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Abstract—This paper proposes and studies an autonomous
hibernation technique and optimal hibernation policies aimed
at minimizing the power consumption, while allowing stateful
processing in constrained embedded systems with long-lasting
lifetime requirements. To this purpose the paper models the
energy contributions for hibernating the system—by saving
the memory status on an external non-volatile memory and
completely powering off the system—rather than maintaining the
system in a sleep mode with memory retention—with problems
of static leakage power—between two consecutive bursts of
processing. Thanks to a simplified yet formal notion of system
state, the paper rigorously determines the optimal conditions
for deciding whether to hibernate or not the system during idle
periods. Hibernation policies have been implemented as a module
of the operating system and results demonstrate energy savings
up to 50% compared to trivial hibernation approaches. Moreover,
the hibernation policy proved to be robust and stable with respect
to changes of the application parameters.

I. INTRODUCTION

In many applicative scenarios that require embedded de-

vices with long-lasting lifetime, typical of monitoring or self-

learning/adaptive systems, the need for low or ultra-low power

consumption is an intrinsic requirement. Tasks performed by

such systems are often periodic or event-driven with a certain

occurrence probability. This implies that the typical operation

profile is an alternation between cycles of computation/sensing

activities interleaved with relatively long sleeping or inactive

periods. Considering this behavior, static leakage power, which

critically affects new generation microcontrollers as the inte-

gration pushes towards deep nanometers scale, often represents

a non negligible contribution to the overall energy consump-

tion during sleeping periods. This often leads to favor ultra-low

power and extremely resource-constrained microcontrollers to

more flexible and powerful new generation architectures. The

key idea is to investigate a trade-off between energy efficiency,

on one hand, and flexibility, maintainability and extensibility,

on the other. Ultra-low power devices are, in fact, often too

constrained in terms of memory and computational resources,

require tiny operating systems, non-standard programming

languages, lack effective dynamic reprogramming mechanisms

and do not support process-based OS architectures. Resorting

to high-end or mid-range microcontrollers partly reduces most

of these limitations, at the cost of a significant power consump-

tion, even in idle and sleeping periods. The most effective

way to avoid this effect is to switch the microcontroller off

during idle periods and to resume the system immediately

before active cycles, at the cost of losing the memory status

of the running processes and tasks. To avoid this effect, the

system should be hibernated, by saving the memory image

on external non-volatile memories and recreate the status as

the system resumes. This entails that the selection of non-

volatile external memories must account for both electrical

characteristics (read/write energies) and functional limitations

(number of writing cycles), because of the potentially high

number of swap-out/swap-in operations needed throughout the

lifetime of the system. New-breed magnetoresisteve (MRAM),

ferroelectric (FeRAM) or phase-changing RAM offer a good

solution to both problems thanks to their unlimited number of

write cycles and their limited energy consumption. Based on

such considerations, we proposed [1] a powerful and energy-

efficient hardware platform and operating system for Wireless

Sensor Networks (WSN), capable of overtaking some of the

highlighted limitations.

Due to the timing and energy overheads required to swap-

out the system status, shut-down the operating system and

resume it, the optimal choice whether to hibernate the system

or put it into sleeping mode—with memory retention—is a

very harsh problem, though simpler suboptimal policies exist.

The decision, in fact, depends on a broad range of factors, such

as the number of active processes, their periods and their sizes

in RAM1, the specific energy levels of the microcontroller

and the electrical characteristics of the external memory. The

hibernation policy itself, moreover, should be autonomous, ef-

fective, dynamic, robust, computationally efficient and reliable.

This paper presents the main theoretical achievements con-

cerning the definition of the hibernation policy and the ex-

perimental results obtained by stressing the model properties

as well as by assessing the performance of its actual imple-

mentation. Though the proposed approach is general enough

to be adopted in a broad class of embedded systems, we

considered for the proof of concept a WSN node since it

represents a typical class of resource-constrained devices with

long lifetime requirements. The paper is organized as follows:

Section II presents an overview on the related work; Section

IV describes the hibernation architecture; Section V details the

formal model and the hibernation policy, whose properties and

effectiveness are discussed and proved in Section VI.

