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1. Introduction

Time-dependent density-functional theory (DFT [1,2], TDDFT [3,
4]) is gaining increasing popularity as a powerful method for the
numerical simulation of optical spectra in a variety of molecular
systems. In spite of its numerous successes, TDDFT is still affected
by two major limitations. The first, and more fundamental, is the
inability of static, local, exchange-correlation (XC) kernels to repre-
sent the long-range tail of the electron–hole interaction, which is
essential to account for charge-transfer excitations, as well as exci-
tons in solids and Rydberg series in molecules [5–7]. The second,
more practical, difficulty stems from the poor capacity of current
implementations of TDDFT to address extended portions of the
spectrum of complex molecular systems (made of several hun-
dreds of independent atoms) [8,9]. The present paper addresses
the second difficulty by making a new, and supposedly superior,
implementation of (linearized) TDDFT [8–10] widely available to
the scientific community.

Current implementations of TDDFT fall into three broad cat-
egories. In the first, the TDDFT charge susceptibility is obtained
from the independent-electron susceptibility using a Dyson-like
linear equation [12,13]; in the second, the poles of the suscepti-
bility, corresponding to excitations energies, are addressed as the
eigenvalues of a suitable linear (super-) operator equation [13,14];
finally, the full spectrum of a system can be obtained by Fourier
analyzing the time series generated by the expectation value of
some observable (such as the e.g. dipole) calculated along the per-
turbed time evolution of the TDDFT molecular orbitals [15,16]. The
relative merits of each one of these approaches are discussed in
Ref. [9], where an alternative approach to the calculation of optical
spectra within TDDFT, named the Liouville–Lanczos method, is also
presented, following a suggestion originally proposed in Ref. [8].
The distinctive feature of the new method is that it allows for the
full spectrum of a system to be calculated over a broad frequency
range, with a computational effort which is only a few times larger
than that needed by a single ground-state DFT or static density-
functional perturbation theory (DFPT) calculation [17,18].

In this paper we introduce a computer code, named tur-
boTDDFT, which implements the Liouville–Lanczos approach to
TDDFT, and which is being distributed under the terms of the GPL
license [19], as a component of the Quantum ESPRESSO suite of
open-source DFT plane-wave (PW) pseudopotential codes [20–22].
In Section 2 we provide a minimal theoretical background and es-
tablish some notation for the problem addressed by turboTDDFT;
in Section 3 we describe the algorithm implemented in turboT-
DDFT; in Section 4 we describe turboTDDFT as a component of
the Quantum ESPRESSO distribution; in Section 5 we provide the
instructions for installing turboTDDFT on UNIX systems; in Sec-
tion 6 we give a few examples of the usage of turboTDDFT for
the calculation of the spectra of some prototypical simple molec-
ular systems; Section 7 finally contains our conclusions and per-
spectives for future work.
2. Statement of the problem, minimal theoretical background,
and notation

In the dipole approximation, the response of molecular systems
to electromagnetic radiation is described by the dynamical polar-
izability tensor, αi j(ω), whose elements are defined as the dipole
moment linearly induced along the i-th Cartesian direction by a
perturbing electric field of unit strength, polarized along the j-th
axis, and oscillating at the frequency ω. The absorption coefficient
is essentially the product of the frequency times the imaginary
part of the diagonal elements (or trace) of the polarizability [23].
In this paper we address the dynamical polarizability of a molec-
ular system at clamped nuclei, and we use atomic (Hartree) units
throughout: h̄ = 1; e = 1; me = 1. Since the current implementa-
tion of turboTDDFT treats spin-restricted systems only, we ex-
clude in the following spin degrees of freedom from our notations
for simplicity.

The polarizability of a system of interacting electrons can be
expressed as:

αi j(ω) = Tr
(

X̂iρ̂
′
j(ω)

)
, (1)

where carets indicate quantum mechanical operators, X̂i is the i-th
component of the dipole (or position) operator, ρ̂ ′

j(ω) = ρ̂ j(ω) −
ρ̂◦ , is the response density matrix, ρ̂ j(ω) being the one-electron
density matrix of the system perturbed by an external homo-
geneous electric field of unit strength polarized along the j-th
Cartesian axis and oscillating at frequency ω, and ρ̂◦ is its un-
perturbed counterpart. In TDDFT the response density matrix can
be expressed as the solution of the linearized quantum Liouville
equation [8–11]:

(ω − L) · ρ̂ ′
j(ω) = [

X̂ j, ρ̂
◦], (2)

where L is the TDDFT Liouvillian of the system, defined as:

L · ρ̂ ′ �
[

Ĥ◦, ρ̂ ′] + [
V̂ ′

HXC

[
ρ̂ ′], ρ̂◦], (3)

Ĥ◦ is the unperturbed Kohn–Sham (KS) Hamiltonian [2], V̂ ′
HXC[ρ̂ ′]

is the linear correction to the Hartree-plus-XC potential, whose co-
ordinate representation is:

v ′
HXC(r,ω) =

∫ (
1

|r − r′| + κXC
(
r, r′;ω))

ρ ′(r′, r′;ω)
dr′, (4)

and κXC is the so-called XC kernel [12] that, in the adiabatic DFT
approximation [24], is independent of ω. Traces of products of op-
erators, such as in Eq. (1), have the same algebra as scalar products
in linear spaces, Tr( Â† B) � ( Â, B̂), and this property is instrumen-
tal in expressing the polarizability as an off-diagonal matrix element
of the resolvent of the Liouvillian [8,9]. By solving the linear equation
(2) we can express the polarizability in Eq. (1) as

αi j(ω) = −(
X̂i, (ω − L)−1 · [ X̂ j, ρ̂

◦]), (5)

where (•,•) indicates the scalar product between two operators, in
the sense defined above. Of course, in order to give a well-defined
meaning to Eq. (5), a well-defined representation must be given for
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operators, super-operators (i.e. operators acting on the linear space
of quantum mechanical operators), and for scalar products defined
in this linear space. This will be done in Section 2.1.

