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a b s t r a c t

Despite the well known advantages that a space-variant representation of the visual signal offers, the
required adaptation of the algorithms developed in the Cartesian domain, before applying them in the
log-polar space, has limited a wide use of such representation in visual processing applications. In this
paper, we present a set of original rules for designing a discrete log-polar mapping that allows a direct
application in the log-polar domain of the algorithms, based on spatial multi-scale and multi-orientation
filtering, originally developed for the Cartesian domain. The advantage of the approach is to gain, without
modifications, an effective space-variance and data reduction. Such design strategies are based on a
quantitative analysis of the relationships between the spatial filtering and the space-variant representa-
tion. We assess the devised rules by using a distributed approach based on a bank of band-pass filters to
compute reliable disparity maps, by providing quantitative measures of the computational load and of
the accuracy of the computed visual features.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Inspired by the retina of mammals (Schwartz, 1977), the log-
polar imaging is now a well established paradigm for simplifying a
wide number of computational problems in pattern recognition
and computer vision (see Berton et al., 2006; Traver and Bernardino,
2010 for reviews). The log-polar mapping simultaneously provides a
wide field-of-view, a high spatial resolution on the region of interest,
and a significant data reduction, besides rotation and scaling
invariance properties. All these features are well suitable for robotics
and active vision tasks (e.g. Monaco et al., 2009), and for pattern
recognition applications (e.g. Amiri and Rabiee, 2010).

In the literature, many approaches to directly solve image pro-
cessing and image understanding tasks in the space-variant repre-
sentation of the visual signal have been described. Although, in
theory, the conformal mapping should permit a direct application
of the visual operators developed for the Cartesian images to log-
polar ones, these approaches have to cope with the necessity of
properly adapting the algorithms before applying them on the
space-variant images. In particular, Fischl et al. (1997) analyze
the properties of the log-polar transform from an analytic point
of view, by addressing an application of the Laplacian operator,
nevertheless neglecting the problems related to the discretization
of the log-polar coordinates. Nattel and Yeshurun (2002) present
some common global and local operators specifically designed to
ll rights reserved.
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be directly applied in the log-polar domain, and Smeraldi and
Bigun (2002) use modified Gabor filters designed in the log-polar
frequency plane for facial features detection and face authentica-
tion. Low-level feature extraction in log-polar images through an
approach based on neural network is addressed in (Gomes and
Fisher, 2003). Traver and Pla (2003) tackle the problem of 2D trans-
lation estimation in log-polar images, to take into account how a
simple linear translation is transformed by applying the log-polar
mapping. Three strategies for gradient detection, based on differ-
ence of Gaussian (DOG) operators in the space-variant geometry
are presented and compared by Wallace and McLaren (2003).
The proposed solution is a DOG operator, adapted to the distance
from the image center. Recently, Pamplona and Bernardino
(2009) claim that one of the major difficulties of working with
log-polar images is to apply the usual Cartesian operators in the
log-polar domain. Thus, they present a method for transferring
some of the common Cartesian operators into the corresponding
cortical operations. The proposed approach, based on the transfor-
mations of the operators between the two domains (see Mallot
et al., 1990), requires specific modifications of the algorithms in or-
der to take into account the log-polar transformation, which are
quite expensive from the computational point of view. Finally,
Zhang and Tay (2011) describe a space-variant approach for ver-
gence control, based on disparity computed through normalized
cross-correlation, adapted in the log-polar domain (see also
Bernardino and Santos-Victor, 1996).

Notwithstanding the specific solutions present in the literature
and described above, a general approach to extract visual features
directly into the cortical domain is still missing. Moreover, the is-
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sues related to the discrete log-polar transformations are often not
explicitly addressed.

The main motivation of this paper is to present a general ap-
proach to the computation of visual features, directly in the cortical
domain: in particular, the relationships between the different
parameters of a discrete log-polar mapping and of a bank of mul-
ti-scale and multi-orientation band-pass filters (Bigun, 2006;
Granlund and Knutsson, 1995) are analyzed. The aim is to demon-
strate that by a proper choice of such parameters we can directly
use the algorithmic solutions developed for the Cartesian domain
on log-polar images, without any modification. Moreover, the
inherent space-variance of log-polar mapping is exploited to prop-
erly cope with the multi-scale issue. From this analysis, as a major
contribution of this paper, it is thus possible to devise a set of de-
sign strategies, whose validity is proved with reference to the com-
putation of complex visual features. As a test bed, we consider the
computation of binocular disparity through an algorithm, previ-
ously developed for the Cartesian domain (Chessa et al., 2009a).

The paper is structured as follows: in Section 2 the symbols and
notations used in the text are explained; the log-polar blind-spot
model is described in Section 3; the relationships between the
parameters of the log-polar mapping and of the local spatial filter-
ing are analyzed in Section 4; in Section 5 the devised design strat-
egies are explained; the experimental validation is presented in
Section 6; and the conclusions are reported in Section 7. Finally,
some details about the generality of the proposed approach are
presented in the Appendix.