1Note that the .text section of processes is stored in the main Flash
of the micrconotroller, since it does not changes during the execution. The
.data and .bss sections, as well as the stack and the heap of each process
are instead stored in RAM and need to be saved on an external non-volatile
memory during an hibernation period without main memory retention.
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II. RELATED WORK

A widely explored power management technique in con-

strained embedded systems—and Wireless Sensor Networks

in particular—is duty cycling. According to Anastasi et al. [2],

duty-cycling can be classified in Topology Control and Power

Management techniques, the latter in turn divided in two main

branches: low duty-cycle MAC protocols and sleep/wakeup

protocols. We will focus on the last class of approaches, as

they try to achieve objectives which can be considered akin

to those of the present paper. This class of models can be

divided in three schemes, namely on-demand (e.g. [3], [4]),

asynchronous (e.g. [5]) and scheduled rendezvous (e.g. [6],

[7], [8]). Our approach shows some similarities with the last

scheme as far as the operating profile is concerned.

Beyond classical duty cycling problems, which in general

consider alternation between wake and sleep cycles with main

memory retention2, there is another critical factor that must be

taken into consideration. As microcontroller technology steps

down to deep nanometer scale, the increasing value of leak-

age current in non-active states poses important challenges,

especially in presence of long lifetime requirements.

The problem of managing the power consumption of de-

vices through dedicated software layers has already collected

more than a decade of history, since the first appearance of

works expressly dedicated to the topic [9], [10], [11]. By

the time, the research on power management has taken two

main directions: one broad vein related to dynamic power

management and another, less explored, concerning static

leakage power. In the first class of problems fall most of

the works on dynamic voltage and frequency scaling, as well

as clock-gating techniques. These approaches, however, target

dynamic power reduction, which is a topic complementary

but orthogonal to that of the present paper.Static leakage

power, unfortunately, has lately become an hard problem to

the same extent. While significant research effort has been

initially directed to dynamically power-off idling components,

such as unused cache blocks [12], [13], [14], the specific

interest on microcontrollers seems to have been quite upstaged.

Considering the main memory and in particular the SRAM,

it should be noted that the average leakage power can be

up to ten times higher than other parts of logic inside a

microcontroller, simply considering the transistors count. To

mitigate this problem, memory standby-mode scheduling ap-

proaches have been proposed [15][16], accounting also for the

scratchpad mapping of most frequently used code. More often,

however, in embedded scenarios that need long operational

lifetime the problem of static leakage power in sleeping states

with memory retention has been simply escaped by resorting

to less-consuming, ultra-low power and loose nanometer-scale

microcontrollers, often extremely resource constrained. This

lead to an harsh trade-off between energy efficiency and purely

functional parameters like programming flexibility, usability

and interoperability. To the best of our knowledge, though

2Otherwise accepting the risk of loosing the memory status of the applica-
tion that only accounts for very simple applicative scenarios.

some contribution exist concerning hibernation for general

purpose computing machines and servers, no literature exists

that tackles this specific issue for high-end microcontroller

based embedded systems.

III. OPERATING MODEL

In this section the operating model of the targeted system

is described to clarify the role of the hibernation mechanism.

We can logically distinguish two phases: data processing and

data sensing.

In particular, data processing consists of analyzing a given

set of sampled data (and possibly transmit a result), once a

given number of samples have been collected or when a certain

threshold of the monitored parameter is reached. Operations

of data sensing, on the other hand, entail sampling a certain

sensor with an opportune frequency and push the measurement

into a queue that will be analyzed during the next processing

phase. Reading a sensor and adding the retrieved measurement

to a queue are simple operations, such that maintaining the

system in full active mode during this phase is indeed a waste

of energy. So a possible solution is to hibernate the system

once no more processes are performing data processing.

During the hibernation period, some data sensing operations

may be required with a fine-grained timing: in this case, the

system may be resumed in a low power mode and with a

lower clock frequency, just to perform sensor readings and

put the measurement in the associated queue. This operation

is very fast (typically less than one millisecond) and does

not require the boot of the entire operating system, neither to

resume the process in charge of analyzing the entire set of data.

Sensing operations are performed by a special module, called

smart sensing, which, together with the hibernation manager,

composes the power management infrastructure of the system.

Though the smart sensing module is not object of this work

(see [1] for details), we briefly introduce its two-phase model:

• Pre-boot phase. A smart sensing pre-boot function (em-

bedded in the RTC interrupt service routine) determines

whether the systems should be awakened in full active

mode or in smart sensing. In this latter case, it reads

the required sensor and pushes the measurement into the

queue associated to the requiring process, then set the

RTC to the next resume time and shuts down the system

again.

