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Abstract—This paper presents an approach to extract biclus-
ters from expression microarray data using topic models – a
class of probabilistic models which allow to detect interpretable
groups of highly correlated genes and samples. Starting from
a topic model learned from the expression matrix, some auto-
matic rules to extract biclusters are presented, which overcome
the drawbacks of previous approaches. The methodology has
been positively tested with synthetic benchmarks, as well as
with a real experiment involving two different species of grape
plants (Vitis vinifera and Vitis riparia).
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I. INTRODUCTION

Pattern Recognition techniques have shown to be very
useful in the analysis of expression microarray data [1], for
example for classification and clustering. In the clustering
context, a recent trend is represented by the application
of biclustering methodologies, namely clustering techniques
able to simultaneously group genes and samples [2], [3].
Different approaches have been presented in the literature
in the past, each one characterized by different features,
like computational complexity, effectiveness, interpretability,
optimization criterion and others – for a review see [2], [3].

This paper approaches the expression microarray biclus-
tering problem with a particular class of statistical mod-
els, typically known as topic or latent models – e.g. the
Probabilistic Latent Semantic Analysis (PLSA – [4]). These
powerful approaches have been introduced in the text un-
derstanding community for unsupervised topic discovery in
a corpus of documents, and subsequently largely applied
in the computer vision community [5]. One of the main
characteristics of this class of approaches is represented by
their interpretability. Actually they can model a dataset in
terms of hidden topics (or processes), which can reflect
underlying and meaningful structures in the problem. In
the expression microarray context, such models have been
used for clustering [6] and for classification [7]. In the
context of the biclustering, only one quite recent paper [8]
applied topic models to microarray data. In particular, in
that paper the goal was to elucidate the cell type-specific
transcription factors, using genomic sequences as well as
expression profiles. Nevertheless, the method used there to
characterize biclusters, given the PLSA model, is rather
simplistic, having different drawbacks, like assigning the

same number of genes to every bicluster and not permitting
overlap towards samples (namely each sample may belong
to only one bicluster). In this paper we go one step forward
in this direction, proposing some simple but powerful rules
which permit to extract overlapped clusters with a reasonable
number of genes. When possible, automatic methods for
choosing the parameters have been proposed. The proposed
rules have been favorably compared with [8] using the
synthetic data and protocols described in [3]. Moreover, the
proposed approach has been tested on a real experiment,
involving two different species of grape plants (Vitis vinifera
and Vitis riparia). A qualitative validation, involving Gene
Ontology and a priori biological knowledge, confirms the
appropriateness of the proposed approach.

II. TOPIC MODELS

Topic models were introduced in the linguistic scenario,
in order to describe and model documents. The basic idea
underlying these methods is that each document is charac-
terized by the presence of one or more topics (e.g. sport,
finance, politics), which may induce the presence of some
particular words. From a probabilistic point of view, the
document may be seen as a mixture of topics, each one
providing a probability distribution over words. It is possible
to infer the set of topics that were responsible for generating
a collection of documents.

In the following we will briefly review the mathematics
of the topic model employed in this paper, namely PLSA.

In the PLSA [4] the input is a dataset of N documents
{di}, i = 1,..., N , each one containing a set of words.
Before applying PLSA, the dataset is summarized by a co-
occurrence matrix of size M×N , where the entry <wj , di>
indicates the number of occurrences of the word wj in the
document di, also called n(wj , di). Each document di has
ni words. The presence of a word wj in the document di

is mediated by a latent topic variable, z ∈ Z = {z1,..., zZ},
also called aspect class, i.e.,

P (wj , di) =
Z∑

k=1

P (wj |zk)P (zk|di)P (di). (1)

The hidden distributions of the model, P (w|z) and
P (z|d), are learnt using Expectation-Maximization (EM) –
for a deeper review of PLSA, see [4].
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III. THE PROPOSED APPROACH

An expression microarray experiment measures the ex-
pression level of a set of genes in a pool of biological
samples. As a result, an expression matrix is derived, where
each row represents the expression level of a gene among
all samples, and each column represents the expressions of
all genes for a particular sample.

Topic models may be very useful in the expression
microarray context, since they may provide powerful and
interpretable descriptions of experiments. In particular there
is an analogy between the pairs word-document and gene-
sample: actually it seems reasonable to intend the samples
as documents and the genes as words. In fact the expression
level of a gene in a sample may be easily interpreted as
the count of words in a document (the higher the number
the more present/expressed the word/gene is). In our case,
therefore, we can consider the expression matrix as the
count matrix < wj , di > of topic models, after a proper
normalization in order to have positive and integer values.

