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a b s t r a c t

Nowadays wireless body sensor networks (WBSNs) have great potential to enable a broad variety of

assisted living applications such as human biophysical/biochemical control and activity monitoring for

health care, e-fitness, emergency detection, emotional recognition for social networking, security, and

highly interactive games. It is therefore important to define design methodologies and programming

frameworks which enable rapid prototyping of WBSN applications. Several effective application

development frameworks have been already proposed for WBSNs designed for TinyOS-based sensor

platforms, e.g. CodeBlue, SPINE, and Titan. In this paper we present an application of MAPS, an agent

framework for wireless sensor networks based on the Java-programmable Sun SPOT sensor platform,

for the development of a real-time WBSN-based system for human activity monitoring. The agent-

oriented programming abstractions provided by MAPS allow effective and rapid prototyping of the

sensor-side software. In particular, the architecture of the developed system is a typical star-based

WBSN composed of a coordinator node and two sensor nodes located respectively on the waist and the

thigh of the monitored assisted living. The coordinator relies on a JADE-based enhancement of the

SPINE coordinator and allows configuring sensors, receiving their data, and recognizing pre-defined

human activities. On the other hand, each sensor node runs a MAPS-based agent that performs sensing

of the 3-axial accelerometer sensor, computation of significant features on the acquired data, feature

aggregation and transmission to the coordinator. The experimentation phase of the prototype, which

allows evaluating the obtainable monitoring performances and activity recognition accuracy, is

described. Moreover, a comparison of the monitoring system based on MAPS, AFME and SPINE in

terms of programming effectiveness and system performances is discussed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) are currently emerging as
one of the most disruptive technologies enabling and supporting
next generation ubiquitous and pervasive computing scenarios
(Sohraby et al., 2007). WSNs are capable of supporting a broad
array of high-impact applications in several domains such as
disaster/crime prevention, military, environment, logistics, health
care, and building/home automation. WSNs applied to the human
body are usually called Wireless Body Sensor Networks (WBSNs)
(Yang, 2006). WBSNs are conveying notable attention as their real-
world applications aim at improving the quality of life of human
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beings by enabling continuous, real-time and non-invasive medical
assistance at low cost. Health-care applications in which WBSNs
could be greatly useful include early detection or prevention of
diseases, elderly assistance at home, e-fitness, rehabilitation after
surgeries, motion and gestures detection, cognitive and emotional
recognition, medical assistance in disaster events, etc.

The design and programming of applications based on WBSNs
are complex tasks. This is mainly due to the challenge of imple-
menting signal processing intensive algorithms for data interpreta-
tion on wireless nodes that are very resource constrained and have
to meet hard requirements in terms of wearability and battery
duration as well as computational and storage resources. This is
challenging because WBSN applications usually require high sensor
data sampling rates which affects real-time data processing and
transmission capabilities since computational power and available
bandwidth of the WBSN infrastructure are generally scarce. Indeed,
efficient implementation of WBSN applications requires appropriate
allocation of the limited resources on the nodes in terms of energy,
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memory and processing. This is especially critical in signal proces-
sing systems, which usually have large amounts of data to process
and transmit. Current embedded operating systems do not address
such high level and complex requirements as they mainly focus on
hardware abstraction, power management, routing, security and
synchronization algorithms, and sometimes on general-purpose
data structures, dynamic memory management, and multi-tasking.

To deal with the aforementioned issues, several software
frameworks have been developed such as CodeBlue (Malan et al.,
2004), Titan (Lombriser et al., 2009), and SPINE (Fortino et al.,
2009). They aim at decreasing development time and improving
interoperability among signal processing intensive applications
based on WBSNs. In particular, they basically rely on a star-based
network architecture, which is organized into a coordinator node
and a set of sensor nodes. Moreover, they are developed in TinyOS
at the sensor node side and in Java at the coordinator node side.

However, apart from the adoption of effective frameworks, we
believe that the exploitation of the agent-oriented programming
paradigm to develop WBSN applications could provide more
effectiveness as demonstrated by the application of agent tech-
nology in several key application domains (Luck et al., 2004).

In this paper, we therefore propose an agent-oriented approach
to develop WBSN applications based on the MAPS (Mobile Agent
Platform for Sun SPOTs) framework (Aiello et al., 2008, 2011) that
enables agent-oriented programming by offering powerful abstrac-
tions allowing rapid prototyping of WSN applications on the Sun
SPOT sensor platform. The proposed approach is exemplified
through the design, implementation and evaluation of an agent-
based real-time human activity monitoring system. In particular,
the system architecture is a typical star-based WBSN composed of
a coordinator node and two sensor nodes which are located on the
waist and thigh of the monitored assisted living, respectively. The
coordinator relies on a Jade (2011)-based enhancement of the
SPINE coordinator (Fortino et al., 2009; Signal Processing In-node
Environment, 2011) and allows configuring the sensing process,
receiving sensed data features, and recognizing pre-defined human
activities through a KNN (K-nearest neighbor) classifier. Each
sensor node executes a MAPS-based agent that performs sensing
of the 3-axial accelerometer sensor, computation of significant
features on the acquired data, features aggregation and transmis-
sion to the coordinator. Finally, the experimentation phase of the
developed prototype allows evaluating the obtainable monitoring
performances and activity recognition accuracy.

The main research contribution of this paper is twofold. On
one hand, it proposes the design, implementation and evaluation
of a novel agent-oriented system based on WBSNs for real-time
monitoring of human activities by means of MAPS atop the Sun
SPOT sensor platform. On the other hand, it provides an analysis
of the effectiveness and efficiency of the application of agent
frameworks, namely MAPS and AFME the only two frameworks
available for Sun SPOTs so far, within the WBSN application
domain; such analysis is carried out also with respect to the
SPINE framework (Bellifemine et al., 2011), an open-source
domain-specific framework for WBSN applications. Obtained
results show that MAPS can be more effective (from the program-
ming point of view) and efficient (from the system perspective)
than AFME and SPINE in developing WBSN applications.