2. Symbols and notations

We use the following notations and symbols for denoting the
different operations and terms in the subsequent text.
Fi
at
an
(x,y)
g. 1. Cartesian do
different angular
d undersampling
Continuous Cartesian coordinates

(n,h)
 Continuous log-polar coordinates (eccentricity,

and angle)

(q,g)
 Continuous polar coordinates

q0
 Radius of the innermost ring (size of the blind

spot)

qmax
 Radius of the outermost ring (size of the field of

view)
main with the superposition of the log-polar receptive fields (left) and co
and radial positions (thus with different size w and h) that are mapped
areas. (For interpretation of the references to colour in this figure lege
a

rtical domain (ri
in the two corres
nd, the reader is
Growth rate of the size of the log-polar pixel
(receptive field) in the radial direction
m � n
 Size of Cartesian image (columns by rows)

R � S
 Size of log-polar image (rings by sectors)

(u,v)
 Discrete log-polar coordinates

w, h, c
 Width, height, and aspect ratio of a log-polar

pixel (receptive field)

g(x,y)
 A generic spatial filter defined in the Cartesian

domain

r
 Standard deviation of the Gaussian envelope

(related to the spatial support)

x0, /, a
 Spatial peak frequency, phase, and orientation of

a 2D Gabor filter

(xa,ya)
 Continuous rotated Cartesian coordinates

g(n,h)
 A filter defined in the cortical domain

g(x(n,h),

y(n,h))

A filter mapped into the cortical domain
E
 Response of a filter to a signal (inner product)

Emapped
 Response of a filter to a mapped filter

Ematched
 Response of a filter to a matched filter

(n0,h0)
 Radial and angular position in the cortical

domain (eccentricity, and angle)

Ei, /i
 Response and phase of the ith filter of a bank

/IN
 Phase of the input signal

Wmax
 Maximum size of a log-polar pixel

(dn,dh)
 Vector visual feature in the cortical domain

(dx,dy)
 Vector visual feature in the Cartesian domain
3. Log-polar blind-spot model

In the literature, several log-polar mapping models are described
(Bolduc and Levine, 1998; Jurie, 1999; Florack, 2007). In this paper,
the central blind-spot model is chosen for its properties of scale
and rotation invariance, and because of the simplicity of its imple-
mentation (Traver and Pla, 2008). The log-polar transformation
T : (x,y) ´ (n,h), from the Cartesian to the cortical domain, can be
backwards expressed in the following way (Traver and Pla, 2008):

x ¼ q0an cos h

y ¼ q0an sin h;

(
ð1Þ
ght). The green and the cyan areas represent two receptive fields
ponding cortical pixels. The red circle delimits the oversampling
referred to the web version of this article.)
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where a represents the base of the non-linearity of the mapping, q0

is the radius of the blind spot, and ðq;gÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; arctanðy=xÞÞ

are the usual polar coordinates.
It is worth noting that, to deal with digital images, discrete

coordinates have to be considered. Given a Cartesian image of
(m � n) pixels, it is transformed into a cortical image of R rings
and S sectors, where the discrete log-polar coordinates are denoted
by (u,v) = (bnc,bhS/(2p)c) with bc representing the integer part.
Thus, the growth rate of the size of the receptive fields (log-polar
pixel) between two consecutive rings (see Fig. 1) can be expressed
as:

a ¼ exp ln
qmax

q0

� �
=R

� �
; ð2Þ

where qmax ¼ 1
2 minðm; nÞ.

Fig. 1 shows the log-polar receptive fields in the Cartesian
domain and the cortical domain. The red circle, with radius S/2p,
represents the locus where the size of log-polar pixels is equal to
the size of Cartesian pixels. In particular, in the area inside the
red circle a single Cartesian pixel contributes to many log-polar
pixels (oversampling), whereas outside this region many Cartesian
pixels contribute to a single log-polar pixel, thus avoiding the
aliasing due to the undersampling (Jerry and June, 1977). This is
pointed out in the receptive field bordered in violet. In order to
highlight the properties of the discrete transformation, other
Fig. 2. (Left) Three mapped filters in the cortical domain, defined with same orientation
different aspect ratios c are considered: c = 1 and c > 1 (similar results are obtained for c
1, of the Gabor filters as a function of different orientations a in the Cartesian domain.
outermost black thick circle. Three different positions in the cortical plane have been con
two aspect ratios, three different cortical spatial support have been considered: 11 � 11, 2
dotted green, respectively. (For interpretation of the references to colour in this figure l
important parameters of the log-polar mapping must be defined,
such as the aspect ratio of the log-polar pixel:

c ¼ 2p
Sða� 1Þ ¼

w
h
; ð3Þ

where w is the width, defined as w = (2p/S)q0au�1, and h is the
height, defined as h = q0au�1(a � 1), of the log-polar pixel. In the fol-
lowing, the importance of the parameter c for the visual processing
will be analyzed.