• Run-time phase. A smart sensing daemon, implemented

as kernel thread, runs in background while the system

is in full active mode and determines if a measurement

should be retrieved from the sensor on behalf of some

processes.

Figure 1 shows the typical operating model of the proposed

system. During the full active mode (Ton), the microcontroller

is clocked at its maximum frequency, the main memory is

powered-on and contains the images of the running process

As said, during the full active periods, the active processes

perform analyses, calculation and, possibly, transmission on

the local data collected from sensing operations. Once all the

processes have finished their calculation, the hibernation policy
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Fig. 1. Typical system operation

determine whether the system can undergo hibernation and

whether it is convenient or not. To hibernate the system the

process images are saved on the external non-volatile memory3

the RTC is set to the next resume time and the system is

switched off completely. The entire hibernation mechanism,

as well as the policy, is indeed very articulated and is detailed

in the next sections. During the hibernation period (Toff ) the

system is powered off and resumed in a low power mode

by the smart sensing pre-boot function for the time strictly

necessary for sampling and storing the measurement (Tss).

Since different processes may require samplings at different

frequencies, potentially slightly unaligned, a system of de-

ferrable timers has been implemented to group the sensing

periods of different processes at a common frequency, with a

given tolerance. In such a way, it is possible to resume the

system in smart sensing mode and perform sensing on behalf

of different processes together. This improves the energy

efficiency of the system, since the number of times that system

is resumed for smart sensing is significantly reduced.

Assuming that smart sensing aggregation has already been

performed, the power consumption of sensing operations can

simply be modeled by an average power Pss. Referring to

Figure 1, the energy for sensing in the time interval between

the two processing phases is thus given by Pss · Toff .

As anticipated, hibernation requires two different decision:

when it is possible to hibernate and whether it is convenient or

not. The next session presents the scheme to answer the former

question, whereas the model and the policy in Section V

support the latter decision.

IV. HIBERNATION SCHEME

In this work we will refer to processes as generic instances

of a running program, regardless of their actual implementa-

tion, that can be either a complete process, a task, a thread,

and so on. To avoid considering trivial operation of the system,

we will concentrate on periodic processes or asynchronous

ones, which wait for events that occur with a certain statistical

distribution. In case of non periodic processes, in fact, once

all of them have completed their execution, the system can

be switched off, since it accomplished to its goal. If, on

the other hand, even a single process remains perpetually

running, the system should remain active and can never be

hibernated. Before going into the details of the the hibernation

scheme, described by the state diagram of Figure 2, it is worth

noting that to achieve maximum effectiveness and flexibility,

the swap-in/swap-out mechanisms should allow operating on

3To allow an unlimited number of writings an MRAM has been used in
the prototype.
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Fig. 2. Hibernation State Diagram

the status of single processes, process groups or the entire

application.

In the FSM diagram the following conventions have been

adopted. State R(Q) represents the condition in which all

processes Q are running or ready; state RB(Q) indicates that

some processes are running or ready and some are blocked,

e.g. because in the idle period or because waiting for a

(periodic) event; state B(Q) indicates that all the processes

are blocked; state sleep is reached once all processes are

blocked and the system is put into low-power mode, but with

the main memory still powered; state hibernate indicates the

condition in which the microcontroller is completely powered-

off. Finally, the state (re)boot indicates either the first boot

or the system reboot after hibernation. We assume that the

entire hibernation process is managed through two demons: an

hibernation daemon and a resume daemon. The Hibernation
daemon keeps track of the status of all the processes and once

all are in a blocked state, takes the decision whether to either

hibernate or entering sleep mode, according to the hibernation

policy. The hibernation daemon, moreover, saves the process

descriptors in a fixed area of the non-volatile memory, and

finally, when hibernating, swaps-out the memory images of

the processes on the external memory. The Resume daemon,

activated by an external real-time clock, swaps-in from the

external non-volatile memory to the main internal memory

the images of the processes that must be run and recreate

their execution contexts in the operating systems. Note that the

status of the operating system does not necessarily need to be

saved, as it can be reconstructed from descriptors and images.

