(Figs. 6A andB). Phosphorylation of Akt is increased inNox1−/−hearts
(Fig. 6C) while, conversely, absence of Nox2 was associated with a sig-
nificant phosphorylation of Signal Transducers and Activators of Tran-
scription (STAT) 3 (Tyr-705) as compared to controls (Fig. 6D).
However, no differences of basal phosphorylation of either ERK1/2,
AKT or STAT3 were observed (Supplementary Fig. 3).

4. Discussion

Oxidative stress is a hallmark of myocardial ischemia/reperfusion
physiopathology as increased ROS generation occurs when oxygen sup-
ply is restored following an ischemic event. Although ROS are almost in-
variably detected during reperfusion, their exact role is unclear. Low
levels of oxidants can be cardioprotective in pre- and post-conditioning
therapies, while high levels of ROS are deleterious and lead to
cardiomyocyte death [3]. In addition, different types, localization and po-
tential sources of ROS may impact cardiac recovery during reperfusion.
Among potential sources of ROS, three Nox isoforms (Nox1, Nox2 and
Nox4) are expressed within the cardiac tissue [7]. Nox enzymes are
known to be involved in ischemia–reperfusion injury, but studies aiming
at understanding the exact role of each isoformhave often provided con-
tradictory results [6,25]. In this study, we addressed the role of each Nox
isoform in myocardial ischemia by applying identical protocols for
in vivo and ex vivo experiments using genetically-deficient mice for
Nox1 and Nox2 as well as Nox1/Nox2 double knockouts. In vivo infarct
size was also measured in Nox4 knockout and Ncf1 mutant mice.

The main result of this study is that mice deficient in Nox1, Nox2,
and Nox1/Nox2 presented a significant reduction in myocardial post-
infarction necrosis during reperfusion when compared to control wt
mice. No difference was measured in the reperfusion injury for Nox4
deficientmice. The deleterious effect of Nox1 and Nox2 derived ROS oc-
curs during the reperfusion phase rather than during ischemic phase,
because no in vivo protective effect was observed following 24 h of is-
chemia (i.e. without reperfusion). This finding is consistent with the
concept that oxygen supply during reperfusion provides substrate for
Nox-mediated ROS generation.
Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
E
D

Previous studies suggested a role of Nox2 in myocardial ischemia–
reperfusion, but, until recently there was only one study using geneti-
cally deficient mice in in vivo myocardial ischemia–reperfusion injury.
This study by Hoffmeyer and co-workers showed that Ncf1 deficiency
(the gene coding for p47phox, a subunit of Nox2) did not change infarct
size, nor left ventricular function compared to heterozygous controls
[13]. This finding suggested that Nox2 is not involved in myocardial is-
chemia–reperfusion because the p47phox subunit is crucial for the nor-
mal function of the NADPH oxidase. Mutations affecting both Ncf1 and
Nox2 similarly result in chronic granulomatous disease (CGD), which
is characterized by defective Nox2-dependent ROS generation in
phagocytes [26]. We confirmed Hoffmeyer's findings in another
mouse genetic background using the Ncf1 mutant mice. Such disparity
between Nox2 and Ncf1 deficient or Ncf1 mutant mice has been previ-
ously observed in other disease models, such as experimental inflam-
matory bowel disease and murine Listeria monocytogenes infection
[27,28]. This difference might be due to the fact that residual ROS are
generated in Ncf1 knock-out and mutant Ncf1 mice. Indeed CGD pa-
tients affected by mutations in the NCF1 gene generally present a less
severe phenotype than the X-linked form of the disease affecting
CYBB, the gene coding for Nox2 [29], although an independent role of
Ncf1 should not be excluded.

While writing this manuscript, Matsushima et al. published a
study showing a decrease in myocardial damage following
ischemia–reperfusion in both Nox2- and Nox4-deficient mice [30].
The Nox2-deficient mice were in the same background, thereby cor-
roborating our findings. For Nox4-deficient mice, the difference be-
tween Matsushima's findings and our study might come to the fact
that we used global Nox4 knock-out mice, compared to cardiac spe-
cific Nox4 knock-out mice. Interestingly, in contrast to the Nox1/
Nox2 knock-outs which are strongly protected from the ischemic in-
sult, myocardial injury was exacerbated in the Nox2/Nox4 double
knock-out [30]. Unlike Nox1 and Nox2, which require activation for
activity, Nox4 constitutively generates ROS [12]. The role of Nox4-
derived ROSmust be quite subtle as it can be protective in the vasculature
during ischemic or inflammatory stress or deleterious in other
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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experimental settings, such as brain ischemia–reperfusionmodel [31,32].
This potential cooperative activity between different sources of ROS high-
lights the complex role of Nox-derived ROS in the regulation of beneficial
or deleterious pathways in cardiac pathophysiology.