4. Analysis of the parametric relationships between log-polar
mapping and local spatial filtering

In general, image feature extraction, based on spatial filtering,
has two main drawbacks: the computational load of the filtering
stage and the necessity of exploiting a multi-scale approach. The
log-polar mapping intrinsically mitigates these issues, since the
input image is compressed and a space-variant processing is
obtained. Thus, the direct extraction of the features in the cortical
domain has a lower computational burden and intrinsically
performs a multi-scale processing, as a function of the cortical
location. To ‘‘optimally’’ design the log-polar mapping for visual
processing tasks, it is important to study the relationships between
the usual processing in the Cartesian domain and the direct extrac-
tion of the features in the cortical domain, by characterizing the
filters g(x,y), defined in the Cartesian domain, with respect to the
a = 0, different spatial support, and different position in the Cartesian domain. Two
< 1). (Right) The polar plots show the responses (Emapped), normalized between 0 and

The reference response of the corresponding matched filter is represented by the
sidered: A–C for c = 1, and D–F for c > 1. For each of the three positions and for the
1 � 21 and 31 � 31 pixels, whose responses are plotted in red solid, dashed blue and
egend, the reader is referred to the web version of this article.)



Fig. 3. Variations of the energy ratio Emapped/Ematched with respect to the parameters of the log-polar mapping and of the Gabor filters (left side of each subfigure). The profiles
of the mapped filters for particular choices of such parameters are marked by capital letters A–D (right side of each subfigure). Hot colors represent high energy ratios (i.e.
Emapped/Ematched is close to 1, thus the distortions of the mapped filter are minimal), whereas cold colors mean low energy ratios. In each subfigure, two parameters have been
varied and the others are kept constant. The default values are: a = 0, c = 1, spatial support 11 � 11 pixels, n0 = 40 (the value is related to the dimension of the used cortical
image). (a) The maximum energy ratio is obtained for a squared log-polar pixel independently of the eccentricity in the cortical plane. (b) The energy is constant
independently of the orientation of the filter when the aspect ratio is c = 1. (c) The maximum energy ratio is obtained for a squared log-polar pixel (c = 1) and a small spatial
support (11 � 11 pixels). Under these conditions the filters show no deformation (see A), otherwise high deformations are present (see B–D). (d) The maximum energy is
obtained for a small spatial support. (e) The maximum energy ratio is obtained for a small spatial support. (f) The energy is constant independently of the values of the
parameters and the filters present only small deformation (see A–D).

1 It is worth noting that the analysis of the parameters, presented in this paper, has
been verified for different Cartesian image size (m � n) and for different cortical
image size (R � S). Moreover, the real and imaginary parts of the Gabor filters have
been considered both separately and jointly.
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different parameters of the log-polar mapping. Analogously, the
spatial filter can be directly defined in the cortical domain g(n,h),
or we can consider a filter mapped into the cortical domain
g(x(n,h),y(n,h)). It is worth noting that, due to the non-linearity of
the log-polar mapping, the mapped filters are distorted (Mallot
et al., 1990; Wallace and McLaren, 2003). Thus, a filtering opera-
tion directly in the cortical domain could introduce undesired
distortions in the outputs. To analyze this issue, we consider the
response E of the filter g(n,h) to the signal s(n,h), that can be
expressed by the inner product E = hg(n,h),s(n,h)i. Specifically, to
characterize the filtering operations, we consider the responses
of a filter to its mapped and to its matched filter. The response to
the mapped filter is:

Emapped ¼ hgðn; hÞ; gðxðn; hÞ; yðn; hÞÞi; ð4Þ

whereas the response to the matched filter is:

Ematched ¼ hgðn; hÞ; gðn; hÞi: ð5Þ

A filtering in the cortical domain results in a space-variant filtering
operation in the Cartesian domain, where both the scale and the ori-
entation of the filters vary. To guarantee a proper multi-orientation
and multi-scale processing, we have to verify in which conditions
the distortion of the mapped filters are minimal.

In particular, the following analysis will be performed by using
Gabor filters (Gabor, 1946), commonly used for visual feature
extraction, since they minimize the joint uncertainty in both the
spatial and the frequency domain. The filters are normalized by
their energy and can be expressed as Daugman (1985):
gðx; y; r;a;/Þ ¼ 1ffiffiffiffi
p
p

r
exp � x2

a þ y2
a

2r2

� �
expðjx0xa þ /Þ; ð6Þ

where r determines the spatial support of the filter, x0 is the spatial
peak tuning frequency, / is the phase of the sinusoidal modulation,
a is the orientation of the filter, and (xa,ya) are the rotated spatial
coordinates in the Cartesian domain.
4.1. Response of a single filter as a function of the cortical location

In order to exploit the advantages provided by a space-variant
processing, it is necessary that the filtering operations perform a
uniform feature extraction, without introducing undesired aniso-
tropies in the parametric space, thus allowing a direct application
of the spatial filtering in the cortical domain, without specific
modifications.