These two daemons behaves according to the following formal

state transition rules:

t1 : qr ∧ |B| = 1 t6 : qb ∧ |R| > 1
t2 : qr ∧ |B| > 1 t7 : Policy → Hibernate
t3 : qr t8 : Policy → Sleep
t4 : qb ∧ |R| = 1 t9 : RTC →Wakeup
t5 : (qb ∧ |R| > 1) ∨ (qr ∧ |B| > 1)

where the event qr indicates that a process q becomes ready or

running, while qb indicates that it assumes a blocked status.

The set R and B represent the lists of running (or ready)

and blocked processes, respectively, used by the daemons to

keep track of the execution status. The notations |R| and

|B| represent the cardinality of these lists immediately before

an event qr of qb occurs. Note that an event qr increments
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Fig. 3. Memory status in two subsequent processing phases: Hibernation

|R| by one and decrements |B| by one, while the event qb
has the opposite effect. As it can be noted, the described

mechanism abstracts from a specific implementation and pro-

poses a general guideline for implementing hibernation for

embedded systems suffering from non-negligible static leakage

power. According to this theoretical scheme, we actually

implemented an hibernation mechanism in our system, based

on the hardware/software architecture presented in [1].

V. MODEL

The model described in the following has the goal to define

the optimal decision whether to hibernate the system or not

whenever all processes are blocked. Such a decision depends

on the difference between the energy consumed for hibernation

and the energy necessary to maintain the microcontroller in

a sleep state –with memory retention– during the interval

between two subsequent processing phases. This, in turns, de-

pends on which processes are active at the present time tk and

which will need to be executed at the next processing phase.

Let Q = [q1 q2 . . . qp] be the ordered set of all processes

composing the application and W = [w1 w2 . . . wp] be the

size of their images in RAM, expressed in bytes. Furthermore,

let tk denote the current time and tk+1 be the time of the next

processing phase. The status of the main memory at tk and

tk+1 is depicted in Figures 3 and 4. These figures show that

the application consists of 5 processes q1, . . . , q5 and that at

time tk processes q2, q4 and q5 are active (i.e. loaded in main

memory) while q1 and q3 are not. The figures also show that

a portion of the memory is permanently unused.

When hibernating (Figure 3) all the processes active at tk
must be swapped-out and all those active at tk+1 need to be

swapped-in. This is necessary to guarantee that the processes’

status is maintained over time.

When the system is not hibernated between tk and tk+1

(Figure 3) it is only necessary to swap-in new processes, that

is q1 in the example. Note that even though process q4 does

not need to be in memory at time tk+1, it is not necessary to

swap it out immediately after tk, but rather its swap-out can

be deferred until a decision to hibernate will actually be taken

at some subsequent time.

With respect to the timing behavior of processes, three

situations are possible: periodic, aperiodic and asynchronous.

tk tk+1

q1

q2

q3

q4

q5

unused

unused

swap-in

Sleep (with memory retention)

Fig. 4. Memory status in two subsequent processing phases: sleep

• Periodic processes. The timing behavior of the processes

is completely described by the vector Π = [π1 π2 . . . πp]
of their periods. This is the optimal case, since the timing

of all processes is completely known in advance.

• Aperiodic deterministic processes. Each process has a

deterministic behavior but the times of its next wake-

ups are determined by the process itself, i.e. the process

reschedules itself just before suspending. At a given

moment, thus, only a few next wake-up times4 are known

for each process, limiting the observability of the system

to a finite time period.

• Asynchronous processes. The wake-up time of a process

is determined by some external, unpredictable event. In

the best case, a distribution of their periods may be

know. Such processes can only be treated resorting to

a stochastic model, not treated in the following5.

In the following we will concentrate on periodic and aperiodic

processes, that is those processes whose timing behavior can

be determined in advance. Asynchronous processes, on the

other hand, are not considered here6.

Assuming that processes are either periodic or deterministic

aperiodic, at a given time tk it is possible to determine both

the next wake-up time and which processes will be active at

that time. We define the state of the system at time tk as a

boolean vector:

Sk = [sk,1 sk,1 . . . sk,p] (1)

where sk,j = 0 if process qj is currently swapped-out onto the

external non-volatile memory, while sk,j = 1 if the process is

residing in RAM. The evolution of the system over time can

thus be modeled as a sequence of pairs

(t0, S0), (t1, S1), . . . , (tk, Sk), . . . (2)

4Exactly only one, in the worst case.
5It has been proved by the authors that the formal model for stochastic

processes cannot be solved in closed form as it becomes combinatorial in the
number of such processes. The main reason is that no closed-form expression
can be found to express the next wake-up time tk+1 and, consequently, the
next state. The complete proof is omitted here for the sake of conciseness.

