
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013 1293

Semi-Automatic Generation of Device Drivers for
Rapid Embedded Platform Development

Andrea Acquaviva, Member, IEEE, Nicola Bombieri, Member, IEEE, Franco Fummi, Member, IEEE, and
Sara Vinco, Member, IEEE

Abstract—IP core integration into an embedded platform
implies the implementation of a customized device driver com-
plying with both the IP communication protocol and the CPU
organization (single processor, SMP, AMP). Such a close depen-
dence between driver and platform organization makes reuse of
already existing device drivers very hard. Designers are forced to
manually customize the driver code to any different organization
of the target platform. This results in a very time-consuming
and error-prone task. In this paper, we propose a methodology
to semi-automatically generate customized device drivers, thus
allowing a more rapid embedded platform development. The
methodology exploits the testbench provided with the RTL IP
module for extracting the formal model of the IP communication
protocol. Then, a taxonomy of device drivers based on the CPU
organization allows the system to determine the characteristics
of the target platform and to obtain a template of the device
driver code. This requires some manual support to identify the
target architecture and to generate the desired device driver
functionality. The template is used then to automatically generate
drivers compliant with 1) the CPU organization, 2) the use in a
simulated or in a real platform, 3) the interrupt support, 4) the
operating system, 5) the I/O architecture, and 6) possible parallel
execution. The proposed methodology has been successfully
tested on a family of embedded platforms with different CPU
organizations.

Index Terms—Device driver design, embedded systems,
hardware-software co-design, platform development.

I. Introduction

CURRENT AND NEXT generation high-performance
systems-on-chip (SoC) are characterized by multiple

computational cores and a number of integrated peripherals,
accelerators, and reconfigurable logic sections [1]–[3]. The
design process of such heterogeneous multicore systems is
increasingly complex and time consuming, as it requires the
exploration of many alternatives to address the even more
pushing performance requirements of applications and to
handle heterogeneous use cases [4]. Such a component-level
design exploration has a huge impact on the development of
hardware-dependent software (HdS) [5], which includes device
drivers.

Manuscript received August 2, 2012; revised February 11, 2013; accepted
March 18, 2013. Date of current version August 16, 2013. This work was
supported in part by the European Project TOUCHMORE under Grant FP7-
ICT-2011-7-288166. This paper was recommended by Associate Editor S.
Parameswaran.

A. Acquaviva is with the Department of Control and Computer Engineering,
Politecnico di Torino, Turin 10121, Italy (e-mail: andrea.acquaviva@polito.it).

N. Bombieri, F. Fummi, and S. Vinco are with the Department of
Computer Science, University of Verona, Verona 37100, Italy (e-mail:
nicola.bombieri@univr.it; franco.fummi@univr.it; sara.vinco@univr.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2257924

Design and customization of HdS and, in particular, of
device drivers is key to reducing time-to-market and it entails
two main aspects. From one side, the communication protocol
between processing cores and devices depends on the device
architecture and interface. On the other side, synchronization
of accesses to a device depends on the number and type
of processing cores that may have access to the device.
A specific device can be accessed by multiple cores each
running its own OS and device driver. On the other side, in
a shared memory symmetric multiprocessor system (SMP) a
single driver running from the shared memory has to arbitrate
between different access requests possibly coming from the
various cores.

The close dependence between driver and platform orga-
nization makes reuse of already existing device drivers very
hard. Thus, designers have to manually customize the driver
code to any different organization of the target platform,
through a very time consuming and error-prone process. This
limits the exploration of alternative platforms that is crucial
for an effective selection of the target platform.

This paper proposes a semi-automatic device driver gener-
ation and customization methodology for rapid development
of embedded platforms to support design space exploration
during platform development.

Instead of requiring formal specification or manual imple-
mentation of the device functionalities, the proposed technique
exploits information available during the device design and
distributed together within the device itself. The last step
before actual synthesis of a device is register transfer level
(RTL) modeling. At RTL, the device is defined in terms of flow
of signals (or transfer of data) between hardware registers and
of logical operations performed on those signals. Such an im-
plementation is called a RTL model of the device and it is pro-
vided with a testbench, used to stimulate and verify the device
behavior. The methodology proposed in this article exploits
this testbench to automatically generate the formal model of
the HW/SW communication protocol. Such a formal model is
then tagged by the user, to identify the provided functionalities.