The visual feature extraction we are addressing constrains the
choice of the parameters q0, qmax and R. The radius of the inner-
most ring q0 determines the size of the blind spot, and the radius
of the outermost ring qmax determines the size of the field of view.
The size of the log-polar image depends on the number of rings R.
These parameters affect the space-variance of the mapping (see Eq.
(2)). Once fixed q0, qmax and R, we analyze1 how the response



(a)

(b)

(c)

(d)

Fig. 4. Comparison between the responses of a bank of matched filters (dashed blue
profiles) and those of a bank of mapped filters (solid red profiles) for different
combinations of the parameters of the mapping and of the filter (a–d). Five different
values of the phase /IN are considered for each filter bank response. The peak of the
responses Ei and the value of the phase input are marked by a circle and a square,
respectively. The filter g(n,h) and the corresponding mapped filter g(x(n,h),y(n,h))
are represented as gray level images. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Emapped of the Gabor filters is affected by the discrete log-polar map-
ping, and by the parameters of the filter (see Fig. 2). The filter is char-
acterized by its spatial support and by its orientation (see Eq. (6)).
Moreover, due to the space-variance of the mapping, it is important
to consider different positions (n0,h0) in the cortical plane. Finally,
the discrete mapping is affected by the angular and radial sampling,
that is the aspect ratio of the log-polar pixel (see Eq. (3)). The re-
sponses of the differently oriented filters (colored profiles in the po-
lar plots) for an aspect ratio c = 1 (first row of Fig. 2) are compared to
the responses obtained with c > 1 (second row of Fig. 2). The differ-
ent colors in the polar plots represent different spatial supports of
the filters. It is worth noting the anisotropy of the responses when
the log-polar pixel is not squared: the responses are highly influ-
enced both by the orientation a of the filter, and by the position
(n0,h0) in the cortical plane. For an aspect ratio c = 1 the spatial sup-
port of the filters slightly affects the responses by lowering them
without introducing any anisotropy to the responses.

4.2. Response of a single filter as a function of the parameters of the
mapping

A further analysis is presented to systematically investigate
how the energy ratio between the response Emapped of a mapped fil-
ter and the response Ematched of the matched filter is affected by the
relationships between the parameters of the log-polar mapping
and those of the Gabor filter. The results are shown in Fig. 3. Each
subfigure shows the variation of the energy ratio Emapped/Ematched

with respect to pairs of parameters of the mapping and of the
filters (left side), and the profiles of the mapped filters for four dif-
ferent combinations of such parameters (right side). If the aspect
ratio of the log-polar pixel is approximately 1, the energy ratio
Emapped/Ematched remains high, independently of the eccentricity n0

in the cortical plane and of the orientation a of the Gabor filter
(see Fig. 3a-b). Conversely, values of c different from 1 yield to low-
er responses of the filters with respect to the eccentricity n0 and to
an anisotropy with respect to the orientation a of the filter. More-
over, Fig. 3c shows that the maximum response is obtained when
the spatial support of the filter is small (e.g. 11 � 11 pixels) and
c is close to 1. It is worth noting that under these conditions the
deformations of the mapped filters are relatively small (see inset
A of Fig. 3c). Once fixed c = 1, the influence of the spatial support
of the filter can be evidenced from Fig. 3d-e. The response of the
filter decreases with an increase of the spatial support, indepen-
dently of the eccentricity in the cortical plane and of the orienta-
tion a of the filter. This can be also evidenced from the deformed
profiles of the Gabor filters (see Fig. 3d-e, profiles marked by D
and C). For a given value of the spatial support (e.g. 11 � 11 pixels)
the responses of the filters neither depend on the eccentricity in
the cortical plane nor on the orientation of the filter (see Fig. 3f).

The methodology of the analysis presented in this Section and
the resulting dependencies among the different parameters are
not bounded to a specific filter (i.e. Gabor Filter), but they can be
considered general and applied to a wide class of filters (see
Appendix A for further results).

4.3. Response of a bank of filters as a function of the parameters of the
mapping

In this Section, we address the problem of extracting visual fea-
tures through a direct filtering in the cortical domain. In particular,
we consider the computation, for each orientation, of the local
phase in the image signal, by adopting a distributed representation
of the local phase. Though, it is worth noting that the following
analysis is not limited to the distributed approach, since the equiv-
alence between direct phase measurement and energy distributed
models has been demonstrated (Qian and Mikaelian, 2000).
To perform such analysis, we analyze the different responses Ei

of a bank of Gabor filters, each characterized by a different value of
the phase /i, for a given phase /IN of a filter considered as the input
signal. It is worth noting that, a reliable detection of the input
phase can be obtained when the peak of the responses Ei occurs
for the value /IN of the input signal and when the shape of the



Fig. 5. Left images of the considered stereo pairs. (a) A synthetic frontoparallel plane. (b) and (c) Real-world scenarios acquired by a 3D laser scanner.

2 In the polar region of the mapping the aspect ratio is c = (kp2p/S)u, where kp is a
constant that takes into account the continuity condition between the polar and the
log-polar mapping, and u represents the eccentricity.
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response curve is bell-shaped and symmetric with respect to its
peak.