6If the number of executions of asynchronous process is small compared
to that of periodic and aperiodic ones, their effect can be shown to produce
small “perturbations” with respect to the ideal behavior. Furthermore such
perturbation will affect the decision to be taken only for the time interval
[tk, tk+1] in which they fall.
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TABLE I
ENERGY CONTRIBUTION FOR PROCESS TRANSITIONS

Sk,j → Sk+1,j EH ES

0 → 0 0 0
0 → 1 EiWj EiWj

1 → 0 EoWj 0
1 → 1 (Eo + Ei)Wj 0

indicating the current absolute time and the state of all

processes. Considering the example of Figures 3 and 4, the

two states are represented as:

(tk, [01011]), (tk+1, [11001]) (3)

For a periodic system the evolution is know for the entire

future, while for a system with periodic and aperiodic pro-

cesses it is know only until the latest known wake-up time of

the aperiodic processes.

A. Local formulation

The first formulation of the model is based on the assump-

tion that to decide whether to hibernate the system or not

between tk and tk+1 it is sufficient observing only the states

Sk and Sk+1. The system should be hibernated between tk and

tk+1 if and only if the energy EH required for hibernation and

wake-up is less than the energy ES for maintaining the system

in sleep mode in this time interval, that is when EH < ES .

The first step consists of expressing EH and ES as a function

of the present and next states Sk and Sk+1, of the process sizes

W , of the time interval (tk; tk+1), the energies Ei and Eo to

swap a single byte in and out, respectively, the average smart

sensing power Pss, and the power consumption of the system

in sleep mode PS . Furthermore, the energy EOS to shut-down

and to boot the operating system must also be accounted for,

in the case of hibernation.

Table I summarizes the energy contributions associated to

the possible state transitions for a single process qj . Further-

more, we must also note that the energy (tk+1 − tk)Pss for

smart sensing is the same when the system is hibernated and

when it is in sleep mode. In both cases, in fact, the system must

perform the same operations. Affecting both EH and ES , this

contribution can be omitted. Finally, we note that the energy

for maintaining the system in sleep mode is (tk+1 − tk)PS .

Combining these contribution with process states, the energy

required to hibernate and wake-up the system is:

EH = (Sk ·Wj)Eo + (Sk+1 ·Wj)Ei + EOS (4)

where the scalar products Sk · Wj and Sk+1 · Wj evaluate

to the total size of the process images at times tk and tk+1,

respectively. To simplify the notation, we define the norm of

a state Sk as:
||Sk|| = Sk ·W (5)

where the sizes’ vector W is left implicit. Using this definition,

Equation (4) becomes:

EH = ||Sk||Eo + ||Sk+1||Ei + EOS (6)

Defining as τk = tk+1 − tk the time interval between the

present and the next state, the energy for maintaining the

system in sleep mode is:

ES = ( ||Sk+1|| − ||Sk ∧ Sk+1|| )Ei + τkPS (7)

where the difference of the norm expresses the total size of the

processes that are not present in Sk but only in Sk+1: these

are, in fact, the processes that need to be swapped-in.

Hibernation is convenient if EH < ES , that is when ΔE =
EH − ES < 0. Combining Equations (6) and (7) yields:

ΔE = ||Sk||Eo + ||Sk ∧ Sk+1||Ei + EOS − τkPS (8)

and solving ΔE < 0 for τk, yields the condition:

Cl : τk >
||Sk||Eo + ||Sk ∧ Sk+1||Ei + EOS

PS
(9)

This last inequality determines the minimum time interval after

which it is convenient to put the system into hibernation. We

refer to this as local condition and indicate it with Cl.
It must be noted, though, that the time interval τk must

also be longer than the time to write and read the non-volatile

memory for swap-out/swap-in operations:

TSWAP = ||Sk||TB + ||Sk+1||TB (10)

where TB is the time for reading or writing a single byte on

the non-volatile memory7, plus the time TSO to shut-down

and reboot the operating system. This condition can be thus

expressed as:
τk > TSWAP + TSO (11)

To avoid considering this last constraint, Equation (9), which

expresses the minimum time that makes hibernation conve-

nient, must imply Equation (11), i.e.:

||Sk||Eo + ||Sk ∧ Sk+1||Ei + EOS

PS
> TSWAP + TSO (12)