The coordinate representation of the response density matrix
is:

ρ ′(r, r′,ω
) = 2

Nv∑
v=1

(
ϕ̃′

v(r,ω)ϕ◦∗
v

(
r′) + ϕ◦

v(r)ϕ̃′ ∗
v

(
r′,−ω

))
, (6)

where ϕ◦
v(r) are unperturbed KS orbitals, ϕ̃′

v(r,ω) = ϕv(r,ω) −
ϕ◦

v(r) denotes the first-order correction to the v-th KS orbital, and
Nv is the number of occupied KS states; the factor 2 accounts
for the spin degeneracy of molecular orbitals in non-magnetic sys-
tems. Note that in the frequency domain the density matrix is not
Hermitian. Being the Fourier transform of a Hermitian operator, it
satisfies the relation: ρ̂(ω)† = ρ̂(−ω).

2.1. Representation of the response density matrix and of other
operators

As shown in Eq. (6), the response density matrix at any given
frequency ω is uniquely determined by the two sets of response
orbitals {ϕ̃′

v(r,ω)} and {ϕ̃′
v(r,−ω)}. Standard time-dependent per-

turbation theory indicates that each response orbital ϕ̃′
v can be

chosen to be orthogonal to the KS occupied-state manifold. For
this reason the response density matrix of Eq. (6) has vanishing
matrix elements between pairs of occupied and unoccupied states,
namely 〈ϕ◦

c |ρ̂ ′|ϕ◦
c′ 〉 = 〈ϕ◦

v |ρ̂ ′|ϕ◦
v ′ 〉 = 0 ∀(v, v ′) and (c, c′), where

v and v ′ denotes generic occupied (valence) states and c and c′
generic empty (conduction) states. This is to say that in the repre-
sentation of the unperturbed KS states the response density matrix
has the block structure:

ρ̂ ′ →
(

0 ρ ′
vc

ρ ′
cv 0

)
. (7)

This block structure, which also holds for the commutator [ X̂ j, ρ̂
◦],

allows us to conveniently represent the operators appearing in
Eqs. (3)–(5) using sets of 2Nv orbitals, rather than square ma-
trices. Using such a representation would require the storage of
n = 2N Nv coefficients to represent the orbitals, N being the di-
mension of the one-electron basis set, which is clearly much more
convenient than storing and using the N2 entries of the full rep-
resentation of the density matrix. Inspired by these considerations
we define the standard batch representation (SBR) of the response
density matrix as:

ρ̂ ′ SBR−−→
( {qv}

{pv}
)

, (8)

where {qv} and {pv} indicate the sets (batches) of orbitals:

qv(r) = 1

2

(
ϕ̃′

v(r,ω) + ϕ̃′ ∗
v (r,−ω)

)
, (9)

pv(r) = 1

2

(
ϕ̃′

v(r,ω) − ϕ̃′ ∗
v (r,−ω)

)
. (10)

Note that in a time-reversal invariant system the response charge
density can be expressed in terms of the {qv} orbitals alone:

n′(r,ω) = 4
∑

v

ϕ◦
v(r)qv(r). (11)

General one-particle quantum mechanical operators can be given a
similar representation. The SBR of a general operator is defined as:

Â SBR−−→
( {aq

v}
{ap}

)
� a, (12)
v

where the orbitals aq
v(r) and ap

v (r) are defined as

aq
v(r) = 1

2

(
Q̂ Âϕ◦

v(r) + (
Q̂ Â†ϕ◦

v(r)
)∗)

, (13)

ap
v (r) = 1

2

(
Q̂ Âϕ◦

v(r) − (
Q̂ Â†ϕ◦

v(r)
)∗)

, (14)

Q̂ is the projector over the KS empty-state manifold. In our im-
plementation we avoid the calculation of empty states by using
the relation: Q̂ = Î − P̂ , where Î is the identity operator and
P̂ = ∑Nv

v=1 |ϕ◦
v〉〈ϕ◦

v | is the projector onto the occupied-state mani-

fold; this definition of Q̂ clearly requires only the occupied states
ϕ◦

v [17]. The {aq
v} and {ap

v } functions of Eqs. (13)–(14) will be re-
ferred to as the upper (or q-like) and lower (or p-like) components
of the SBR of the Â operator. If Â is a Hermitian operator, then its
SBR is given by

Â = Â† SBR−−→
( {Q̂ Âϕ◦

v}
{0}

)
, (15)

where we have assumed that the ground-state orbitals ϕ◦
v are real,

as they can always be chosen for time-reversal invariant problems.
Other operators appearing in Eq. (2) are represented as:

[
Ĥ◦, ρ̂ ′] SBR−−→

( {(Ĥ◦ − ε◦
v)pv}

{(Ĥ◦ − ε◦
v)qv}

)
, (16)

[
Â, ρ̂◦] SBR−−→

( {0}
{Q̂ Âϕ◦

v}
)

, (17)

where ε◦
v are unperturbed KS orbital energies. Clearly the SBR of

an operator is incomplete because it misses the information con-
tained in the matrix blocks that vanish in the KS-state representa-
tion of the response density matrix, Eq. (8). It is however sufficient
to calculate traces of products of any operator with any response
density matrix having the block structure of Eq. (7). By using the
SBR, the polarizability in Eq. (5) can be expressed as:

αi j(ω) = −4
(
xi, (ω − L)−1 · y j

)
(18)

where xi , y j , and L are the SBR representations of X̂i , [ X̂ j, ρ̂
◦], and

of the Liouvillian, respectively:

X̂i
SBR−−→

( {xi,v}
{0}

)
� xi, (19)

[
X̂ j, ρ̂

◦] SBR−−→
( {0}

{x j,v}
)

� y j, (20)

L SBR−−→
(

0 D
D + 2K 0

)
� L, (21)

the xi,v orbitals are defined as

xi,v(r) = Q̂ X̂iϕ
◦
v(r), (22)

and the D and K super-operators are defined as:

D · {uv(r)
} = {(

Ĥ◦ − ε◦
v

)
uv(r)

}
, (23)

K · {uv(r)
} =

{
4ϕ◦

v(r)
∑

v ′

∫
κ
(
r, r′)ϕ◦

v ′
(
r′)uv ′

(
r′)dr′

}
. (24)

Finally, the SBR of scalar products (traces of products of opera-
tors) reads:

Tr
(

Â† B̂
) SBR−−→

Nv∑
v=1

(〈
aq

v |bq
v
〉 + 〈

ap
v |bp

v
〉)

� (a,b), (25)

where ({aq
v , }{ap

v }), ({bq
v , }{bp

v }) are the SBRs of Â and B̂ , respec-
tively, and brackets 〈•|•〉 indicate standard quantum-mechanical
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scalar products between one-electron orbitals. Note that, accord-
ing to these definitions, the two operators in Eq. (5), as well as
their SBR in (18), are orthogonal because the commutator of two
Hermitian operators is anti-Hermitian and the trace of the product
of a Hermitian and an anti-Hermitian operator vanishes.

2.2. Dipole operator in periodic boundary conditions

In order to obtain the SBR of the dipole operator and of its
commutator with the unperturbed density matrix, Eqs. (19)–(20),
one needs to evaluate the orbitals defined in Eq. (22). In periodic
boundary conditions (such as used in our PW implementation) the
position operator X̂i is ill defined, since it is both non-periodic
and not bound from below. As a consequence it is not possible to
compute the expectation value of X̂i on Bloch states. However in
the calculation of Q̂ X̂iϕ

◦
v only off-diagonal matrix elements of X̂i

are required:

Q̂ X̂iϕ
◦
v =

∑
c

|ϕ◦
c 〉〈ϕ◦

c | X̂i|ϕ◦
v〉, (26)

which are well defined in periodic boundary conditions [28]. In-
deed, one has

〈ϕ◦
c | X̂i |ϕ◦

v〉 = 1

(ε◦
c − ε◦

v)
〈ϕ◦

c |[Ĥ◦, X̂i
]|ϕ◦

v〉, (27)

and, if the potential operator in the unperturbed Hamiltonian is
purely local, then the commutator in Eq. (27) is simply propor-
tional to the momentum operator,

[
Ĥ◦, X̂i

] = − h̄2

m
P̂i . (28)

When the potential acting on electrons has non-local contributions
(which is the case for the vast majority of pseudopotentials), an
explicit correction due to those non-local terms must be added to
the momentum operator in Eq. (28) [29,30].

In practice, turboTDDFT is designed so as to avoid any
explicit reference to virtual eigenpairs of the KS Hamiltonian,
so that Eq. (27) cannot be used directly. However the relevant
Q̂ X̂iϕ

◦
v orbitals can be obtained directly by solving a set of lin-

ear systems, as proposed in Ref. [17] and thoroughly explained in
Ref. [18]. The relevant routines used to accomplish this task are
borrowed from the phonon code in the Quantum ESPRESSO dis-
tribution [21].

3. Algorithm

According to the discussion in the previous section, any com-
ponent of the polarizability tensor can be expressed as an off-
diagonal element of the resolvent of the Liouvillian (super-) opera-
tor. Let us now see how such matrix elements can be conveniently
calculated using a generalization of the recursion method by Hay-
dock, Heine, and Kelly [31].

3.1. Calculation of the polarizability

At first sight, it may seem that the calculation of the polariz-
ability from the resolvent of the Liouvillian, Eq. (18), would require
the solution of an n × n linear system to invert (ω − L) for each
different value of the frequency ω, a very demanding task as the
system size and/or the number of frequencies increase. As an expe-
dient alternative, turboTDDFT uses a specially tailored iterative
method, called the Lanczos bi-orthogonalization algorithm (LBOA) [9,
32,33], which allows for the bulk of the numerical work to be
done once for all the frequencies, while the linear system is in-
expensively solved in an approximate representation where the
matrix to be inverted is both tridiagonal and of much smaller size
[8,9]. By starting from the initial pair of vectors u1 = v1 = y j ,
this algorithm computes two coupled Lanczos chains, generated
by recursively applying L and L	 to the previous chain vectors.
A pair of bi-orthogonal basis sets of increasing dimension m are
thus recursively constructed, such that the following factorization
holds:

L · m V ≈ m V · m T + βm+1 vm+1me	
m, (29)

L	 · mU ≈ mU · m T 	 + γ m+1um+1me	
m, (30)

mU	 · m V = m I, (31)

where m V = [v1, v2, . . . , vm] and mU = [u1, u2, . . . , um] are n × m
rectangular matrices whose columns are the elements of the bi-
orthogonal basis sets, vl and ul , generated through the LBOA (and
referred to as the right and left iterates of the Lanczos recursion),
m T is the m × m tridiagonal matrix made out of the LBOA coeffi-
cients,

m T =

⎛
⎜⎜⎜⎜⎜⎝

0 γ 2 0
β2 0 γ 3

β3 0
. . .