The rest of this paper is organized as follows. Section 2 first
discusses related work for the development of WBSN applications,
ranging from monolithic applications to domain-specific frame-
works, and then introduces a reference architecture for WBSN
applications from network and functional perspectives. In Section 3
the available agent platforms for WSNs (Agilla, ActorNet and
AFME) are described and compared with MAPS. Section 4 describes
the architecture and programming model of MAPS that is used to
design and implement an agent-oriented signal processing in-node
environment for real-time human activity monitoring that is
presented in Section 5 along with the analysis of programming
effectiveness and system performances of MAPS, AFME and SPINE.
Finally conclusions are drawn and on-going research discussed.
2. WBSN application development

Programming WBSN applications is a complex task mainly due
to the hard resource constraints of wearable devices and to the
lack of proper and easy to use software abstractions. In this
section we overview the available approaches for the develop-
ment of applications based on WBSNs and describe a reference
architecture for WBSNs that enables rapid prototyping of efficient
signal processing in-node applications.

2.1. Programming frameworks

Most of previous research on WBSN applications has focused on
proof-of-concept applications with the aim of demonstrating the
feasibility of new context-aware algorithms and techniques, e.g. for
the recognition of physical activity through accelerometer sensors
or prompt detection of hearth diseases (Najafi et al., 2003; Bao and
Intille, 2004; Yang, 2006). Moreover such research has considered
issues related to power consumption and radio channel usage but
has scarcely taken into account code reusability and modularity.
One of the most relevant attempts to define a general platform able
to support various WBSN applications is CodeBlue (Malan et al.,
2004). CodeBlue is a framework based on TinyOS (2011) and
specifically designed for integrating wireless medical sensor nodes
and other devices that could be involved in a disaster response
scenario. CodeBlue allows such devices to discover each other,
report events, and establish communications. It relies on a publish/
subscribe-based data routing framework in which sensors publish
relevant data to a specific channel and end-user devices subscribe
to channels of interest. CodeBlue provides end-user devices with a
query interface to retrieve data from previously discovered sensor
nodes. While it is possible to select sensor types or physical node
identifiers as data sources, configure the data rate and define in-
node threshold-based filters to avoid unnecessary data to be
transmitted, more sophisticated in-node processing of the sensor
data is not supported. A different approach is proposed by Titan
(Lombriser et al., 2009), which is also implemented in TinyOS.
Titan is a middleware for distributed signal processing in WSNs
that supports implementation and execution of context recognition
algorithms in dynamic WSN environments. Titan represents data
processing by a data flow from sensors to recognition results. The
data is processed by tasks which implement elementary computa-
tions. Tasks and their data flow interconnections define a task
network, which runs on the sensor network as a whole. Tasks are
mapped onto each sensor node according to the sensors and the
processing resources it provides. Titan dynamically reprograms the
WSN to exchange context recognition algorithms and handle
defective nodes, variations in available processing power, or
broken communication links. The architecture of Titan is composed
of several software components, which enhance modularity.
Although CodeBlue and Titan raise the programming abstraction
level by offering general-purpose platforms and middlewares for
effectively developing signal processing applications in WBSNs,
they are sometimes too general for providing efficient solutions
in specific application domains. Thus, domain-specific frameworks
(Bao and Intille, 2004; Bellifemine et al., 2011) have been proposed
which are positioned in the middle between application-specific
code and middleware approaches. They specifically address
and standardize the core challenges of WSN design within
a particular application domain. While providing high efficiency,



Fig. 2. Software architecture layers of the system from the functional perspective.
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such frameworks allow for a more effective development of
customized applications with little or no additional hardware
configuration and with the provision of high-level programming
abstractions tailored for the reference application domain. A
notable example of such approach is represented by the SPINE
framework (Fortino et al., 2009; Bellifemine et al., 2011; Signal
Processing In-node Environment, 2011). SPINE provides libraries of
protocols, utilities and processing functions, and a lightweight Java
API that can be used by local and remote applications to manage
the sensor nodes or submit service requests. By providing these
abstractions and libraries, which are common to most signal
processing algorithms used in WBSNs for sensor data analysis
and classification, SPINE also provides flexibility in the allocation of
tasks among the WBSN nodes and allows the exploitation of
implementation tradeoffs. Currently SPINE is implemented for
several sensor platforms based on TinyOS (2011) and Z-stack
(2011) by using the programming paradigms offered by such
platforms (event and component-based programming in TinyOS
and C programming in Z-Stack) and is being effectively applied to
the development of applications in the health care domain (Iyengar
et al., 2008). In this paper we propose an agent-oriented approach
which borrows the basic features characterizing the domain
specific framework approach, particularly SPINE, with the aim of
providing more programming effectiveness as demonstrated by
the application of agent technology in several key application
domains (Luck et al., 2004).

2.2. A reference system for in-node signal processing

The network architecture of the reference WBSN system for
signal processing, which is derived from the SPINE system
(Fortino et al., 2009; Signal Processing In-node Environment,
2011; Bellifemine et al., 2011), is organized into multiple sensor
nodes and one coordinator node (see Fig. 1). The coordinator
manages the network, collects, stores and analyzes the data
received from the sensor nodes, and also can act as a gateway
to connect the WBSN with wide area networks (e.g. Internet) for
remote data access. Sensor nodes measure local physical para-
meters and send raw or pre-processed data to the coordinator. In
this system, sensor nodes only communicate with the coordinator
according to the star network topology, which is the most used
topology in WBSN (Yang, 2006). However, the system could be
easily extended to support also direct and multi-hop communica-
tions among sensor nodes. In the reference architecture a sensor
node is associated with a single coordinator; a possible extension
is to allow sensor nodes to be associated and communicate with
multiple coordinators. A scenario where such architecture could
be used is when a human wearing sensor nodes moves across
locations; in this case such sensors should connect to a different
coordinator at each different location. The software architecture
of the system consists of two main components, implemented,
respectively, on the coordinator (e.g. a PC or a PDA/smartphone)
Fig. 1. Reference system network architecture.
and on the WBSN sensor nodes. Fig. 2 shows a schema of the
architecture from a functional point of view.