Fig. 4 describes how the filter bank response is affected by the
spatial support of the filter, the aspect ratio c of the log-polar pixel,
and the orientation a of the filter, respectively. Since the stability of
the phase-based approach has been demonstrated (Fleet and Jep-
son, 1993), the response of the filter bank for ‘‘non-optimal’’
choices of the parameters is analyzed. Fig. 4a shows the filter bank
response for different phase values /IN in the input signal for a
bank of filters with the reference set of parameters: spatial support
equal to 11 � 11 pixels, aspect ratio c = 1 and filter orientation
a = 0. Fig. 4b shows the filter bank response with a spatial support
equal to 51 � 51 pixels. For a small spatial support the response of
a bank of Gabor filter and the one of a bank of mapped filter is sim-
ilar, with the peak response coincident with the input phase value.
A bank of filters with larger spatial supports generates a flatter re-
sponse curve, thus compromising the reliability of the detection of
the peak. The aspect ratio c of the log-polar pixel also affects the
filter bank response (not only the response E of a single filter).
Fig. 4c shows how the peak of the response does not coincide with
the input phase /IN. Moreover the profile of the mapped filter
shows a significant deformation. Finally, if the spatial support of
the filter is small and the aspect ratio of the log-polar pixel is equal
to 1, the orientation of the filter does not affect the filter bank re-
sponse (see Fig. 4d).

5. Design rules of the log-polar mapping for visual processing

5.1. Proper selection of the parameters of the mapping and of the filters

In the previous Section, we have devised the constraints for the
parameters of the log-polar mapping and of the spatial filters, to
make the signal processing in the cortical domain equivalent to
the one in the Cartesian domain. In order to extract visual features
in a reliable way, the response of a filter to a given input signal
should depend on the feature we are interested in, only. Any other
variation, due to distortions or anisotropy introduced by the log-
polar transformation, should be avoided. Thus the following design
rules have to be considered:

– The aspect-ratio of the log-polar pixel has to be around 1. It is
worth noting that in (Traver and Pla, 2008) the authors state
that a log-polar pixel with aspect ratio equals to 1 is necessary
to correctly compute the gradient orientation. The analysis con-
ducted in this paper shows that this rule can be generalized in
order to efficiently use the local spatial operators to measure
important elements of the visual signal (Adelson and Bergen,
1991; Granlund and Knutsson, 1995).

- The spatial support of the filter has to be small, since the growth
of the size of the filters introduces a uniform decrease of the
responses, due to the higher distortion of the mapped filters,
that reduces the reliability of the feature extraction. We can
observe that the minimum spatial support of a filter is bounded
by the sampling constraints.

5.2. Fovea design

In the literature, different techniques to handle the information
in the blind spot have been proposed. A Cartesian representation in
the foveal region can be used (Bolduc and Levine, 1998), although
it is necessary to take into account the discontinuity between the
central area and the peripheral area. An alternative representation
is to consider a polar fovea (Berton et al., 2006). However, the polar
fovea model has the major drawback of generating an aspect ratio
c that changes with the distance from the origin,2 thus undesired
distortions and anisotropies are introduced, as we have previously
demonstrated. It is also worth noting that the size of the blind spot
is usually small, if compared with the spatial support of the filter,
and thus the problem associated with the discontinuity issue
diminishes.

5.3. Multi-scale analysis

To optimally detect different features at different levels of res-
olution in the input image, a multi-scale approach is necessary.
Considering that the common spatial filters, used for feature
extraction, are band-pass filters, centered in their own spatial peak
frequency, whereas information in natural images is spread over a
wide range of frequencies, it is necessary to use a technique that
allows us to capture information from the whole range. In general,
a multiresolution analysis can be efficiently implemented through
a coarse-to-fine strategy that allows us to recover feature values
larger than the spatial support of the filter. The number of spatial
scales depends on the specific processing task addressed. The space
variance of the log-polar mapping, i.e. the linear increase of the
filter size with respect to the eccentricity, can be exploited to
efficiently implement a multi-scale analysis. A pyramidal approach
(Burt and Adelson, 1983) can be considered as a ‘‘vertical’’
multi-scale, i.e. the variation of the filter size at a single location,
whereas the log-polar spatial sampling acts as an ‘‘horizontal’’
multi-scale, i.e. the variation of the filter size across different loca-
tion (Bonmassar and Schwartz, 1997). The ‘‘vertical’’ multi-scale is
also addressed in the literature as ‘‘cortical pyramids’’ (Colombo
et al., 1996).

To exploit the ‘‘horizontal’’ multi-scale properties, an additional
rule to design the log-polar mapping is introduced. The spatial
support of the filter is a function of the log-polar pixel size w � h,
thus the choice of the desired size of the filter at the maximum



HD VD

Fig. 6. Horizontal (HD) and vertical (VD) disparities for a frontoparallel plane, when
the optical axes are vergent in the center of the plane. (First row) Computation in
the cortical domain with two ‘‘vertical’’ scales. (Second row) Computation in the
Cartesian domain with two ‘‘vertical’’ scales and with five ‘‘vertical’’ scales (third
row).
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eccentricity qmax constraints the maximum log-polar pixel size
Wmax. Consequently, it is necessary to devise how the parameters
of the log-polar mapping can be expressed as a function of Wmax.
By assuming the aspect ratio of the log-polar pixels c = 1, that is
w = h = q0au�1(a � 1) and by considering Eq. (2), the novel rule that
relates the total number of rings R to Wmax can be expressed by:

R ¼ � ln qmax=q0ð Þ
ln ðqmax �WmaxÞ=qmaxð Þ : ð7Þ
Fig. 7. Comparison between the estimated disparity maps and the ground truth for a fro
the axes of the two cameras are vergent in the center of the planes. The average errors in
0.69 pixels for the first row, and 1.71 and 0.79 pixels for the second row. The ground tr
Hence, the log-polar mapping is defined by three parameters: q0,
qmax and Wmax.