Equation (12) can be split in four contribution and rewritten

as T1 + T2 − T3 + T4 > 0 where:

T1 = ||Sk||
(
Eo

PS
− TB

)
=
||Sk||
PS

(PW + PA − PS)TB

T2 =
||Sk ∧ Sk+1||Ei

PS

T3 = ||Sk+1||TB

T4 =
EOS

PS
− TSO =

(PA − PS)TSO

PS

(13)

and PW represents the power of write operations consumed

by the memory and PA is the microcontroller power in

active state. Observing the expression of the different times in

Equation (13) it is possible to determine a worst-case boundary

condition on the maximum amount of memory swappable.

Since for all microcontrollers is always true that PA > PS ,

the term T1 is always positive and as a worst-case we set

T1 = 0. The term T2 can never be negative and can become

zero when states Sk and Sk+1 have an empty intersection.

7For magneto-resistive memories read/write operations require the same
time. A more general formulation can be easily derived for asymmetric times.
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Again, to consider the worst-case, we set T2 = 0. Under these

assumptions the initial inequality becomes T3 < T4, that is:

||Sk+1|| < (PA − PS)TSO

PSTB
(14)

This inequality poses an upper bound on the swappable

memory, exceeding which Equation (11) must be considered

explicitly in the model. In Section VI we will show that

this constraint is generally satisfied for micrcontrollers and

operating systems adopted in the embedded system domain.

B. Global formulation

The model derived so far limits the observation to the

next state Sk+1. It may happen, though, that the state Sk+1

and Sk+2 are close enough in time to be convenient not to

hibernate, between tk+1 and tk+2. In this case, the new state at

tk+1 is given by Sk+1∨Sk+2. In fact, if the system is sleeping

between tk+1 and tk+2, then the processes to be swapped-in

at tk+2 can also be swapped-in at tk+1, without changing the

behavior of the system. Assuming that for the next n states

Sk+1, . . . , Sk+n the system will not hibernate, the processes

that must be swapped-in at each of the n future states may,

in theory, be swapped-in altogether at tk+1.This is only true,

as said, in theory. In practice, without affecting the form of

the model, processes will be swapped in only when actually

needed. To express this general condition for hibernation based

on the observation of the n states Sk+1, . . . , Sk+n we define:

S
(n)
k+1 = Sk+1 ∨ Sk+2 ∨ . . . ∨ Sk+n (15)

and note that for n = 1 we obtain the expression S
(1)
k+1 =

Sk+1 appearing in Equation (9). By extending the concept of

next state from Sk+1 to the transitive closure S
(n)
k+1 of the OR

operation over the next n states, Equations (6) and (7) become:

EH = ||Sk||Eo + ||S(n)
k+1||Ei + (tk+n − tk+1)PS + EOS (16)

ES = ( ||S(n)
k+1|| − ||Sk ∧ S

(n)
k+1|| )Ei + (tk+n − tk)PS (17)

Also the global formulation entails that hibernation is conve-

nient if and only if EH < ES . Noting that (tk+n − tk) =
(tk+n − tk+1) + (tk+1 − tk) the equation for ΔE becomes:

ΔE = ||Sk||Eo + ||Sk ∧ S
(n)
k+1||Ei + EOS − τkPS (18)

and thus the global condition Cn for hibernation is:

Cn : τk > f(n) =
||Sk||Eo + ||Sk ∧ S

(n)
k+1||Ei + EOS

PS
(19)

which guarantees that hibernating is convenient in the time

interval between tk and tk+1.

C. Model analysis

The global condition τk > f(n) states that the correct

choice between hibernation and sleep, in the time period

between tk and tk+1, requires observing the next n states. The

actual value of n is, however, unknown. Studying the function

f(n) we observe that it admits an absolute maximum and a

theoretical lower bound. The transitive closure S
(n)
k appearing

in f(n) is monotonic, since the boolean OR operator can only

add new ones to the vector. This implies that:

max
n
||Sk ∧ S

(n)
k+1|| = ||Sk|| (20)

and this occurs as soon as S
(n)
k+1 ⊇ Sk. This is guaranteed to

happen for periodic processes, while it is only an upper bound

in the case of aperiodic processes. Let denote with tk+nM
the

time at which f(n) reaches its maximum f(nM ) = fM . Since,

thus, fM is an absolute maximum, if τk > fM , that is when:

CM : τk >
||Sk||(Eo + Ei) + EOS

PS
(21)

then the decision to hibernate is guaranteed to be optimal. We

refer to this inequality as global maximum condition, or CM .