At the coordinator side, an interface to the WBSN which is
placed between user applications and the hardware and software
host platform is made available. User applications manage the
WBSN through a system API. The top level of the software
architecture at the coordinator side allows registered applications
to be notified of the following events generated by the WBSN:
discovery of new nodes, sensor data communication, node alarms,
and system messages such as low battery warnings. Commands
issued by the user application and network-generated events are
both coded in lower-level messages and decoded in higher-level
information by the Host Communication Manager according to a
specific over-the-air protocol. This component handles packets
generation and retrieval and is interfaced with specific software
components of the host platform to access the physical radio
module for transmitting/receiving packets to/from the WBSN. At
the sensor node side, the software framework provides abstrac-
tions of hardware resources such as sensors and the radio, a
default set of ready-to-use common signal processing functions
and, most importantly, a flexible and modular architecture to be
customized and extended to support new physical platforms and
sensors and introduce new signal processing services. In particu-
lar, the Node Communication Manager acts as the counterpart of
the Host Communication Manager. The Sensor Controller man-
ages and abstracts the sensors on the node platform, providing a
standard interface to the diverse sensor drivers. It is responsible
of sampling the sensors and storing the sensed data in properly
defined Buffers. The Node Manager is the central component,
responsible for interpreting the remote requests and dispatching
them to the proper components. Finally, the Processing Manager
consists of a dispatcher for the actual processing services and a
standard interface for user-defined services integration.
3. Agent-based platforms for wireless sensor networks

Agents are supported by agent platforms (APs) which basically
provide an API for developing agent-based applications, and an
agent server able to execute agents by providing them with basic
services such as communication, migration and node resource
access. Although many APs exist for conventional distributed
systems (Luck et al., 2004), developing flexible and efficient APs
for WSNs is a challenging and very complex task due to the
currently available resource-constrained sensor nodes and related
operating systems (Vinyals et al., 2011). Very few APs for WSNs
have been to date proposed and actually implemented. In the
following, we first introduce Agilla and ActorNet, the most
significant available research prototypes based on TinyOS, and
then describe in more details Agent Factory Micro Edition (AFME),
which runs on Java Sun SPOTs, as AFME is the only available Java-
based agent platform related to MAPS. Finally we provide a
qualitative comparison among Agilla, ActorNet, AFME and MAPS.
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3.1. TinyOS-based agent platforms

Agilla (Fok et al., 2005) is an agent-based middleware devel-
oped on TinyOS (Gay et al., 2003) and supporting multiple agents
on each node. As shown by its software architecture (see Fig. 3),
Agilla provides two fundamental resources on each node: a tuple-
space and a neighbors list. The tuplespace represents a shared
memory space where structured data (tuples) can be stored and
retrieved, allowing agents to exchange information in a temporally
decoupled way. A tuplespace can be also accessed remotely. The
neighbors list contains the address of all one-hop-distant nodes,
needed when an agent has to migrate. Agents can migrate carrying
their code and state, but do not carry their tuples that are locally
stored on a tuplespace. Packets used for communication between
nodes (e.g. for agent migration/cloning, remote tuples accessing)
are very small to minimize message losses, whereas retransmission
techniques are also adopted. Although Agilla is developed for
TinyOS platforms, agents are not programmed through nesC but
a proprietary ISA (Instruction Set Architecture) was specifically
defined for their programming.

ActorNet (Kwon et al., 2006) is an agent-based platform
specifically designed for TinyOS/Mica2 sensor nodes. To overcome
the difficulties in allowing code migration and interoperability
due to the strict coupling between applications and sensor node
architectures, ActorNet exposes services like virtual memory,
context switching, and multi-tasking. Thanks to these features,
Fig. 3. Architecture of Agilla.

Fig. 4. Architecture of ActorNet.
it effectively supports agents programming by providing a uni-
form computing environment for all agents, regardless of hard-
ware or operating system differences. The ActorNet architecture
is depicted in Fig. 4. The ActorNet language used for high-level
agent programming, has syntax and semantics similar to those of
Scheme (Kent Dybvig, 1987) with proper instruction extension.

3.2. Agent Factory Micro Edition

AFME (Muldoon et al., 2006, 2008; Agent Factory, 2011) is an
open-source, lightweight, and J2ME Mobile Information Device
Profile (MIDP) compliant agent platform based upon the Agent
Factory Framework (2011) and intended for wireless pervasive
systems. Thus, AFME has not been specifically designed for sensor
networks but, thanks to a recent support of J2ME onto the Sun
SPOT sensor platform, it can be adopted for developing agent-
based WSN applications. AFME is based on the Believe-Desire-
Intention (BDI) paradigm (Rao and Georgeff, 1995), in which
agents follow a sense-deliberate-act cycle. To facilitate the crea-
tion of BDI agents the framework supports a number of system
components that developers have to extend when building their
applications: perceptors, actuators, modules, and services. Per-
ceptors and actuators enable agents to sense and act upon their
environment respectively. Modules represent a shared informa-
tion space between actuators and perceptors of the same agent,
and are used, for example, when a perceptor may perceive the
resultant effect of an actuator affecting the state of an object
instance internal to the agent. Services are shared information
space between agents used for agent data exchange. The agents
are periodically executed using a scheduler, and four functions
are performed when an agent is executed. First, the perceptors are
fired and their sensing operations generate beliefs, which are
added to the agent’s belief set. A belief is a symbolic representa-
tion of information related to the agent’s state or to the environ-
ment. Second, the agent’s desires are identified using resolution-
based reasoning, a goal-based querying mechanism commonly
employed within Prolog interpreters. Third, the agent’s commit-
ments (a subset of desires) are identified using a knapsack
procedure. Fourth, depending on the nature of the commitments
adopted, various actuators are fired. In AFME, agents are defined
through a mixed declarative/imperative programming model. The
declarative Agent Factory Agent Programming Language (AFAPL),
based on a logical formalism of belief and commitment, is used to
encode an agent’s behavior by specifying rules defining the
conditions under which commitments are adopted. The impera-
tive Java code is instead used to encode perceptors and actuators.
A declarative rule is expressed through the following form: b1, b2,
bn4doX; where b1,b2, . . . ,bn represent beliefs, whereas doX is an
action. The rule is evaluated during the agent execution, and if all
the specified beliefs are currently included into the agent’s belief
set, the imperative code enclosed into the actuator associated to
the symbolic string doX is executed.

The AFME platform architecture is shown in Fig. 5. It comprises
a scheduler, a group of agents, and several platform services
needed for supporting agent communication and migration.