The quality of the produced device driver will strictly
depend on the starting testbench code. If the testbench does not
activate all the device functionalities or it does provide only a
subset of the available features, then the final device driver
will be incomplete as well. Despite that, the methodology
allows for the saving of design and verification time to write
the device driver by exploiting the testbench. The claim is
that manually tagging the testbench, and even making small
modifications to it, is a reasonable effort compared to the
manual implementation of the driver itself.

0278-0070 c© 2013 IEEE



1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 1. Integration of the proposed methodology in a system-level design
flow.

This article is a proof-of-concept that demonstrates that
it is possible to save design and verification time to write
device drivers by exploiting the testbench and avoiding formal
specifications. In the current states, the proposed methodology
addresses device drivers for embedded devices of medium/low
complexity. Addressing more complex classes of devices,
communication mechanisms, such as DMA or complex buffer
management, or performance or timing requirements are in-
teresting extensions of the proposed approach and part of our
future work.

The article also focuses on supporting device driver gener-
ation for alternative CPU organizations. Thus, the generated
code is customized to fulfill the requirements of the target
platform, whose description is selected by the designer among
a set of architectural alternatives. Synchronization primitives
are added whenever needed by the specific CPU model and or-
ganization (either single processor, SMP, or AMP) of the target
platform. Finally, the device driver customization methodology
is fully compliant with real or simulated multicore platforms.

The customization methodology relies on manual specifica-
tion of target platform and OS characteristics by the designer.
However, the effort required is minimal and code generation
is completely automated.

Fig. 1 shows how the proposed methodology can be inte-
grated into a modern system-level design flow [6], in which
different design groups operate on different system views.
Starting from an abstract informal specification, the system
model is refined through different abstraction layers. The
system-level description is mapped onto an architecture to
obtain a transactional-level model where communication is
completely separated from computation. After partitioning,
each HW device is refined through an RTL modeling and ver-
ification step, which in turn enables the automatic generation
of the device driver with the methodology proposed in this
article, and, finally, the device integration into the embedded
platform.

The methodology has been implemented in a tool, D2Gen,
which provides a graphical interface for guiding the designer
all along the generation flow, until code generation is ac-
complished. D2Gen is built on top of HIFSuite [7] and it
has been exploited to generate drivers for a set of bench-
marks targeting a family of embedded platforms with different
CPU organizations. Since generation is semi-automatic and
the goal is to obtain drivers for embedded devices during
the design space exploration, the generated device drivers
are not highly optimized. However, D2Gen allows for the
obtainment of a fast implementation of the device drivers
and thus to integrate the devices in the target platform.
Furthermore, D2Gen can generate device drivers for different
target configurations, thus allowing design space exploration
and the comparison of different alternatives while performing
platform development. To the best of our knowledge, this is the
first paper proposing a comprehensive device driver generation
methodology targeting embedded platforms with various CPU
organizations.

The article is organized as follows. Section II outlines
related work about automatic device driver generation. Sec-
tion III presents architectural scenarios, the related device
driver taxonomy and an analysis of the most common RTL
testbenches. Section V presents an overview of the driver
generation methodology. Section VI reports the generation
methodology in detail. Experimental results are reported in
Section VII, whereas Section VIII concludes the paper.

II. Related Work

In [8] the authors show how standard object oriented no-
tations, like UML, can be used to simplify and support the
development of specific pieces of code, like device drivers. [9]
presents an integrated methodology to design a device and the
corresponding driver by using the SpecC language. However,
both these papers do not propose a way for automatically
generating the device driver code. An automatic generation
method is proposed in [10], where the authors present an
approach to HW/SW communication synthesis based on a
regular language called ProGram. Synthesis is done from an
architecture and implementation-dependent formal description
of a device access protocol. A formal specification of the
device driver functionality is used as starting point also in [11]
and [12], where the authors derive the driver code from event
driven state machine models. Also [13] uses an initial formal
specification based on state machines to gain automatic device
driver generation. The specification describes the functionality
of the device driver, depicted as a set of events, the interface
with the host CPU and the operating system requests handled
by the device driver itself. [14]–[16] describe frameworks that
can be used to assist the design of device drivers specifically
for Linux/Unix-based systems. [17] supports device driver
implementation by allowing automatic generation of low level
code accessing the device. Formal specification of device ports
and registers is necessary. Then, the designer can complete the
device driver by using the generated low level code as access
functions to the device. [5], [18] propose two techniques for
HdS generation in general, which rely on manual specifications
of the software architecture.