5.4. Vector feature mapping

In computer vision, important visual features, such as the optic
flow and the disparity for a stereo active vision system with
convergent axes, are described by vector fields. Since the visual
features (d) are computed in the cortical domain, the transforma-
tion of a vector field from the (n,h) domain to the (x,y) domain
can be expressed in terms of general coordinates transformation
(Chan Man Fong et al., 1997):

dx

dy

� �
¼

@x
@n

@x
@h

@y
@n

@y
@h

" #
dn

dh

� �
: ð8Þ

Combining Eqs. (1) and (8), we obtain:

dx

dy

� �
¼ q0an lnðaÞ

cos h � sin h

sin h cos h

� �
dn

dh

� �
ð9Þ

The scalar coefficient of Eq. (9) represents the scale factor of the log-
polar vector, and the matrix describes the rotation due to the
mapping.

6. Experimental validation

In this Section the described design rules are assessed by using a
multi-scale and multi-orientation approach for the extraction of
visual features. In particular, a distributed phase-based algorithm
for vector disparity evaluation has been considered (Chessa et al.,
2009a).

6.1. Disparity computation in log-polar images

The issue of disparity estimation for log-polar foveated systems
has been addressed by several authors in the literature. In (Wei-
man, 1994) a preliminary study on the use of local Gabor filters
for the computation of binocular disparity in log-polar images is
presented, but no results are shown. Ahrns and Neumann (1998)
use Gabor filters to compute optical flow, then they integrate it
with a Kalman filter, in order to obtain depth estimation with a
structure from motion approach. Sparse disparity maps are ob-
tained by using a matching of Laplacian features in (Grosso and
Tistarelli, 2000). Bernardino and Santos-Victor (1996) and
ntoparallel plane (first row) and for a slanted plane (second row). In both situations
the computation of the horizontal (HD) and vertical (VD) disparities are: 1.72 and

uth disparity range is between �16 and 16 pixels.
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Manzotti et al. (2001) present techniques for extracting a disparity
measure for vergence control, thus neglecting the contribution of
the vertical disparity, whereas in (Bernardino and Santos-Victor,
2002) the authors follow a Bayesian approach to estimate both
horizontal and vertical disparities. However, the lack of quantita-
tive results prevents an explicit comparison with our approach.

It is worth noting that the algorithm used for the experimental
validation presented in this paper is suitable to be directly applied
on cortical images, since 2D vector disparity is computed without
an explicit search of the correspondences, between the left and
the right images, along the epipolar lines. In this way, it is not nec-
essary to take into account that the straight lines in the Cartesian
domain become curves in the log-polar space (Schindler, 2006).

6.2. Results

The 2D vector disparity is computed for stereo image pairs
acquired by an active vision system: the two cameras of the system
can actively fixate points in the 3D workspace through vergence
and version movements. In order to quantitatively benchmark
the proposed approach, stereo sets with available ground truth dis-
parities are necessary. To this aim, the tool described in (Chessa
et al., 2009b) is used. Fig. 5 shows the left images of the stereo pairs
used in the following analysis. To allow a future quantitative com-
parison with the results presented in this paper, the stereo pairs
and the ground truth data considered for the analysis are made
publicly available at www.pspc.dibe.unige.it/Research/vr.html.
The visual task we are considering constraints the choice of the
blind spot radius and the number of scales. Since in active vision
systems information in the fovea is the most important, the q0 is
kept small, i.e. in the range between 3 and 11 pixels. Moreover,
since the presence of large disparities in the periphery affects the
number of scales, both ‘‘horizontal’’ multi-scale (see Eq. (7)) and
HD estimation

HD ground truth

VD estimation

VD ground truth

Fig. 8. Comparison between the estimated disparity maps (first row) and the
ground truth (second row) for a stereo pair obtained from a real scenario acquired
by a laser scanner. The average errors in the computation of the horizontal (HD) and
vertical (VD) disparities are 1.50 and 0.57 pixels, respectively. The ground truth
disparity range is between �13 and 21 pixels.
‘‘vertical’’ multi-scale are used. Given the maximum value of dis-
parity we aim to compute, the values of Wmax range between 4
and 8, and the number of ‘‘vertical’’ scales is chosen between 1
and 3.

According to these choices, and to the design rules we have for-
mulated in Section 5, we first transform the stereo image pair into
the cortical domain, then the 2D vector disparity is computed in
the cortical domain (n,h). The following set of parameters are used
for all the experiments: a bank of Gabor filters with spatial support
11 � 11 pixels, peak frequency x0 = 1/4, bandwidth 0.833 octave
and 8 different orientations a. Finally, the vector disparity is trans-
formed into the Cartesian domain (x,y) by using Eq. (9), where we
perform the quantitative benchmark with respect to the ground
truth data.