In terms of mechanism, we have shown that a large part of the ben-
eficial effects of Nox1 and Nox2 deletionswere intrinsic tomyocardium
because Nox1 and Nox2 deficient hearts were similarly protected in the
ex vivo Langendorff model, where hearts are perfused with Krebs solu-
tion (i.e. in the absence of circulating cells and molecules). Decreased
neutrophil infiltration and neutrophil-mediated tyrosine halogenation
(DibrY, a marker of neutrophil-mediated oxidative burst) in Nox1 and
Nox2 knockout mice may partially contribute to this protective effect.
However, difference in inflammation in the Nox1 and Nox2-deficient
mice is unlikely to account for the protective effect as there were no dif-
ferences in serum cytokine levels and infiltrated macrophage count in
the ischemic hearts. Recently, CRE-LOX NOX-deficient mice have been
generated for different Nox isoforms [33,34]. In vivo MIR cardiac-
specific deletion of different NOX isoforms is therefore possible. These
novel tools will help determine to which level post-ischemic
inflammation-mediated Nox-derived ROS contributes to MIR injury.

As of today technical tools allowing direct in vivo measurement of
Nox activity are stillmissing, thereforeweused several indirectmarkers
of oxidation of post-ischemic myocardium to quantify oxidant produc-
tion. Decreased DiBrY stainingwas observed in bothNox1 andNox2 de-
ficientmice. Since DiBrY is amarker of neutrophil oxidative activity, this
was consistentwith the decrease in neutrophil infiltration in Nox1−/−
and Nox2−/− hearts. However, only Nox2−/− animals showed a
Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
trend for decrease of 4-HNE staining (p = 0.0878) and a significant re-
duction in HE fluorescence (p = 0.033), which were both used as a
measure of global oxidation. This suggests that Nox2 generates larger
levels of ROS leading to directmyocardial damage, while ROS generated
by Nox1 may be either lower or more localized and regulate subtle in-
tracellular pathways. Unfortunately the above markers did not allow
us to evaluate the kinetics of ROS formation by Nox1 and Nox2. Novel
probed for in vivo ROS measurements are being developed [35], but
the use of available probes is so far limited by several factors: (i) lack
of knowledge of their pharmacokinetic/pharmacodynamic (PK/PD)
characteristics, (ii) oxidativemodifications outside the tissue of interest,
i.e. in the circulation, liver or kidney, and (iii) lack of knowledge of their
oxidation kinetics and ROS specificity.

The difference between ROS generated by Nox1 and Nox2 leads to
activation of different intracellular signaling pathways. Recently, Lecour
identified two different cardioprotective phosphorylation pathways
critical for the cardiomyocyte salvage from ischemia–reperfusion injury
[24]. The SAFE signaling pathway involves the phosphorylation of
STAT3 whereas the phosphorylation of ERK1/2 and Akt enhances the
RISK signaling pathway. ROS generated by Nox1 and Nox2 suppressed
phosphorylation of ERK1/2, but phosphorylation of Akt and STAT3 was
strikingly different. The SAFE pathway (phosphorylation of STAT3)
was only induced by Nox2 deletion, while Akt phosphorylation was en-
hanced only in Nox1 deficient mice. Further studies using specific Akt
and ERK inhibitors as well as studies on downstream targets of Akt
and ERK will be required to address the link between Nox and the sur-
vival pathway.
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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Thus, ROS-mediated cardiotoxicity is abolished by different
cardioprotective pathways in Nox1- and Nox2-deficient mice during
reperfusion.

5. Conclusion

In conclusion, ourfindings suggest that treatments targetingNox1 and
Nox2 inhibition during myocardial reperfusion procedures (such as
Please cite this article as: Braunersreuther V, et al, Role of NADPH oxidase
injury, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.0
angioplasty)may improve cardiomyocyte survival to oxidative injury. Ev-
idence of the benefit of pharmacological Nox inhibition during ischemia–
reperfusion injury is still sparse, however, in a search for novel Nox inhib-
itors, ebselen, a selenium compound previously known to protect from
oxidative damage in myocardial ischemia [36,37], was shown to be a po-
tent inhibitor of Nox1 and Nox2 [38]. As small molecule Nox inhibitory
drugs are emerging [39,40], one awaits this innovative approach to be
evaluated in myocardial reperfusion injury in the near future.
isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion
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Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.yjmcc.2013.09.007.
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