To improve reuse and modularity within AFME, actuators,
perceptors, and services are prevented from containing direct
object references to each other. Actuators and perceptors devel-
oped for interacting with a platform service in one application can
be used, without any changes to their imperative code, to interact
with a different service in a different application. In the other way
round, the implementation of platform services can be completely
modified without having to modify actuators and perceptors.
Additionally, the same platform service may be used within two
different applications to interact with a different set of actuators
and perceptors. So, all system components of the AFME platform



Fig. 5. Architecture of AFME.

Table 1
Feature comparison of the analysed agent platforms.

Agilla actorNet MAPS AFME

Migration Yes Yes Yes Yes

Multitasking Yes Yes Yes Yes

Communication model Tuple space Messages Messages Messages

Programming language Proprietary ISA Scheme-like Java AFAPL/Java

Agent model Assembler-like Functional Finite state machine BDI

Intentional agents No No No Yes

Sensor platforms Mica2, MicaZ, TelosB Mica2 Sun SPOT Sun SPOT
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are interchangeable because they interact without directly refer-
encing one another.
3.3. A comparison

In Table 1, a comparison among the aforementioned agent
platforms with respect to seven characteristics (migration, multi-
tasking, communication model, programming language, agent
model, intentional agents, sensor platforms) is reported. Agent
migration and multitasking, which allows for the execution of
multiple agents on the same node, is supported by all the
systems. The agent communication model of Agilla is centered
on local tuple space where agent can asynchronously insert tuples
and take tuples left by other agents. Conversely the communica-
tion model of the other systems is based on (unicast and broad-
cast) message passing. The programming language and model
is different among the systems. Agilla is based on a proprietary
low-level language composed of an assembler-like instruction set
which makes programming of complex agents very difficult.
ActorNet is based on a functional Scheme-like language whereas
MAPS and AFME on the Java language. Indeed, MAPS uses a finite
state machine model to define agent behaviour whereas AFME
employs a more complex BDI-like model based on the AFAPL
language. Intentional agents are therefore only offered by AFME.
Agilla and ActorNet run on motes; in particular Agilla on Mica2,
MicaZ, and TelosB, whereas ActorNet currently only on Mica2. On
the contrary, MAPS and AFME are based on Sun SPOTs.

All the four compared systems are effective solutions for
agent-oriented programming of WSNs even though they are
based on (very) different programming abstractions and archi-
tectures. However, being MAPS and AFME specifically conceived
for Sun SPOT sensor technology, which is more capable than the
sensor mote technology on which Agilla and ActorNet are based
(see the last row of Table 1), they are less limited in terms of
resources so more capable agents can be defined. Moreover, as
MAPS offers FSM-based agents, such programming paradigm is
very appealing for programmers and designers of embedded
systems who usually exploit programming tools based on FSMs
or their derivatives.
4. MAPS: a Java-based agent platform for sun spots

MAPS is a novel Java-based framework for wireless sensor
networks based on Sun SPOT technology (Aiello et al., 2008, 2011;
Mobile agent, 2011) which enables agent-oriented programming of
WSN applications. MAPS has been appositely defined for resource-
constrained sensor nodes according to the following requirements:
�
 Component-based lightweight agent server architecture to
avoid heavy concurrency models and, therefore, exploit coop-
erative concurrency to execute agents.

�
 Lightweight agent architecture to efficiently execute and

migrate agents.

�
 Minimal and plugable core services involving agent migration,

agent naming, agent communication, activity timing, sensor
resource capability access (actuators, input signalers, flash
memory, and battery).

�
 Plug-in-based architecture extensions through which any

other service should be defined in terms of one or more
dynamically installable components implemented as single
or cooperating (mobile) agent/s.

�
 Java as programming language for the agent system and

(mobile) agents.

In the following subsections we focus on the system architec-
ture and the agent programming model.

4.1. System architecture

The MAPS architecture, which is shown in Fig. 6, consists of the
following basic components:
�
 The mobile agent (MA) is the high-level components of each
agent-based application. Its implementation is formed of two



Fig. 6. Architecture of MAPS.
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parts: an object formalizing the agent behavior based on a multi-
plane state machine (see Section 4.2) embedded into an archi-
tectural component directly connected to the MAEE (see below).

�
 The mobile agent execution engine (MAEE) supports the execu-

tion of agents by means of an event-based scheduler enabling
lightweight concurrency. It handles each event emitted by or
to be delivered at an MA through decoupling event queues.
The MAEE interacts with the other core components (see
below) to fulfill service requests issued by MAs.

�
 The mobile agent migration manager (MAMM) supports the

migration of agents from one sensor node to another. In
particular, the MAMM is based on the feature of Isolate (de)hi-
bernation provided by the Sun SPOT (2011) environment and is
therefore able to stop and hibernate an MA, serialize it into a byte
array and transmit it to the target sensor node. On the migration
target sensor node, the MAMM can receive a message containing
a serialized MA, deserialize, dehibernate and resume it. The agent
serialization format includes data and execution state whereas
the code should already reside at the destination node (this is a
current limitation of the Sun SPOTs which do not support
dynamic class loading and code migration).

�
 The mobile agent communication channel (MACC) enables

inter-agent communication based on asynchronous messages
supported by the Radiogram protocol. Messages can be unicast
or broadcast.

�
 The mobile agent naming (MAN) provides agent naming based

on proxies to support the MAMM and MACC components in
their operations. The MAN also manages the (dynamic) list of
the neighbor sensor nodes which is updated through a bea-
coning mechanism based on broadcast messages.
Fig. 7. Three different architectures of MAEE: (a) isolate-based, (b) thread-based,

�

and (c) object-based.

The timer manager (TM) provides the timer service which
allows for the management of timers to be used for timing
MA operations.

�
 The resource manager (RM) provides access to the resources of

the Sun SPOT node: sensors (3-axial accelerometer, tempera-
ture, light), switches, leads, battery, and flash memory.

Indeed, the core components for agent migration and resource
access can be plugged and unplugged to allow for optimization of
computing and memory resources according to specific applica-
tions needs. As an example, when agent mobility is not a require-
ment of the application, the MAMM component can be unplugged
so saving memory space in central memory and on the flash.