A. The relation topic/bicluster.

In our context, a topic may characterize a subset of
samples where the gene expressions are highly correlated.
This is exactly the concept of a bicluster: therefore it
is reasonable to assume that each topic characterizes a
particular bicluster, which may correspond to a particular
biological process. This representation is highly informative:
the probability P (w|z) may be interpreted as the impact of
the different genes in a particular biological process. On
the other side, P (z|d) may be used to infer the different
biological processes which are active over the different
samples. Moreover, the probabilistic nature of these models
permit to encode also the level of the impact: in biology, it
is known that not all genes involved in a biological process
have the same importance or the same impact on it; on the
other side, not all biological processes are involved in every
sample.

Even if this probabilistic membership of each gene/sample
to a particular bicluster may be really advantageous (leading
to the concept of soft biclusters), an automatic mechanism
able to explicitly list the components of a bicluster may be
useful as well, especially for validation purposes (to the best
of our knowledge, no biological validation tools deal with
probabilistic memberships).

B. From topics to hard biclusters.

In order to crisply define the content of a bicluster, in [8]
the authors assign each sample d to the topic z for which
the probability P (z|d) is maximum; then, for each bicluster,
genes are selected by retaining only a percentage of genes
sorted by descending probability P (w|z) (they assumed that
7% was a good percentage). Clearly this methodology is
rather simplistic, since it assumes that each sample can

belong to only one bicluster and that each bicluster is com-
posed by the same number of genes (independently from the
level of relevance of such genes). In this paper we investigate
some more sophisticated rules, which permit to have more
significant biclusters. These rules can be applied either to
extract documents or to extract genes, simultaneously or in
combination, starting from the PLSA distributions P (wj |z)
and P (z|di).

1) Max Rule.: In this case a gene wj (or the sample di)
is assigned to the bicluster showing the highest P (wj |z)
(or P (z|di)). This is the rule employed in [8] to assign
samples to the biclusters. Clearly, in this way, we have
an exhaustive assignment of genes and samples to the
biclusters: this may imply that also genes (or samples) which
are irrelevant – namely with a low P (w|z) (or P (z|w)) –
may be assigned to a bicluster. Secondly, this rule does not
manage overlapping biclusters: in other words genes and
samples can not belong to different biclusters, this being a
severe limitation in this biological context: assuming that a
bicluster (a topic) describes a particular biological process, it
is highly possible that the same gene participates to different
biological processes, with different roles; on the contrary,
the same biological process may be involved in different
samples.

2) Percentage Rule.: In this case, for each bicluster, only
the X% most probable elements are retained. This rule
permits overlapping biclusters, but assigns to each bicluster
the same number of genes (samples), possibly including also
genes or samples which are not relevant – namely with a low
P (w|z) (or P (z|w)). Another drawback of this method is
that a proper value X should be chosen. This is the rule
employed in [8] to assign genes to the biclusters – in that
paper X was set to 7.

3) Threshold Rule.: With this rule, only significant genes
(samples) are assigned to each bicluster, namely only those
genes (samples) whose probability P (w|z) (or P (z|d)) is
above a given threshold θ. This permits to obtain biclusters
which are overlapped, containing only significant genes and
samples. Of course the choice of θ is crucial, and depends
on the particular dataset under investigation. It can be set
on the basis of the biological a priori knowledge, or it
may be estimated from the data. Here we tested a series
of reasonable choices, based on the mean (or the median)
of the probabilities P (w|z) (or P (z|d)). In particular, we
investigated the effectiveness of θ equal to the mean, the
mean plus the standard deviation, mean plus twice the stan-
dard deviation, together with their robust estimates (namely
median, median plus 5/3 of median absolute deviation
(mad), median plus 10/3 of mad) [9].

4) GMM rule.: This rule derives from the observation
that in an ideal case the pdf of the P (w|z) (or P (z|d)) values
should assume a bimodal behavior, with one mode for not
important elements and one for the active ones. Following
this intuition, in this rule we used Gaussian Mixtures (with
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2 Gaussians) to automatically model the probability P (w|z)
(or P (z|d)), using the posterior probability to classify each
gene (sample), retaining as relevant only the elements as-
signed to the “relevant” mode.

IV. EXPERIMENTS

The methodology proposed in this paper has been tested
on synthetic and real datasets, as detailed in the following.