. . .
. . . γ m

0 βm 0

⎞
⎟⎟⎟⎟⎟⎠ , (32)

mel indicates the l-th unit vector in an m-dimensional space,
and m I is the m × m unit matrix. The diagonal matrix elements
in Eq. (32) vanish because of the special structure of the Li-
ouvillian, Eq. (21), and of the starting vector y j , Eq. (20); one
also has: |βl| = |γ l|. Using the factorization of Eq. (29), and ne-
glecting the terms proportional to βm+1 and γ m+1 therein, the
molecular polarizability given by Eq. (18) can be cast into the
form:

αi j(ω) ≈ 4
(m

zij,
(
ω − m T j

)−1 · me1
)

(33)

= 4
(m

zij,
m w j(ω)

)
, (34)

where mzij = m V j
	 · xi is an m-dimensional column array whose

components can be calculated on the fly at every Lanczos iteration
l as

zl
i j = (

xi, vl
j

)
(35)

=
Nv∑

v=1

〈
xi,v

∣∣vq,l
j,v

〉
, (36)

the orbitals {xi,v} are defined in Eq. (22), vq,l
j,v is the v-th upper (q-

like) component of the Lanczos vector vl
j , and the m-dimensional

column array m w j(ω) is solution of the tridiagonal linear sys-
tem:

(ω − m T j) · m w j(ω) = me1. (37)

In the last three equations we have appended a j suffix to the
m T , v , and m V arrays to indicate that they correspond to different
Lanczos chains generated for different polarizations of the perturb-
ing electric field, X j .

In practice, the procedure outlined above is performed in two
steps, for any given external perturbation (such as, e.g., differ-
ent polarizations j of the perturbing electric field). The first step,
which is also the most time consuming, generates the tridiagonal
matrix m T and the mz array, whose components are obtained on
the fly at each Lanczos iteration using Eq. (36). The calculation of
several response functions (such as, e.g., different components of
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Fig. 1. (a): Numerical behavior of the components of the m z array (Eqs. (35) and
(36)) for the fullerene C60 molecule; after about 100 iterations the values become
quite small. (b): Numerical behavior of the β coefficients (Eq. (32)) calculated for
the same system, as functions of the iteration count n. The values tend to a con-
stant that is approximately half the kinetic-energy cutoff (30 Ry) and odd and even
coefficients oscillate with a width (3.17 eV) that is approximately twice the calcu-
lated optical gap (1.6 eV). The numerical detail of the simulation are the same as
described in Sections 4.1–4.3.

the molecular dipole, corresponding to different rows of the polar-
izability tensor) implies the simultaneous calculation of different
mz arrays. In the second step, the response functions are calculated
from Eq. (34) upon solution of Eq. (37), for any different frequency
one is interested in. Because of the tridiagonal form and the small
dimension of the matrix m T , the second step is computationally
much less demanding than the first one. In the turboTDDFT
package each one of these two steps is implemented in a differ-
ent executable: the second one will likely be run on desktop or
even laptop computers, whereas the first may require substantial
computer resources, according to the size of the system. More de-
tails on the LBOA as applied to linearized TDDFT can be found in
Ref. [9].

3.2. Extrapolating the Lanczos recursion

The components of the mz array in Eq. (34) decrease rather
rapidly when the number of iterations grows large, so that only a
relatively small number of components have to be explicitly calcu-
lated. A much larger number of β and γ coefficients is however
necessary to have the solution of Eq. (37) converge. In Ref. [9]
it was shown that, for large iteration counts, β and γ oscillate
around two distinct values for odd and even iterates, whose av-
erage is related to the energy width of the calculated spectrum
(which in a PW representation is essentially given by the kinetic-
energy cutoff), and whose difference is related to the optical gap.

In Fig. 1 we display the typical behavior of the elements of the
mz array and of the Lanczos β coefficients (see Eq. (32)) as func-
tions of the Lanczos iteration count for the case of the fullerene
C60 molecule (see Section 4). Note that for large iteration counts
the β coefficients oscillate around a value that is roughly half
the kinetic-energy cutoff (here: 30 Ry), and that the difference
between the averages for even and odd iteration counts (here:
3.17 eV) is roughly twice as large as the calculated optical gap,
which is 1.6 eV in this system (the gap in the Liouvillian spectrum
is also twice as large as the optical gap because the spectrum com-
prises positive and negative frequencies).

The rapid decrease of the components of the mz array, together
with the observed asymptotic behavior of the tridiagonal coeffi-
cients suggest an effective strategy to enhance the accuracy of the
Liouville–Lanczos algorithm by extrapolating the results obtained
from a relatively small number of iterations: once m Lanczos it-
erations are performed and the regime is attained where further
components of the z array are negligible and the β and γ coef-
ficients display the typical bi-modal behavior of Fig. 1, a (much)
larger tridiagonal system is solved, where the missing components
of z are simply set to zero, whereas the missing values of β and γ
are set to the average of the values which have been actually cal-
culated. Using distinct averages for odd and even iteration counts
may actually result in a slightly improved accuracy of the extrap-
olation. An example of the efficiency of this procedure will be
shown in Section 4.

3.3. Representation of other response functions

One of the main advantages of the Liouville–Lanczos approach
to TDDFT is that it gives direct access to the observable spectrum
without having to calculate (and eventually dispose of) individual
eigenvalues of the Liouvillian (which are numerical artifacts of the
calculation in the continuum of the spectrum) and its eigenvectors
(which contain way more information than accessible in any ex-
periment). One drawback is that it does not allow one to use the
orbital-based techniques commonly employed in quantum chem-
istry to identify the character of individual spectral features [14].
Selection rules may help to some extent, but specific tools giving
access to more detailed information about individual spectral lines
would be extremely useful. The many different response functions
that can be evaluated corresponding to a same perturbation using
turboTDDFT constitute a natural toolkit to analyze the features
of the calculated spectra. One such response function, which gives
visual information on the photo-active regions of complex molec-
ular systems, is the real-space electron charge-density response to
a perturbing electric field, n′(r,ω), given in Eq. (11).