As anticipated, the function f(n) also admits a lower bound

fL when Sk ∧ S
(n)
k+1 = ∅. Thus, when τk < fL, that is when:

CL : τk <
||Sk||Eo + EOS

PS
(22)

the decision not to hibernate is guaranteed to be optimal. We

will refer to this inequality as global minimum condition, or

CL. It is fundamental to note that the two conditions CM and

CL are only sufficient but not necessary.

In the general case, that is with a specific look-ahead of

n states, the value of f(n) will necessarily fall between fM
and fL. As anticipated, the specific value of n to be used

for a particular combination of processes, energies, sizes and

for each specific state cannot be determined in general, as it

requires an exhaustive analysis of the system evolution, which,

moreover, is only possible for periodic processes. We thus

introduce the parametric threshold fα defined as:

fα = fL + α(fM − fL) (23)

with 0 ≤ α ≤ 1. This leads to the new, general, condition:

Cα : τk > fα (24)

where α is to be determined experimentally in order to

minimize the energy consumed by the system.

VI. RESULTS

To evaluate the proposed model, we performed several

experiments aimed both at assessing its efficiency, robustness

and reliability on one hand, and the energy saving obtained

in adopting the hibernation policy on the other. The intrinsic

properties of the model have been verified through an inte-

grated simulation flow developed to replicate the evolution of

a real system and to stress its operating parameters in order

to get information about the hibernation policy performance.

A highly optimized simulation flow has been implemented in

C++ to meet the severe computational requirements of the

stress tests and stability analysis on a wider spectrum of tests.

The impact on energy efficiency have been mainly mea-

sured by testing the policy on a real embedded platform,

that we recently proposed in [1] and developed to support

hibernation. This platform—originally conceived for wireless

sensor networks—is based on the STM32F2 microcontroller,
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Fig. 5. Optimal versus sub-optimal policies energy gains

the external MR25H10 magnetoresistive RAM and the ul-

tra low-power nRF24L01+ transceiver. The software infras-

tructure is based on the Miosix operating system, enabling

standard C/C++ programming and libraries, process execution

and support for process isolation through memory protection.

The operating system has been provided with an hibernation

mechanism, according to the architecture presented in Section

IV. Most of the experiments reported in the following refer

to the implementation based on the abovementioned compo-

nents, while others have been performed by perturbing the

ratio Eactive/Psleep, the most significant parameter affect-

ing hibernation choices8. In the experiments we assumed a

maximum available memory of 128 KB and a pool of 10

periodic processes, with memory image sizes randomly chosen

between 1 KB and 32 KB. The RAM memory footprint of the

specific operating system is about 32 KB, but, as discussed

in Section IV, it does not need to be swapped-out in the

external MRAM since it performs a complete reboot each time

the system is resumed. Recalling the feasibility condition of

Equation (14), and considering an average operating system

boot time of approximately 1.5 ms9, the value of ||Sk+1|| is

about 110 KB, which practically equals the maximum avail-

able memory for processes. We will thus no longer consider

this constraint in our experiments, since it is assumed to be

always satisfied. The following sections summarize the results

obtained, in particular energy gains and the robustness and

8The operating energies and timings of the non-volatile memory have not
been perturbed since they are typical for a wide range of similar devices.

9Embedded operating systems boot times range from hundreds of μs up
to a few ms for the most complex ones. These data refer to microcontroller
with operating frequency around 60 MHz. In our specific implementation, the
boot time of Miosix kernel is approximately 450μs.

Perturbation
0 2 4 8 12 16 20

0

20

40

60

80

100

A
v
er

ag
e

p
ro

ce
ss

p
er

io
d

(s
)

stability at α = 0 instability stability at α = 1

Fig. 6. Policy robustness and “gray zones”

Fig. 7. Energy gain with respect to process periods and image size

stability of the proposed policy.