To allow for different application needs and resource require-
ments, three different versions of the MAEE are available (see
Fig. 7) which support three different implementations of the
agent architectural component. In particular, such component
can be: (a) a single-threaded Isolate according to the Java Sun
SPOT libraries, (b) a Java thread, or (c) a Java object. Such three
solutions can be used according to specific application contexts.
The first solution is the only one supporting mobility as agent
migration is only supported in terms of Isolate migration. The
second and third solutions are exploited when migration is not
necessary and more execution efficiency is required. In particular,
in the first solution, agents are connected to the MAEE through a
mediator component called inter-isolate server which introduces
internal communication overhead as agents are in their own
Isolate; in the second and third solutions, agents are in the same
isolate of the MAEE so communication between agents and MAEE
is based on direct object references. The last solution is the most
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lightweight in terms of memory requirements as an agent is only
formed by a non-thread-based composite object.
4.2. Agent programming model

The main programming abstractions of MAPS are Agents and
Events (see Fig. 8).

Agents are active entities, uniquely identified by an identifier,
whose behavior is modeled as a multi-plane state machine
(MPSM) (Bölöni and Marinescu, 2000). The MPSM consists of a
set of planes, global variables and global functions. Each plane
may represent the behavior of the MA in a specific role so also
enabling role-based programming. In particular a plane is com-
posed of local variables, local functions, and an Event-Condition-
Action (ECA) ruled automaton that represents the dynamic
behavior of the MA in that plane. The automaton is composed
of states and mutually exclusive transitions among states. Transi-
tions are labeled by ECA rules: E[C]/A, where E is the event name,
[C] is a boolean expression based on the global and local variables,
and A is the atomic action. A transition t is triggered if t originates
from the current state (i.e. the state in which the ECA automaton
is), the event with the event name E occurs and [C] holds. If the
transition fires, A is executed and the state transition finally takes
place. In particular, the atomic action can contain global/local
variable and functions to carry out computation, and, particularly,
the core primitives (see Fig. 9) to request specific services.
As agents interact through events, the delivery of an event at
agents is asynchronous and carried out by the event dispatcher
(a component of the MAEE, see Fig. 7) which inserts the event in
the agent queue. Once the ECA automaton is idle (i.e. the handling
of the last delivered event is completed), a new event is fetched
out from the queue and handled by one or more planes.
It is worth noting that the MPSM-based agent behavior program-
ming allows exploiting the benefits deriving from three main
paradigms for WSN programming (Yoneki and Bacon, 2005):
Fig. 8. Formalization of agents and events.

Fig. 9. MAPS core primitives.
event-driven programming, state-based programming and mobile
agent-based programming.

Events formalize interaction among components and between
components and agents. In particular, Agents emit Events through
the primitives reported in Fig. 9 for requesting the following
services: (i) message transmission through the send primitive; (ii)
agent creation, cloning and migration through the primitives
create, clone and migrate, respectively; (iii) timer setting through
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the setTimer and resetTimer primitives; (iv) sensor resource
handling through the primitives sense for sensing, actuate for
led manipulation, flash for load/save data from/to the flash
memory, input for reading switches. Emitted events are handled
by the associated components which, after handling them, reply
with Events that drive the agent behavior. Agents can also emit
internal Events to proactively drive their behaviors; this is the
basic mechanism to program goal-directed behaviors of event-
driven agents as described in Fortino et al. (2010).
5. An agent-based real-time system for monitoring human
activity

In this section we present an agent-oriented signal processing
in-node environment specialized for real-time human activity
monitoring based on WBSNs. In particular, it is able to recognize
postures (e.g. lying down, sitting and standing still) and move-
ments (e.g. walking) of assisted livings. The system is designed
and implemented with MAPS at the sensor node side and through
Java and JADE at the coordinator side. In Sections 5.1 and 5.2,
system design, implementation and evaluation are detailed.
Moreover, as the sensor-side system is also implemented with
AFME and SPINE, a performance comparison between the MAPS-,
AFME-, and SPINE-based versions is described. Finally, in Section
5.3, a discussion of the programming effectiveness of MAPS for
the development of WBSN applications is provided.

5.1. Design and implementation

The architecture of the system, shown in Fig. 10, is organized
into a coordinator and two sensor nodes according to the
reference WBSN system described in Section 2.2.

The coordinator side (see Fig. 10) is based on a JADE agent that
incorporates two modules of the Java-based SPINE coordinator
(Fortino et al., 2009), developed in the context of the SPINE
project (Signal Processing In-node Environment, 2011), which
Fig. 10. Architecture of the real-time activity monitoring system.
are the SPINE Manager and the SPINE Listener. In particular, the
SPINE Manager is used by end-user applications (e.g. real-time
activity monitoring application) for sending commands to the
sensor nodes. Moreover, the SPINE Manager is responsible of
capturing low-level messages and events sent from the nodes
through the SPINE Listener, which integrates several sensor plat-
form-specific SPINE communication modules (e.g. TinyOS,
Z-Stack, etc), to notify registered applications with higher-level
events and message content. A SPINE communication module is
composed of a send/receive interface and some components that
implement such interface according to the specific sensor plat-
form and that formalize the high-level SPINE messages in sensor
platform-specific messages. In this work, the SPINE Listener has
been enhanced with a new MAPS/Sun SPOT communication
module to configure and communicate with MAPS-based sensor
nodes. Such module translates high-level SPINE messages for-
matted according to the SPINE OTA (Over-The-Air) protocol
(Signal Processing In-node Environment, 2011) into lower-level
MAPS/Sun SPOT messages through its transmitter component and
vice versa through its receiver component. The JADE agent
coordinator also integrates an application-specific logic for the
synchronization of the two sensors (see below and Section 5.2).
The SPINE-based real-time activity monitoring application was
thus completely reused as well as the SPINE Manager, only the
SPINE Listener was modified to account for such enhancement.

The sensor node side (see Fig. 10) is based on two Java Sun
SPOTs sensors respectively positioned on the waist and the thigh
of the monitored person. In particular, MAPS is resident on the
sensor nodes and supports the execution of the WaistSensorAgent
and the ThighSensorAgent. Moreover, as the mobility feature of
agents is not needed and in order to have higher execution
performances, the thread-based version of the MAEE (see
Section 4.1) is used. WaistSensorAgent and the ThighSensorAgent
have the following similar step-wise cyclic behavior:
1.
 Sensing the 3-axial accelerometer sensor according to a given
sampling time (ST).
2.
 Computation of specific features on the acquired raw data
according to the window (W) and shift (S) parameters. In
particular, W is the sample size on which features are com-
puted whereas S is the percentage of sliding on W (usually S is
set to 50%).
3.
 Features aggregation and transmission to the coordinator.