3.3.1. Charge-density response
The response charge density can in principle be calculated from

Eq. (11), which would however require the preliminary calculation
of the (SBR of the) response density matrix. This is impractical
for large systems, and a more direct approach can be followed
instead. Using arguments similar to those leading to the expres-
sion, Eq. (34), for the molecular polarizability, the charge-density
response to a homogeneous electric field polarized along the j-th
direction can be cast into the form:

n′
j(r,ω) = 4

(mz j(r),m w j(ω)
)
, (38)

where the l-th component of the mz j(r) array reads:

mzl
j(r) =

∑
v

ϕ◦
v(r)vq,l

j,v(r), (39)

and vq,l
j,v has the same meaning as in Eq. (36).

In PW calculations, real-space quantities – such as charge-
density distributions – are usually represented over 3D grids
whose size is a few times larger than the number of PWs and can
contain as many as hundreds of thousands points in several chal-
lenging applications. A direct evaluation of the response density
from Eqs. (38)–(39) would require at each Lanczos step l and for
each grid point r the storage of zl

j(r). The huge amount of memory
required would make this task impractical in most applications.
Therefore, a two-step procedure is used instead. A first Lanczos
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Fig. 2. Response charge of a benzoic acid molecule, for the first main absorption peak at 5.1 eV. The perturbation is oriented along the long axis of the molecule (from left
to right in this figure). The two panels show a top view and side view, respectively.
recursion is performed to obtain the recursion coefficients βl , γ l

and the optical spectrum. From the spectrum, the frequencies ω of
interest can be determined and using the βl , γ l coefficients, the
m w j(ω) array is calculated for those frequencies of interest, using
Eq. (37).

In order to determine the response charge density at those fre-
quencies, a second Lanczos recursion chain is performed and since
now the m w j(ω) are known from the previous step, the contribu-
tion of each iteration can be summed to evaluate Eq. (38), without
storing the z j coefficients of the previous iterations. In this way,
the problem of excessive memory use is avoided, albeit at the price
of a second Lanczos recursion chain.

In Fig. 2 we illustrate the concept of response charges with the
simple example of a benzoic acid molecule. The response charge
has been computed for the first main absorption peak (at 5.1 eV),
for an electric field polarized along the long axis of the molecule.

4. Description and use of individual software components

The turboTDDFT code is designed as a module for the Quan-

tum ESPRESSO distribution. It resides in a self contained direc-
tory under the root directory of the Quantum ESPRESSO tree.
When compiled (see Section 5), the bin/ directory in the Quan-

tum ESPRESSO root contains links to the executables turbo_
lanczos.x (the main program) and turbo_spectrum.x
(a post-processing tool). turbo_lanczos.x performs a Lanczos
recursion to obtain the β , γ , and z coefficients, Eqs. (32), (35), and
(36), while turbo_spectrum.x uses these coefficients to calcu-
late the polarizability absorption spectra.

turboTDDFT has already been successfully applied to various
systems, ranging from silicon nanoclusters [34,35], to photovoltaic
systems [36–38]. In this section we describe the various compo-
nents of the turboTDDFT software package. In the following we
use the fullerene C60 molecule as an example to illustrate the
different steps for the computation and analysis of an optical ab-
sorption spectrum.

4.1. Preliminary ground-state calculations

In order to compute the optical spectrum of a system, a stan-
dard ground-state DFT calculation has to be performed first, yield-
ing the KS orbital functions and energies for all the occupied levels.
The information thus obtained is then used as input point for the
linear response calculation. This ground-state computation is per-
formed by the program pw.x, one of the key components of the
Quantum ESPRESSO package. In Appendix A a sample input file for
Fig. 3. Structure of the C60 molecule.

pw.x is reported for the case of the C60 molecule (Fig. 3), using
the PBE XC functional [41] and an ultrasoft (US) pseudopotential
from the Quantum ESPRESSO database of potentials [22].

Two important limitations affect the present implementation
of turboTDDFT: i) only integer occupations of KS states (the
occupations keyword is set to ’fixed’, which is the de-
fault); ii) only gamma-point (k = 0) computations using real-
valued wavefunctions are allowed. The K_POINTS input card must
be set to Gamma. This is not a limitation for finite or extended dis-
ordered systems, whereas sampling the Brillouin zone of periodic
systems would require the use of supercells. Work on implement-
ing general k-point sampling and complex wavefunctions is in
progress, but not included in the current release of turboTDDFT.

After successful completion of the ground-state computation,
pw.x writes the KS orbitals and energies to disk, together with
all relevant information about the system, like geometry, pseu-
dopotentials, convergence parameters, etc. The TDDFT program
turbo_lanczos.x reads all this data at start. It is therefore not
necessary to re-define the system under study in the input file of
turbo_lanczos.x.

4.2. Lanczos recursions with turbo_lanczos.x

The Lanczos iterations performed by turbo_lanczos.x are
by far the most time consuming step of the TDDFT computation.
For the case of C60, a sample input file for the turbo_lanczos.x
program is given in Appendix A. A list of all input variables of
turbo_lanczos.x is given in Table B.1 of Appendix B. The
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(integer) input variable itermax set up the number of Lanc-
zos iterations and so determines the dimension of the tridiagonal
matrix Eq. (32); in general one can only check whether the num-
ber of iterations is sufficient to achieve an adequately converged
representation at the post-processing stage, however, it is always
possible to add more iterations to the calculation through using
restart=.true. and increasing itermax. The strings defined
in the input variables prefix and outdir identifies the system
data on disk and must correspond to files created by pw.x, easi-
est way to achieve this is to use the same settings in both of the
programs.