A. Synthetic evaluation.

We tested all different rules in a synthetic benchmark
([3]), which includes synthetic expression matrices, per-
turbed with different levels of noise and different levels of
overlap1. In the former case, the expression matrix has been
perturbed with gaussian noise, for an increasing variance. In
the latter case, the biclusters are overlapped, with different
degrees of overlap. The accuracy of the biclustering has
been assessed with the so-called Gene Match Score [3],
which reflects the similarity of the biclusters obtained by
an algorithm and the original known biclustering (it varies
between 0 and 1 – the higher the better the accuracy) – for
all details on the datasets and the evaluation protocol please
refer to [3].

For each expression matrix, PLSA training was repeated
30 times (and results averaged), the number of topics was
set to the number of biclusters (which is known). Since
the Gene Match Score considers the accuracy only in one
direction, here we performed the evaluation varying the rules
used to extract the genes. Obtained results are shown in
Fig. 1. In particular, all the four rules have been applied.
For the threshold rule, the best automatic way to choose
the threshold was the mean + standard deviation approach,
which is reported in the plot. It is evident that the proposed
rules are robust with respect to noise and significantly
outperform the rule proposed in [8] (which is the Percentage
Rule). Concerning the overlap, Max and Percentage rules
are not robust (by definition) to the overlap, thus resulting
in poor performances. Obtained results are also competitive
to the results presented in [3] (not reported here due to lack
of space).

B. Real evaluation.

The proposed approach has been tested with a real dataset,
including 52 samples (and 24676 genes) of microarray
expressions of leaves and berries of two grape plants (Vitis
vinifera and Vitis riparia), subjected to pathogen infiltration
at different time steps2. PLSA was trained starting from
the expression matrix (properly scaled and normalized); the
number of topics, given the known a priori knowledge, was
set to 10. We used the Threshold Rule (θ = mean + std), for
both the genes and the samples.

1All datasets may be downloaded from: www.tik.ee.ethz.ch/sop/bimax.
2The full description of the dataset is in a publication currently under

review. In case, more details will be given in the camera ready version.

Figure 1. Results on the synthetic dataset: (left) varying noise level; (right)
varying overlapping ratio.

In a real case the validation may not be absolute, and
should be carried out by employing a priori information
on the dataset and on the application scenario. Concerning
the samples, instead of listing the obtained biclusters, we
report in figure 2 the more intuitive and interpretable P (z|d),
from which the samples may be assigned to the biclusters.
Studying the composition of the dataset, we observed that

Figure 2. P (z|d) for the real experiment.

it is rather accurately reflected in the probability matrix.
In particular, the 52th sample derives from a RNA pool
of berries at different growth stages, without any pathogen
infiltration, thus representing a single class. This is evidently
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captured by the first bicluster (topic), in which the 52th
sample is the only one very active – i.e. whose P (z|d) is very
high. The samples 48-51 represent another class, containing
three technical repetitions derived from a berry of Vitis
vinifera: this class may be clearly found in the third bicluster.
The samples 1-48 represent a more complex class, related
to leaves of two particular grape’s plants: Vitis vinifera and
Vitis riparia, subjected to pathogen infiltration at different
time steps. This part has been chosen because it contains
different overlapped sub classes: actually the samples can be
divided on the basis of the type of grape plant, of the time
of development, and of the type of infiltration. In particular,
using the first two criteria, the classes are 1-12, 13-24, 25-36
and 26-48. This is clearly reflected in the biclusters (topics)
2, 4, 10 and 5. If we choose another criterion – like the
first and the third – we may have other groups, visible for
example in the bicluster 6. From these observations it seems
that the PLSA is able to characterize the different groups in
the datasets; moreover it is evident the need of rules able
to manage also overlaps (contrarily to the one proposed in
[8]).

An evaluation of the genes extracted from our approach
has been carried out. In particular, we determined the over-
represented Gene Ontology [10] terms in the biclusters
using the GOstat tool3, looking for correlation of terms
to processes which are known in the specific context. For
example, in the 6th bicluster, we have found terms which
are related to primary metabolism, response to stimulus and
response to stress. Induction of genes belonging to these
classes as an effect of pathogen infiltration is in line with
the biological knowledge of the mechanisms which regulate
the interaction between plants and pathogens, which may
lead to a re-programming of the primary metabolism needed
to sustain, from an energetic point of view, the organism’s
response to the pathogen. Even if a further quantitative
validation is needed (and currently under investigation), the
obtained preliminary findings suggest the suitability of the
proposed approach to discover biological information in
microarray data.

V. CONCLUSIONS

In this paper we presented an approach to extract biclus-
ters from expression microarray data using PLSA. Some au-
tomatic rules to extract biclusters from PLSA are presented,
which overcome the drawbacks of previous approaches.
The methodology has been positively tested with synthetic
benchmarks, as well as with a real experiment.
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