Fig. 6 shows the resulting estimate of the horizontal and vertical
disparities for a frontoparallel plane, with the camera axes vergent
in the center of the plane. Fig. 6 (first row) shows the disparities
computed in the cortical domain, by using two ‘‘vertical’’ scales.
It is worth noting that two ‘‘vertical’’ spatial scales are not suffi-
cient to recover the correct disparity range if the bank of filters is
applied into the Cartesian domain (see Fig. 6 (second row)), where
instead five ‘‘vertical’’ scales are necessary (third row).

In order to quantitatively analyze the reliability of the results,
the computed disparity maps are compared to the available ground
truth maps. Figs. 7–9 show the computed disparity maps obtained
from stereo pairs representing a plane and two more complex real-
world scenes, acquired by a laser scanner, respectively. We can ob-
serve that the resulting error in the disparity estimation is small
with respect to the range of the ground truth disparity values.

Furthermore, the reliability of the disparity values with respect
to the different parameters of the mapping is analyzed. Tables 1
and 2 show how the size of the cortical image, defined by c = 1
and by q0, qmax and Wmax (see Eq. (7)), and the number of the con-
HD estimation VD estimation

HD ground truth VD ground truth

Fig. 9. Comparison between the estimated disparity maps (first row) and the
ground truth (second row) for a stereo pair obtained from a real scenario acquired
by a laser scanner. The average errors in the computation of the horizontal (HD) and
vertical (VD) disparities are 1.29 and 0.54 pixels, respectively. The ground truth
disparity range is between �6 and 10 pixels.

http://www.pspc.dibe.unige.it/Research/vr.html


Table 1
Performance comparison between the computation of the disparity in the Cartesian and in the log-polar domain for different sizes of the cortical image. The values refer to the
test image shown in Fig. 5a. AEH and AEV are the global average errors for the horizontal and for the vertical disparity, respectively. AEH fovea and AEV fovea are the local errors
around the fovea. AEH periphery and AEV periphery are the errors in the periphery. The execution time is expressed as a percentage of the execution time in the Cartesian domain
with five spatial scale.

Number of scales AEH AEV AEH fovea AEV fovea AEH periphery AEV periphery Execution time (%)

Cartesian domain
(m � n)
331 � 331 5 0.82 0.27 0.10 0.10 0.83 0.28 100
331 � 331 2 3.50 2.43 0.30 0.21 3.59 2.68 89
331 � 331 1 3.73 2.74 0.76 0.54 3.77 3.09 67

Cortical domain
R � S, q0, Wmax

100 � 159, 3, 5 2 1.37 0.45 0.29 0.29 1.53 0.61 36
100 � 184, 5, 5 2 1.31 0.39 0.28 0.22 1.47 0.57 36
100 � 159, 3, 5 1 1.92 0.64 0.43 0.35 2.09 0.83 29
100 � 184, 5, 5 1 1.95 0.71 0.46 0.29 2.07 1.01 20
64 � 117, 5, 7 1 2.13 0.84 0.50 0.34 2.23 1.04 9

Table 2
Performance comparison between the computation of the disparity in the Cartesian and in the log-polar domain for different sizes of the cortical image. The values refer to the
test image shown in Fig. 5b. AEH and AEV are the global average errors for the horizontal and for the vertical disparity, respectively. AEH fovea and AEV fovea are the local errors
around the fovea. AEH periphery and AEV periphery are the errors in the periphery. The execution time is expressed as a percentage of the execution time in the Cartesian domain
with three spatial scale.

Number of scales AEH AEV AEH fovea AEV fovea AEH periphery AEV periphery Execution time (%)

Cartesian domain
(m � n)
534 � 524 3 1.02 0.84 0.24 0.10 1.20 0.55 100
534 � 524 2 1.45 0.98 0.28 0.11 1.91 0.83 92
534 � 524 1 1.98 1.04 0.65 0.20 2.59 1.24 70

Cortical domain
R � S, q0, Wmax

232 � 373,5,4 2 1.29 0.54 0.41 0.19 1.51 0.67 42
232 � 373,5,4 1 1.61 0.53 0.58 0.20 1.93 0.67 31
154 � 247,5,6 2 1.70 0.86 0.52 0.29 2.15 1.10 21
154 � 247,5,6 1 1.84 0.79 0.63 0.29 2.33 1.03 15
115 � 183,5,8 2 2.01 1.00 0.74 0.44 2.61 1.25 12
115 � 183,5,8 1 2.08 1.10 0.74 0.46 2.69 1.41 12
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sidered ‘‘vertical’’ scales affect both the execution time, and the
global average error on the computation of the disparities, with
respect to the ground truth. In addition to the global average error,
computed by considering all the pixels of the image, the average
error around the fovea (a region with a radius half of the qmax)
and in the periphery is computed separately. This approach is
necessary, since the central part of the image is mostly important
for active vision tasks and the error in the peripheral area is af-
fected by the increased size of the log-polar pixel, i.e. by the lower
resolution due to the mapping. The analysis shows that the average
error in the region around the fovea is small, i.e. less than 1 pixel in
every condition, thus the visual feature is reliable enough to be
used in computer vision systems.