4.
 Goto 1.

The agents differ in the specific computed features even
though the W and S parameters are equally set. In particular,
while the WaistSensorAgent computes the mean values for the
accelerometer data sensed on the XYZ axes, the min and max
values for data sensed on the X axis, the ThighSensorAgent
calculates the min value for data sensed on the X axis.

The interaction diagram depicted in Fig. 11 shows the inter-
action among the three agents constituting the real-time system:
CoordinatorAgent, WaistSensorAgent and ThighSensorAgent. In
particular, the CoordinatorAgent first sends one AGN_START
event for each sensor agent to configure them with the sensing
parameters (W, S and ST); then, it broadcasts the START event to
start the sensing activity of the sensor agents. Sensor agents sends
the DATA event to the CoordinatorAgent as soon as features are
computed. If the CoordinatorAgent detects that the agents are not
synchronized anymore, it sends the RESYNCH event to
resynchronize them.

The behavior of the WaistSensorAgent is specified through
1-plane reported in Fig. 12 (the behavior of the ThighSensorAgent
has the same structure but the computed features are different as
discussed above). In particular, after an initialization action (A0)



Fig. 11. Agents interaction of the real-time activity monitoring system.

F. Aiello et al. / Engineering Applications of Artificial Intelligence 24 (2011) 1147–1161 1155
driven by the occurrence of the AGN_START event, the sensing
plane goes into the WAIT4SENSING state. The MSG.START event
allows starting the sensing process by the execution of action A1,
which in particular performs the following steps:
1.
 sensing parameters (W, S, ST), data acquisition buffers for XYZ
channels of the accelerometer sensor (windowX, windowY,
windowZ), and data buffers for feature calculation (window-
FE4X, windowFE4Y, windowFE4Z) are initialized (see initSen-

singParamsAndBuffers function);

2.
 the timer is set for timing the data acquisition according to the

ST parameter (see timerSetForSensing function and in particular
the highly precise Sun SPOT timer is used);
3.
 a data acquisition is requested by submitting the ACC_CUR-
RENT_ALL_AXES event through the sense primitive (see doSen-

sing function).

Once the data sample is acquired, the ACC_CURRENT_AL-
L_AXES event is sent back with the acquired data and the action
A2 is executed; in particular:
1.
 the buffers are circularly filled with the proper values (see
bufferFilling function);
2.
 the sampleCounter is incremented and the nextSampleIndex is
incremented module W for the next data acquisition;
3.
 if S samples have been acquired, features are to be calculated,
thus sampleCounter is reset, samples in the buffers are copied
into the buffers for computing features, calculation of the
features is carried out through the meanMaxMin function, and
the aggregated results are sent to the base station by means of
the MSG_TO_BASESTATION event appropriately constructed;
4.
 the timer is reset;
Fig. 12. 1-Plane behavior of the WaistSensorAgent.
5.
 data acquisition is finally requested.

In the ACC_SENSED&FEAT_COMPUTED state the MSG.RE-
SYNCH might be received for resynchronization purposes (see
Section 5.2); it brings the sensing plane into the WAIT4SENSING
state. The MSG.RESTART brings the sensing plane back into the
ACC_SENSED&FEAT_COMPUTED state for (reconfiguring and) con-
tinuing the sensing process. The MSG.STOP eventually terminates
the sensing process.
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5.2. System analysis

The analysis of the developed prototype involves the following
two aspects (which are respectively detailed in the next two
subsections):
�
 The performance evaluation of the timing granularity degree
of the sensing activity at the sensor node and the synchroniza-
tion degree or skew of the activities of the two sensor agents.

�
 The recognition accuracy which shows how well the human

postures/movements are recognized by the system.

5.2.1. Performance evaluation

Two important issues to deal with are the timing of the
sensing process in terms of admissible sampling rate and the
synchronization between the operations of the two agents which
is to be maintained within a maximum skew for not affecting the
real-time monitoring. If such skew is overtaken, the two agents
are to be re-synchronized. Indeed such two aspects are strictly
correlated. In particular, as the sensor agents compute a different
number of features, when the sampling rate is high, the agent
computing more features (i.e. the WaistSensorAgent) takes more
time to complete its operations for each S sample acquisition than
the ThighSensorAgent. Re-synchronization is driven by the syn-
chronization logic included in the developed MAPS/Sun SPOT
comm module, which sends a resynchronization message (see the
MSG.RESYNCH event in Fig. 12) as soon as it detects that the
synchronization skew is greater than a given threshold. Detection
is based on the skew time between the receptions of two
messages sent by the agents that contain features referring to
the same interval of S sample acquisition: if skew4 ¼ PnSnST

then synchronize, where P is a percentage, S¼0.5 W, and ST is the
sampling time. Thus, the evaluation aimed at analyzing the
synchronization of the sensor agents and their monitoring con-
tinuity. The defined measurements are:
�
 The Packet Pair Average Time (PPAT), which is the average
reception time between two consecutive pairs of synchronized
packets (same logical timestamp, see timestamp variable in
Fig. 12) containing the computed features (see the MSG_TO_-
BASESTATION event in Fig. 12) sent by the sensor agents. PPAT
should be ideally equals to STnS, i.e. the packet pair arrives
each monitoring period and so there is no de-synchronization
in the average.

�
 The Synchronization Packet Percentage (SPP), which is the

percentage of resynchronization packets (see RESYNCH event
in Fig. 12), which are sent by the coordinator for re-synchro-
nizing the sensor agents, calculated with respect to the total
number of received feature packets. SPP should be as much as
possible close to 0, i.e. a few or no resynchronizations are
carried out and so the monitoring can be continuous as a
resynch operation usually takes 600 ms.