The first set of simulations studies the energy gain obtained

applying the optimal policy with respect to three sub-optimal

policies, namely: a trivial policy assuming to swap-in and

out the entire memory, the global maximum and the global
minimum policies defined by the conditions CM and CL. Such

gains are reported in of Figure 5 against the average time

interval τ between subsequent states. Each point corresponds

to different combination of process periods and sizes and

summarizes the average gain over 1,000 randomly generated

test instances. As it can be noted, the gains with respect to

the global minimum policy are smaller than those for the

other policies, meaning that the global minimum policy tends

to dominate over the others, i.e. the optimal value of the α
parameter tends to 0. On the other hand, the trivial policy,

often adopted for small sensor nodes, resulted by far the least

efficient one.

As just observed, the value of the parameter α strongly

affects the gain. In particular, the results suggest that the

values 0 and 1 are often those maximizing the gain, with some

exceptions where an intermediate value leads to better results.

Since the exact optimal value of α cannot be determined

explicitly, a desirable property of the adopted policy would

be its robustness against small variations of the parameters—

periods and sizes—of the application. To this purpose, we

performed more than one million tests, by randomly changing

the periods and sizes of the processes and by perturbing the

ratio Eactive/Psleep of a factor 2, 4, 8, 12, 16 and 20.
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As Figure 6 shows, the policy has a good stability, converg-

ing towards the two attractors α = 0, before a certain critical

average period pmin, and α = 1, after a critical average period

pmax. Amidst these two thresholds, the systems is in a sort

of gray zone, delimited by the two dashed lines in the figure,

where specific simulations are needed to determine the optimal

α. It should be noted, however, that for energy values in the

same order of magnitude of the considered microcontroller the

policy shows an almost stepwise behavior. The change of the

optimal value of α from 0 to 1, though, rarely abrupt but rather

passes through intermediate optimal α values. For example, in

the case of the system without perturbation, simulations have

identified intermediate values of α ranging from 0.3 to 0.7 for

average process periods around the critical value of 8s, and

in particular from 7s to 11s. In such cases, energy savings

up to 20% can be obtained. A similar trend can be observed

for 2× and 4× perturbations, which embraces the majority of

real micrcontrollers of the upper-mid range. For perturbations

greater than 8, which however account for extreme cases, the

gray zone is more extended, but it is still possible to note a

general prevalence of α = 1. Concluding, the prevalence of the

two attractors α = {0, 1} confirms a good robustness of the

policy. It does not, in fact, need expensive run-time calibration

of the α parameter for small variations of task periods, except

in the very proximity of the gray zone. The optimal α can in

fact be determined before deployment, based on the average

task period, and hard-coded into the application.

Finally, the energy gain of the hibernation approach (HA)

with respect to classical operation (CO), in which the system

is brought in sleep mode during idle periods, an thus suffers

from static leakage current problems, has been studied and

estimated through several hundreds of tests. The relative gain

Egain = (ECO − EHA)/ECO reported in the following

refers to the specific architecture proposed in [1]. The test

conditions and application parameters used for this analysis

are the same as those before. The executions periods, in

particular, have been varied between 4 and 250 seconds10,

while the process image sizes was selected randomly between

between 1 and 32 KB. Figure 7 shows how the energy gain

increases when the average execution period of the processes

augments: this behavior points out that with higher intervals

between subsequent executions the time spent in hibernation

state augments and the frequency of swap-in and swap-out

operations decreases. For very short execution periods, on the

contrary, the gain tends to zero, since hibernating is no longer

convenient. Concerning process image sizes, it can be noted

that the energy gain is maximum for smaller sizes, because

smaller processes require less energy for the swap-in and

swap-out operations, making hibernation more convenient.

VII. CONCLUSIONS

This paper presented the achievements obtained by our

research on the static leakage power mitigation in high

10Periods in that order, and even longer, are typical, for example, of sensing
and monitoring applications, e.g. WSNs.

and mid-range microcontrollers. A formal model, a general

mechanism and a sample architecture have been studied and

implemented to exploit hibernation during idle periods of ap-

plication processes. Results obtained in several stress tests and

simulation scenarios considering the electrical characteristics

of a real implementation demonstrated the validity of the

studied approach. Energy gains up to 50% compared to widely

used trivial hibernation policies have been obtained. Moreover,

thanks to the conciseness of the closed-form model, the

proposed policy can be easily implemented in a broad range

of embedded systems. Furthermore, since it only depends

on the electrical parameters of the target hardware platform,

the hibernation mechanism can adapt to different applications

and/or to run-time variations of the application properties

(number, periods and sizes of processes).
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