[19] automates reverse engineering of device drivers. De-
vice driver code is synthesized, such that it implements the
same communication protocol of the starting description, even
if targeting a different operating system. As a drawback, an



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1295

original implementation of the device driver is still necessary
and the quality of the final device driver will strictly depend
on the original code.

All previous works require a manual and formal specifica-
tion of the device driver functionalities. Furthermore, only a
few of the works support platform configuration, since device
drivers are generated for a specific architecture and, thus,
exploration of alternative platforms is limited.

III. Methodology Starting Point

In this section we present the starting point of the generation
methodology, the two-level structure used for the generated
device drivers and an analysis of the key concepts that strongly
affect the driver structure.

A. Device Driver Structure

A real device usually offers more functionalities than syn-
chronous read and write operations, such as initialization,
configuration and various types of control operations. Each
operation to/from the device (such as send data or receive
result) must follow a precise protocol, which implies data type,
temporization and so on, to perform a correct CPU-device
communication.

Each operation consists of a sequence of write and read
accesses to the corresponding memory addresses. Such a kind
of operations are usually supported via methods. As an ex-
ample, the ioctl system call for Linux-based systems offers
a way to issue device-specific commands (like formatting a
memory, which is neither a reading nor a writing operation).
The ioctl commands are implemented by the kernel as
device methods and called by the SW application by passing
an identification number as system call parameters.

The proposed methodology relies on the two level template
for device driver generation presented in [20] and consisting
of a two-level structure [21].

1) The high level driver implements the communication
protocol to correctly interact with the device.

2) The low level driver accesses device registers and
deals with many architectural choices, such as address
mapping and interrupt handling. The low level driver
operations are invoked by the high level functions to
implement the device communication protocol.

This structure is flexible and allows one to handle in a
very efficient way the device communication protocol, together
with concurrent access to shared resources and interrupt based
synchronization.

The main task of the high level driver is implementing the
communication protocol to correctly interact with the device.
The protocol is a sequence of invocations of read and write
functions of the low level driver. The methodology exploits
information derived from the driver functions contained in
the testbench. In this way, this level is device specific and it
implements a command for each driver functionality. Interrupt
detection and identification add management of interrupts
generated by the device.

The low level driver deals with many architectural choices.
Its main task is to provide low level communication with
the device, with read and write operations on the device
registers (when the platform supports real execution) or with
invocations of precise functions provided to send data to the
simulated platform (with co-simulation).

The most common way to perform I/O operations on a
device is Memory Mapped I/O (MMIO). Adopting the MMIO
technology, areas of a CPU’s addressable space are reserved
for I/O as well as memory. Each I/O device monitors the
CPU’s address bus and responds to any CPU’s access of
device-assigned address space, connecting the data bus to a
desirable device hardware register. Thus, the low level device
driver must handle MMIO communication with devices.

Finally, the low level device driver also handles interrupts
generated from the communication infrastructure. In platforms
with co-simulation, interrupts may arise to notify that the
RTL level simulated devices have finished their computation
and that data is available. Such interrupts do not interfere
with normal OS operations but they are necessary to handle
synchronization in co-simulation frameworks.

If the system includes a bus, the same methodology can be
applied to a RTL module of the bus for generating a two-level
bus driver. Other device drivers will communicate with the bus
by invoking the functions of the high level bus driver.

Fig. 2 presents code segments of a user application, a high
level device driver and two different implementations of the
low level driver, the one communicating with a real device
(left side of Fig. 2), the other communicating with a device
simulated through co-simulation.

B. Device Driver Taxonomy

The code of a device driver is heavily affected by the
characteristics of the target architecture where it will be
executed, e.g., in terms of mutual exclusion resources or OS
primitives. As a result, it is possible to build a taxonomy of
the possible architecture configurations. Choosing one of the
taxonomy options will provide the methodology with all the
necessary information about the target architecture and thus it
will allow to generate a device driver specific for the chosen
architecture configuration.