In particular, the experiments were carried out by fixing ST

(ms)¼[25, 50, 100], W (samples)¼[100, 80, 40, 20, 10], and P

(%)¼[5, 10, 25]. Each experiment took 15 min and 50 tests per
experiment were carried out. The obtained values were averaged over
the 50 tests performed (also the standard deviation is reported). The
values of ST and W were chosen to evaluate the system under
different operating conditions: from high (ST¼25 ms, W¼10, S¼

50%�4response time¼ 125 ms) to slow (ST¼100 ms, W¼100, S¼

50%�4response time¼ 5 s) system response times. The system
response time can directly affect the accuracy of the human activity
recognition (see Section 5.5.2) as higher is the frequency of refreshing
the human activity status, quicker is the capability of the system to
capture human activity changes. Moreover the variation range of P%
accommodates for small to medium skews.

Fig. 13 shows the obtained results for P¼25 and 5% by varying ST

and W in the ranges defined above. As can be noticed, the system
cannot support an ST ¼ 25 ms because PPAT is always greater than
the ideal value and SPP is too high. This leads to a non continuous
monitoring due to very frequent resynchronizations ðSPPZ15%Þ. An
ST¼50 ms can be supported for P¼25% and WZ40 as SPP is
maximum 8% so slightly impacting the monitoring continuity. The
best results are obtained with ST¼100 ms, P¼25% and WZ20; they
guarantee monitoring continuity due to an SPP� 0% and regularity
as experimented PPAT � ideal PPAT for WZ20. If P¼5% and
W¼[10, 20] or P¼25% and W¼10, an ST¼100 ms is not a good
value either because an out-of-limits skew frequently occurs.

It is worth noting that even though a lower ST would allow a
more frequent monitoring, the considered human activities can
be well captured by an ST¼100 ms and W¼20 (which implies a
response time¼1 s) as demonstrated by the experimental results
obtained from the carried-out real-time human activity monitor-
ing (see Section 5.2.2).

To compare the efficiency of MAPS, AFME and SPINE, the node-
side implementation of the system was also carried out with AFME
whereas the implementation with SPINE was already documented
in Bellifemine et al. (2011). The experiments were carried out by
fixing ST (ms)¼[25, 50, 100], W (samples)¼[40, 20], and P (%)¼
[5, 25]. Each experiment took 15 min and 50 tests per experiment
were carried out. Figs. 14 and 15 show the obtained results, which
are the average values of the 50 tests (also the standard deviation
is reported). As can be noticed, all the systems cannot support an
ST¼25 ms because PPAT is always greater than the ideal value and
SPP is too high. This leads to a non continuous monitoring due to
the very frequent resynchronization (SPPZ20 for W¼20 and
S¼10). The best results are obtained with ST¼100 ms, P¼25%
and W¼20; they guarantee monitoring continuity due to an
SPP� 0% and regularity as experimented PPAT� ideal PPAT for
W¼20. If W¼20 and P¼5%, ST¼100 ms is not a good value either
because an out-of-limits skew frequently occurs. Although the
AFME implementation performs better than the MAPS implemen-
tation, the AFME implementation collapses in the case W¼20,
S¼10 and P¼5%. SPINE performs better for the parameters
ST¼100, W¼40, and P¼25% whereas it has lower performance
in the other cases. On the basis of the obtained results we can state
that MAPS on Sun SPOT shows comparable performances with
SPINE on TelosB sensors, which is a domain-specific framework for
WBSNs, so confirming its suitability for supporting efficient WBSN
applications. In addition in Table 2 a comparison among the
sensor-node-side applications based on MAPS, AFME and SPINE
with respect to RAM usage and code dimension out of the available
memory resources is reported. Both MAPS and AFME requires more
memory than SPINE; however, the Sun SPOTs are wireless sensors
more capable than the TelosB Sky-motes so the percentages of
used memory by MAPS and AFME are much less than SPINE. It is
finally worth noting that MAPS performs slightly better than AFME.
5.2.2. Recognition accuracy

The activity monitoring system integrates a classifier based on
the K-Nearest Neighbor algorithm (Cover and Hart, 1967) that is
capable of recognizing postures and movements defined in a
training phase. The classifier was setup through a training phase
and tested considering the following parameter setting: ST¼100 ms,
W¼20 (S¼10), P¼25%. Accordingly, the features (Min, Max and
Mean) are computed on 20 sampled data every new 10 samples
acquired by the sensors. The training phase used a KNN-based
classifier parameterized with K¼1 and the Manhattan distance
which performs quite well as classes (lying down, sitting, standing
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still and walking) are rather separate and scarcely affected by noise.
The test phase is carried out by considering the pre-defined
sequence of postures/movements represented by the state machine
reported in Fig. 16. Accordingly, the obtained classification accuracy
results are reported in Fig. 17. As can be noted after a transitory
period of 5 s from one state to another, all the postures/movements
are recognized with an accuracy of 100%. The state transitions more
difficult to recognize are STA-SIT, WLK-STA, and SIT-LYG,
whereas the transition STA-WLK is recognized as soon as it occurs.
The obtained results are good and encouraging if compared with
other works in the literature which use more than two sensors on
the human body to recognize activities (Maurer et al., 2006).
5.3. On the programming effectiveness of MAPS

While the previous section has shown that MAPS provides
enough efficiency to support the requirements of real-time
recognition of human activities, in this section, we discuss the
programming effectiveness of the agent-oriented approach based
on MAPS for the development of WBSN applications according
to the experience gained in the development of the presented
agent-based system and of a wide range of SPINE-based WBSN
applications (Gravina et al., 2010). Programming effectiveness
refers to two main aspects: (i) suitable programming abstrac-
tions for an effective modeling and prototyping of the system
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behavior (notably including resource constrained operations) and
(ii) usability of such abstractions to create new applications.
Such two aspects should be carefully considered in the specific
application domains in which MAPS is currently applied such as
real-time human monitoring systems based on WBSNs. MAPS
provides agent-oriented programming abstractions which are
suitable to model not only WBSN systems but also general-
purpose WSN systems in terms of multi-agent systems: (i) FSM-
based behavior that can model both reactive and proactive
agents; (ii) event-driven interface that allows for an easy access
to the agent system and the sensor-node resources; and (iii)
message-based interaction that enables direct and broadcast
communications among agents. The development of the activity
monitoring system in AFME also provided useful insights for the
comparison of the programming effectiveness between MAPS and
AFME. As described in Section 3, the programming abstractions of
AFME to specify the agent behavior, which is based on a BDI-like
model, are very different from those of MAPS, even though the
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interaction among AFME agents is also based on messages.
In Figs. 18 and 19, the MAPS-based architecture and the AFME-
based architecture of the sensor agents of the activity monitoring
system are respectively reported. The AFME-based architecture is
more complex than the MAPS-based architecture. In particular, in
the former, according to the AFME model, specific components for
Perceptors, Actuators, SharedDataModules and TERImplication
formulas are to be defined; conversely, in the latter according to
the MAPS architecture only the FSM plane is to be programmed.
From a usability point of view we can state that if agents to be
modeled should not have a dynamic goal-oriented behavior
which usually necessitates a complex architecture more suitable
to capture complex requirements, the MAPS approach is more
effective as the programming of the agent architecture is more
rapid and straightforward. Indeed, it is worth pointing out that
the programming of complex proactive agents in wireless sensor
nodes is a very difficult task due to the limited computational
resources of such nodes. In fact, AFME was originally conceived



Fig. 16. State machine of the pre-defined sequence of postures/movements.