The input variable ipol defines the direction of the polariza-
tion of the light (ipol= 1,2,3 for the Cartesian coordinates x, y,
and z). For each direction of the polarization, one full Lanczos re-
cursion chain needs to be computed. If the input variable ipol
is set to the value 4, then turbo_lanczos.x will automatically
perform three recursion chains, one for each direction; from this
calculation it is possible to obtain the full polarizability tensor and
not only the diagonal components.

After execution of turbo_lanczos.x, the computed β and
γ coefficients are stored in the file prefix.beta_gamma_z.p,
where p=1-3 for the three Cartesian directions. These portable
ASCII text files are the only files required by turbo_spectrum.x
in the post-processing stage.

In Appendix A an example is provided on how to use turbo_
lanczos.x to compute the charge-density response. It is nec-
essary to set charge_response=1 and in this case the card
lr_post becomes mandatory. The variable omeg defines the value
of the transition energy h̄ω (in Ry) for which the density response
is to be calculated. By setting the value of plot_type=1,2,3
a density output file can be obtained in xyzd, Xcrysden [44], or
Gaussian cube formats, respectively.

4.3. Obtaining the optical spectrum with turbo_spectrum.x

From the computed recursion coefficients, the absorption spec-
trum can be obtained using Eq. (33). This task is performed by the
program turbo_spectrum.x. The input variables for this pro-
gram are documented in Table B.2 of Appendix B, and a sample
input file for the case of the C60 molecule is given in Appendix A.

The absorption spectrum is computed by solving the linear sys-
tem of Eq. (37). In order to smooth out the spectrum near the
eigenvalues of the tridiagonal matrix, this system is solved for
complex frequencies, ω+ iε. Setting ε to a non-zero value (through
the input variable epsil) amounts to convoluting the theoretical
spectrum with a Lorentzian, or, alternatively, to broadening each
individual spectral line. In the continuous region of the spectrum,
where individual spectral lines are artifacts of the truncation of
the Lanczos chain, the results thus obtained are independent on
ε, whenever this parameter is smaller than the average distance
between consecutive pseudo-discrete lines.

The convergence of the calculated spectrum in the desired en-
ergy range can be easily checked by varying the number of recur-
sion coefficients used for the spectrum. This is set by the input
variable itermax. It can take values up to the number of it-
erations which have been effectively performed previously using
turbo_lanczos.x. If it turns out at this stage that not enough
coefficients have been calculated before, it is possible to simply
restart the turbo_lanczos.x code and to compute additional
coefficients. This is possible without any loss of computer time, i.e.
the code can be restarted from the last iteration.

As discussed in Section 3.2, the speed of convergence of the
spectrum with respect to the number of Lanczos iterations can be
drastically increased using extrapolated coefficients. Such extrapo-
lations are used if the input variable terminator is set to osc
or constant. In this case, the variable itermax is set to a high
Fig. 4. Convergence the absorption spectrum of fullerene C60 with respect to the
number of Lanczos steps without extrapolation. An ultrasoft pseudopotential was
used and a kinetic-energy cutoff of 30 Ry to expand the wavefunctions. The com-
parison between the spectra at 2500 and 3000 iterations shows that 2500 iterations
ensure a reasonably good convergence in a wide energy range. As highlighted in the
inset, the low energy part of the spectrum converges faster and in this case 1500
iterations are enough for an accurate result.

value, e.g. 10,000, while the variable itermax0 determines how
many exactly computed coefficients are used. Extrapolated values
for β and γ are used from itermax0+1 to itermax.

The post-processing code will generate a file prefix.plot. If
in the previous turbo_lanczos.x calculation we have set up
ipol=1,2,3, the prefix.plot will contain in the first col-
umn chi_p_p (p=ipol), in the second the value of ω, and in
third and fourth columns the values of the real and imaginary
part of the polarizability, Eq. (1), respectively. If in the previ-
ous turbo_lanczos.x calculation we have set up ipol=4, the
post-processing code will compute the full polarizability tensor
and the absorption coefficient. In the file prefix.plot the po-
larizability tensor components can be found in the lines starting
with chi_p1_p2, where p1 and p2 can be 1,2,3, depending on
the polarization direction. The absorption coefficient, computed as
the product of the average of the trace of the polarizability with
the frequency ω, can be found in the lines starting with alpha.

In Fig. 4 we display the convergence of the spectrum of C60 as a
function of the number of Lanczos iterations. The technical details
of this calculation are given in Appendix A. For this example 2500
iterations ensure a good convergence in a wide energy range, while
in the low energy range (see inset) a smaller amount of Lanczos
steps (about 1500) is enough to obtain accurate results. In Fig. 5
the extrapolation scheme of Section 3.2 is used to improve the
convergence. By extrapolating the Lanczos chain, as few as 1200
iterations are enough to obtain a converged spectrum in a wide
energy range.

The dependence of the Lanczos coefficients on the PW kinetic-
energy cutoff illustrated in Section 3.2 implies that simulations
utilizing larger cutoffs usually require a larger number of iterations
to converge. To illustrate this property an additional calculation
using a norm-conserving (NC) pseudopotential, which requires a
higher kinetic-energy cutoff of 70 Ry, has been performed. This ex-
ample will also serve the purpose of comparing the performance
of different functionals in TDDFT, namely the local density approx-
imation PZ functional [42] and the generalized gradient approxi-
mation PBE [41] functional used in the previous example. As illus-
trated in Fig. 6(a), after 3000 iterations the spectrum still exhibits
wide oscillations, while in Fig. 4 the same number of iterations
was providing converged results. Also in this case the extrapola-
tion scheme of Section 3.2 can be used to sensibly reduce the
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Fig. 5. Improvement in the convergence of the absorption spectrum of fullerene C60

using the extrapolation technique described in Section 3.2. The spectrum computed
at 1200 iterations still shows wide oscillations if compared to the converged result
at 3000 iterations. If after 1200 iterations the Lanczos coefficients are extrapolated
to a sufficiently large number (10,000 in this case), the computed spectrum be-
comes almost indistinguishable from the converged result.