The execution time is expressed as a fraction of the algorithm
execution time in the Cartesian domain with the optimum set of
parameters, in this way the obtained results are not bound to a
specific implementation. It is worth noting that the time necessary
for the forward and backward log-polar transformation is a small
percentage of the total execution time.

The results shown in this Section confirm that it is possible to
compute the disparity directly in the cortical domain, without
modifying the algorithm, by taking advantage of the ‘‘horizontal’’
scale and of the consistent data reduction, and thus of the low exe-
cution time, with a tolerable approximation error.

7. Conclusion

In this paper, we have addressed the problem of visual process-
ing through linear spatial filtering directly in the log-polar domain,
by also taking into account the multi-orientation and multi-scale
approaches. The extraction of visual features based on spatial fil-
tering has a great importance for many applications of pattern rec-
ognition and computer vision, e.g. edge detection, face recognition,
object detection, disparity and optic flow estimation. Nevertheless,
this topic has not been fully investigated in the literature. To this
aim, a systematic analysis of the relationships between the param-
eters of the discrete log-polar mapping and of the spatial filters has
been carried out.

The major outcome of this analysis is the definition of a set of
general design strategies, that allow us to use algorithms, which
were originally designed in the Cartesian domain, directly in the
log-polar space, without introducing specific modifications. In
particular, we have deduced constraints on the aspect ratio of
the log-polar pixel and on the spatial support of the filter. More-
over, we have devised a novel rule to efficiently implement a
multi-scale analysis, by exploiting the space-variance of the
log-polar mapping.

The validity of the proposed design rules has been proved by
using an algorithm that computes a complex visual feature (the
binocular disparity) through a hierarchical combination of the
responses of a bank of spatial filters. The obtained results show
that it is possible to recover reliable values of the considered visual
features by directly applying the algorithm in the cortical domain,
thus achieving the advantages of the space-variant representation,
e.g. a consistent reduction in the execution time.

The software libraries and the dataset used for the experimental
validation are made publicly available at www.pspc.dibe.unige.it/
Research/logpolar.html.

http://www.pspc.dibe.unige.it/Research/logpolar.html
http://www.pspc.dibe.unige.it/Research/logpolar.html
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Appendix A. A general approach to spatial filtering in cortical
domain

The results of the systematic analysis carried out in Section 4 is
not limited to the Gabor filters, since we consider them as an
instantiation of the class of band-pass filters used for visual feature
extraction (Mallat, 1989; Adelson and Bergen, 1991; Bigun, 2006).
The same considerations can be applied to a large set of local spa-
tial operators, since the non-linear mapping of the Cartesian do-
Fig. A.10. Cartesian domain (left) and the corresp

Fig. A.11. Variations of the energy ratio Emapped/Ematched with respect to the parameters o
the mapped filters for particular choices of parameters are marked by capital letters A–
main yields a spatial distortion of the transformed domain.
Fig. A.10 shows how the uniform Cartesian domain is represented
in the log-polar plane: both the global features, e.g. the red and
green stripes, and the local features, e.g. the cyan and magenta
boxes, are distorted. We have to take into account how such distor-
tions affect the shape of the filter, and consequently its processing
capabilities. To this aim, it is not sufficient to evaluate the magni-
tude of the distortions in the transformed domain, but how such
distortions affect the inner product (see Eqs. (4) and (5)). Since
the inner product has no analytical solution for practical use filters,
even for a simple Gaussian filter, in this paper it has been solved
numerically.

Moreover, it is worth noting that the real implementation of the
log-polar mapping relies on a discrete transform, thus we have to
take into account the sampling of the Cartesian domain. In partic-
onding transformed log-polar domain (right).

f the log-polar mapping and of the filters (left side of each subfigure). The profiles of
D (right side of each subfigure). Notations and parametric variations as in Fig. 3.
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ular, we have to properly choose the sampling of the radial and
angular coordinates in order to represent them equally in the
cortical domain. This choice constraints the aspect-ratio c of the
log-polar pixel to a value close to 1.

To clarify the generality of the approach, the same analysis of
Section 4 is performed for two isotropic spatial filters: a Gaussian
and a Laplacian filter. The former is commonly used to preprocess
the images, in order to remove noise, but it is also used as a
weighting function in the processing stages of several computer vi-
sion algorithms. The latter is a two-dimensional differential isotro-
pic filter, used in image processing, in particular for edge detection.

We consider a Gaussian filter normalized by its energy, defined
as:

gðx; yÞ ¼ 1ffiffiffiffi
p
p

r
exp � x2 þ y2

2r2

� �
; ðA:1Þ

and a Laplacian filter, defined as:

gðx; yÞ ¼ 1ffiffiffiffi
p
p

r3
2� x2 þ y2

r2

� �
exp � x2 þ y2

2r2

� �
: ðA:2Þ

Fig. A.11 shows the results of the analysis described in Section 4.2
for a Gaussian filter (left side) and for a Laplacian filter (right side).
As we obtained for the Gabor filters, it is possible to conclude that,
to have low distortions, the aspect-ratio c must be close to 1. More-
over, for a given value of the spatial support, once fixed c = 1, the
responses of the filters do not depend on the eccentricity in the cor-
tical plane, and a small spatial support produces a more reliable
response.
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