Fig. 17. Percentage of mismatches vs. transitory time computed with ST¼100 ms,

W¼20, P¼25%.

Fig. 18. MAPS-based architecture of the sensor-side agents of the activity

monitoring system.

Fig. 19. AFME-based architecture of the sensor-side agents of the activity

monitoring system.

Table 2
RAM usage and code dimension of sensor-node-side applications based on MAPS,

AFME and SPINE.

SPINE MAPS AFME

RAM used (KB)/available (KB) memory usage 4.8/10 85.8/512 96.5/512

48% 16.76% 18.85%

Code used (KB)/available (KB) memory usage 30/48 76.8/4096 81.8/4096

62.5% 1.87% 2%
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for PDAs/smartphones that are devices much more resource-
capable than wireless sensor nodes. In the context of WBSN
applications which specifically requires intensive in-node signal
processing, sensor-side computing components are more reactive
than proactive. Moreover, as already stated in Section 3.3, the
FSM model is one of the most used programming model in
embedded computing so making MAPS appealing for program-
mers in the embedded computing research and development
area. Finally, as the proposed activity monitoring system was
also completely developed with SPINE and, previously, without
SPINE by means of the nesC programming language (Gay et al.,
2003), some insights deriving from the exploitation of different
programming approaches (two agent-oriented approaches based
on MAPS and AFME, a WBSN domain-specific approach based on
SPINE and a lower-level programming approach based on nesC)
for WBSN application development are discussed in the following.
The effectiveness of the agent-oriented approach is evident if
compared with the nesC approach as it provides higher-level
programming methods to abstract away specific low-level opera-
tions, such as sensor driver access and low-level radio protocols,
and ease the modeling of cooperative behavior through agent
interactions. Finally, as SPINE is a WBSN domain-specific frame-
work, it provides programming abstractions specific to the devel-
opment of WBSN applications so being even more effective that
MAPS and AFME in defining operations such as buffered sampling
processes and data feature extractions. However, proactive beha-
viors and peer-to-peer sensor node interactions are not provided
by SPINE whereas both MAPS and AFME agents support them in a
straightforward way.
6. Conclusions

Programming WBSN applications is a complex task which
requires suitable programming paradigms and frameworks cop-
ing with the WBSN specific characteristics. Several kinds of
frameworks and approaches have been to date proposed. Among
them, domain specific frameworks have the potential to provide
both rapid development of WBSN applications and also good
performances. In this paper we have proposed an agent-oriented
approach, which relies on the basic features characterizing the
domain specific frameworks and on the agent-oriented MAPS
framework, aiming to offer more programming effectiveness
while providing the required efficiency. In fact, MAPS has been
purposely defined for resource-constrained environments and is
based on (i) lightweight agents so avoiding conventional heavy-
weight agent architectures and (ii) run-time architecture formed
of components efficiently handling the low-level sensor node
functions and providing higher-level services to agents. In parti-
cular, by using MAPS, a WBSN application can be structured as a
set of agents distributed on sensor nodes supported by a compo-
nent-based agent execution engine which provides basic services
such as message transmission, agent creation, timer handling,
easy access to the sensor node resources, and agent migration
(if needed). The development and testing of a full-fledged real-
time human activity monitoring system based on wireless body
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sensor networks has been described. It is emblematic of the
effectiveness and suitability of MAPS to deal with the program-
ming of WBSN applications. The carried out performance evalua-
tion of the developed prototype shows fine synchronization of the
sensor nodes, continuous real-time monitoring, and good recog-
nition accuracy, once parameters are carefully set. However, the
MAPS-based development of new applications having stringent
requirements (sensing rate, computing speed, message transmis-
sion latency) must be carefully analyzed case by case as WSNs are
application-specific systems.

Finally, the comparison of MAPS with the AFME framework
based on Sun SPOTs and the WBSN-specific framework SPINE
based on TinyOS in the development of the monitoring system,
has produced important considerations about the provided system
efficiency and programming effectiveness. From the system per-
formance perspective, MAPS shows performances similar to those
obtainable with AFME and SPINE that are suitable for fulfilling the
real-time requirements of the monitoring system. From the pro-
gramming effectiveness perspective, MAPS is more effective than
AFME for WBSN applications as it is based on an FSM-based agent
model that is more suitable than the AFME agent model for the
development of lightweight WBSN-based components that are
mostly reactive components. Moreover, with respect to SPINE,
MAPS (and also AFME) is able to support peer-to-peer interactions
among WBSN sensor nodes and proactive components.

On-going research efforts are devoted to: (i) porting MAPS
onto the Sentilla JCreate pervasive computers which are compli-
ant to J2ME CLDC 1.1 but based on TelosB-like sensors that are
less powerful than Sun SPOTs; in particular, the on-going porting
has arisen the need to define a TinyMAPS, a compressed version of
MAPS, to drastically reduce the memory footprint; (ii) developing
a full-fledged agent-based version of SPINE (named ASpine)
through MAPS and the JADE framework to enable agent-oriented
development of pervasive applications for assisted livings (such
as emergency medical care) based on heterogeneous computing
platforms: PC/workstations (JADE), PDA/smartphones (JADE
Leap), and sensor nodes (MAPS); and (iii) defining an agent-
oriented methodology for heterogeneous W(B)SN applications
which uses MAPS as main target agent platform for wireless
sensors and JADE for sensor coordinators.
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