Fig. 6. (a): Convergence properties of the spectrum of fullerene using norm-
conserving pseudopotentials. The larger cutoff (70 Ry) used in this calculation re-
quires a larger number of iterations compared to the ultrasoft pseudopotential cal-
culation presented in Fig. 4. Indeed, after 3000 iterations the spectrum still shows
very large oscillations and only using the Lanczos extrapolation scheme it is possible
to converge the results. (b): Comparison of the spectrum of fullerene obtained us-
ing the PBE functional and ultrasoft pseudopotentials (PBE-US) with the spectrum
obtained using the PZ functional and norm-conserving pseudopotentials (PZ-NC).
Despite the different computational details the two spectra are in quite good agree-
ment.

computational workload. In Fig. 6(b) the spectra obtained using
different pseudopotentials (US and NC) and functionals (PBE and
PZ) are compared. The agreement is excellent in the low-energy
part of the spectrum. At higher energy the structure and inten-
sity become slightly different. This is only a minor issue since,
as illustrated in Ref. [10], the fine structure (but not the overall
Fig. 7. Comparison of the absorption spectrum of fullerene C60 computed with the
Liouville–Lanczos method described in this work and with a time propagation algo-
rithm. Both calculations are performed starting from the same ground state.

shape) of the continuum is a spurious effect of the finite supercell
size.

5. Installation instructions

turboTDDFT is distributed as a source code, and needs com-
piling for the target environment. The installation procedure is
tightly bound with the installation of Quantum ESPRESSO, and it
is not any different than compiling any other post-processing code
contained therein. Quantum ESPRESSO and turboTDDFT makes
use of the GNU autotools. After extracting in the root directory of
the Quantum ESPRESSO tree, issuing the two UNIX commands

./configure
make tddfpt

will create the turboTDDFT executables in the bin/ folder of the
Quantum ESPRESSO tree. Further detailed installation instructions
can be found in the documentation that comes with the Quantum

ESPRESSO distribution.

6. Comparison with time propagation and sum rules

We have also compared the absorption spectrum of C60, cal-
culated using turboTDDFT with the spectrum obtained from an
explicit time propagation of the KS equations [10,39,40]. For the
time propagation we employed the same cell, basis set, functional,
and pseudopotential given in Appendix A. Real-time propagation
are performed using a fourth-order polynomial expansion of the
propagator exp(−iH(t)
t/h̄), together with the so-called enforced
time-reversal symmetry (ETRS) method [43]. A time step 
t of
9.67 · 10−19 s is employed, for a total simulation time of 13.4 fs.
The absorption spectrum thus obtained agrees well with the spec-
trum obtained by applying the Lanczos recursions, as shown in
Fig. 7. The good agreement of the two spectra, computed in one
case using linear-response algorithms and in the other case a
general time propagation, further validates our implementation of
TDDFPT.

Optical susceptibilities satisfy many sum rules, the most fun-
damental of which is probably the Thomas–Reiche–Kuhn [25–27]
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(or f-sum) rule, which relates the integral of the absorption coeffi-
cient of a molecular system to the number of electrons contained
in it:

f = Im
∑

j

∞∫
0

α j j(ω)ωdω (40)

= 3

2
Neπ, (41)

Ne being the number of electrons (of valence electrons, in a pseu-
dopotential calculation) in the system. The Liouville–Lanczos ap-
proach to TDDFT can be demonstrated to satisfy the f-sum rule
exactly, for any number of Lanczos iterations [45]. This is only
true when utilizing local pseudopotentials. When non-local NC or
US pseudopotentials are used, violations of the f-sum rule are to
be expected. In the two calculations for C60 presented above, the
f-sum violation is extremely small when using NC pseudopoten-
tials (
 f / f ≈ 0.007), whereas it is one order of magnitude larger
(
 f / f ≈ 0.078), when utilizing US pseudopotentials.

Let us finally comment on typical CPU times in the example of
the C60 molecule. On an IBM SP6 machine, employing 32 proces-
sors, the time propagation (13 900 steps) took in total 48.7 hours
(0.21 minutes per time step). On the same machine and for the
same system, turboTDDFT employed 1.8 hours (0.044 minutes
per Lanczos step, for a total of 2500 steps). Even though the precise
CPU requirements for time propagations depend heavily on the
implementation and employed basis sets, this comparison shows
clearly how performant turboTDDFT can be.

7. Conclusions

In this work we have presented the turboTDDFT code, that
implements the Liouville–Lanczos approach to time-dependent
density-functional perturbation theory. A detailed description of
the use of the code has been provided considering the example of
fullerene C60.

The turboTDDFT implementation has a numerical scalability
comparable to ground state DFT calculations and does not require
the explicit calculation of any empty electronic state. Furthermore,
the use of the Lanczos algorithm allows computing of optical spec-
tra in a very wide energy range and easy verification of the f-sum
rule.

In the current implementation hybrid functionals are not
available and the calculations are restricted to a single k point
(gamma). These features will be included in future releases.

In the same spirit as the Quantum ESPRESSO project,
turboTDDFT provides scientists worldwide a well commented
and open-source framework for implementing their ideas. It is in
our best hopes that turboTDDFT can benefit from the already
well established user community of Quantum ESPRESSO for incor-
porating new ideas and keep growing in the future. turboTDDFT
is hosted in a community accessible SVN repository and hence,
apart from releases in Quantum ESPRESSO, those who are willing
to test the latest experimental implementations are welcome to do
so and contribute with their feedback.
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Appendix A. Sample input files

Input Example 1 Input sample for pw.x

&control
calculation = ’scf’
restart_mode = ’from_scratch’,
pseudo_dir = ’./pseudo’,
outdir = ’./out’,
prefix = ’C60’
/
&system
ibrav = 1,
celldm(1) = 35.0,
nat = 60,
ntyp = 1,
ecutwfc = 30.0,
ecutrho = 180.0,
/
&electrons
/
ATOMIC_SPECIES
C 12.01 C.pbe-rrkjus.UPF
ATOMIC_POSITIONS {angstrom}
C −0.692117664 0.000074421 3.443766031
.
.
.

C 3.000992503 −1.410428258 1.162930805
K_POINTS {gamma}

Input Example 2 Input sample for turbo_lanczos.x first stage

&lr_input
prefix=’C60’,
outdir=’./out’,
restart_step=250,
/
&lr_control
itermax=3000,
ipol=4
/

Input Example 3 Input sample for optional turbo_lanczos.x second pass

&lr_input
prefix=’C60’,
outdir=’./out’,
restart_step=250,
restart=.false.
/
&lr_control
itermax=3000,
ipol=1
charge_response=1
/
&lr_post
omeg=0.4017
epsil=0.001
w_T_npol=3
plot_type=3
/

Input Example 4 Input sample for turbo_spectrum.x

&lr_input
prefix=’C60’,
outdir=’./out’,
itermax=10000
itermax0=1500
extrapolation=’osc’
epsil=0.02
end=4.0
increment=0.001
start=0.0
ipol=4
/

http://www.deisa.eu
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Appendix B. Input variables
Table B.1
Input variables for turbo_lanczos.x.

Card Variable name Default value Description

lr_input prefix ’pwscf’ Sets the prefix for generated and read files. The files generated by the ground state
pw.x run should have this same prefix.

outdir ’./’ The directory that contains the run critical files, which include the files generated
by ground state pw.x run.

wfcdir unset The directory where the scratch files will be written and read. Restart related files
are always written to outdir.

restart .false. When set to .true., turbo_lanczos.x will attempt to restart from a previous
interrupted calculation (see restart_step variable).

restart_step itermax The code writes restart files every restart_step iterations. Restart files are
automatically written at the end of itermax Lanczos steps.

lr_verbosity 1 This integer variable controls the amount of information written in standard output.

lr_control itermax 500 Number of iterations to be performed.
ipol 1 An integer variable that determines which element of the dynamical polarizability

will be computed: 1 → αxx(ω), 2 → αyy(ω), and 3 → αzz(ω). When set to 4, three
Lanczos chains are sequentially performed and the full polarizability tensor and the
absorption coefficient are computed.

nipol 1 if ipol < 4; 3 if ipol = 4 Determines the number of zeta coefficients to be calculated for a given polarization
direction.

ltammd .false. When set to .true. the Tamm–Dancoff approximation is used in constructing the
Liouvillian.

no_hxc .false. When set to .true. the change in the internal field (Hartree and exchange-correlation)
is ignored in the calculation, resulting in an independent electron approximation.

charge_response 0 When set to 1, the code computes the response of the charge density and writes it
into a file format determined by the variable plot_type. Setting
charge_response to 1 makes the presence of the card lr_post mandatory.

lr_post omeg 0.0 The response of the charge density is calculated for this transition energy (in
Rydberg units)

epsil 0.0 The broadening/damping term (in Rydberg units).
beta_gamma_z_prefix ’pwscf’ The prefix of the file where the beta gamma zeta coefficients from the first

calculation can be set manually using this parameter. The file outdir/beta_
gamma_z_prefix.beta_ gamma_z.x (where x= 1-3) must exist.

w_T_npol 1 Number of polarization directions considered in the previous calculation. It must be
set to 3 if in the previous calculation ipol=4, it must be set to 1 otherwise.

plot_type 1 An integer variable that determines the format of the file containing the
charge-density response. 1: A file containing the x y z grid coordinates and the
corresponding value of the density is produced 2: The density response is written in
Xcrysden format 3: The density response is written in the Gaussian cube format.

Table B.2
Input variables for turbo_spectrum.x.

Card Variable name Default value Description

lr_input prefix ’pwscf’ Prefix of the files generated by the previous turbo_lanczos.x run.
outdir ’./’ The directory where the output files produced by the previous turbo_lanczos.x

run are stored.
itermax0 500 Number of Lanczos coefficients to be read from the file.
itermax 500 The total number of Lanczos coefficients that will be considered in the calculation of

the polarizability/absorption coefficient. If itermax> itermax0, the Lanczos
coefficients in between itermax0+1 and itermax will be extrapolated.

extrapolation ’no’ Sets the extrapolation scheme. ’osc’ = bi-constant extrapolation; ’constant’ =
constant extrapolation; ’no’ = no extrapolation.

epsil 0.02 The broadening/damping term (in Rydberg units).
units 0 Unit system used. 0: Rydbergs; 1: Electron volts 2: Nanometers/Electron volts.
start 0.0 The polarizability and the absorption coefficient are computed starting from this

value. In units set by the units variable.
end 2.5 The polarizability and the absorption coefficient are computed up to this value. In

units set by the units variable.
increment 0.001 Incremental step used to define the mesh between start and end. In units set by

the units variable.
ipol 1 An integer variable that determines which element of the dynamical polarizability

will be computed: 1 → αxx(ω), 2 → αyy(ω), and 3 → αzz(ω). When set to 4 the
polarizability tensor and oscillator strength function are computed.

verbosity 0 This integer variable Controls the output verbosity.
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