Fig. 3 depicts the device driver taxonomy. In the Figure,
each device class is represented by outlining (from top to
bottom): number of running user programs, number of op-
erating systems running, availability of both high level and
low level device drivers, number of processors contained in
the target architecture and number of devices. The circles
represent the presence of mutual exclusion resources. The
taxonomy is based on the CPU organization that is being used:

1) Single processor configurations are represented in the
leftmost column of Fig. 3, where one operating system
runs on a single processor. If single processor kernels
are non-preemptive, they allow access to any kernel
module to just one application at one time. This prevents
race conditions and concurrent access to devices. On the
other hand, preemptive kernels (e.g., real-time oriented
kernels) require to adopt the mutual exclusion solutions
to preserve the correct execution and to protect device
status information.

2) SMP systems are multiprocessor computer architectures
where two or more identical processors can connect to a
single shared memory. This implies that all the proces-
sors access a single copy of the OS, even if applications
run on different cores (as shown in the central column
of Fig. 3). In this case, as in the case of preemptive
kernels in single processor configuration, proper mutual
exclusion mechanisms must be implemented.

3) AMP systems are multiprocessor computer architectures
where two or more heterogeneous processors access



1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 2. Execution flow of a typical HW/SW interaction through device drivers. Two different implementations of the low level driver are proposed, the one
communicating with a real device (left-hand side), the other communicating with a device simulated through co-simulation (right-hand side).

Fig. 3. Device driver taxonomy based on the CPU organization (single processor, SMP, or AMP).

the interconnect to communicate with a certain number
of devices (as depicted in the rightmost column of
Fig. 3). In most of the current industrially relevant
architectures, either master-slave or symmetric, a single
processing element runs the driver for a specific device.
In case of master-slave architecture, it is the general
purpose core playing this role, whereas in symmetric
systems it could be one of the cores. In these cases the
AMP configuration can be treated as the uniprocessor
case.

The device driver generation methodology is also influenced
by the number of devices that are foreseen in the platform and

that use device drivers implemented with the same methodol-
ogy. The low level device driver only deals with architectural
details. Thus, it is enough to generate only one low level device
driver per platform that will be shared by all devices connected
to the same platform (multiple devices scenario). Some mutual
exclusion resources must protect resources and operations that
directly access the devices (e.g., spinlocks [22]). Else, if it is
necessary to generate one low level driver per device, e.g., to
allow an exclusive access to a certain device by one specific
application, then the scenario is of type single device. The
single device and multiple devices scenarios are depicted and
compared in Fig. 4.



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1297

Fig. 4. Comparison of the single device (a) and multiple devices (b) scenar-
ios.

C. Testbench Structure

Testbenches are a key feature in the design of complex
devices. Testbenches are pieces of code intended to stress and
check all the features of the target device model to dynamically
verify the correctness of the RTL models [23]. The proposed
methodology starting point is a set of testbenches, implement-
ing the communication protocol necessary to activate all the
device functionalities.

The testbench interacts with the target device through a
set of read and write operations, compliant with the device
communication protocol and corresponding to the functions
performed by a device driver for this device. They are called
driver functions. To make verification effective, each testbench
must stimulate all the operations that can be performed by the
device and implement all the possible interactions with the
device functionality: polling and/or interrupt-based communi-
cation mechanisms, data exchange protocols, synchronization
and register configuration phases, etc. Once the RTL model
of a device is ready to be synthesized, the corresponding RTL
testbench must be correct and reasonably complete.

The core assumption of this paper is that a testbench (or a
set of testbenches) is built to intensively test the functionality
of a device. The completeness of the device driver will
thus depend on the activation of all device functionalities
by the testbench. This assumption is reasonable for well-
designed devices, which are usually distributed with high-
quality testbenches.

The proposed methodology assumes a RTL testbench de-
scribing all physical details (such as transactions, data length,
ports, usage of blocking or non blocking operations, etc.),
which are necessary for the driver to work correctly.

Fig. 5 provides an exhaustive example of testbench code.
The testbench stimulates an error correction code (ECC)
device. First of all the code performs a configuration phase.
Then, a set of inputs are sent to the device and the final
result is read. Fig. 5 also highlights the different functionalities
activated by the testbench: configuration, send and receive.
Such functionalities will be used to generate the corresponding
device driver functions.

D. Co-Simulation Versus Real Execution

Tasks such as design exploration and functional validation
might require the integration of the RTL device in the tar-
get platform before the device is synthesized or the target
architecture is available. In these conditions, co-simulation
is a suitable solution since it allows the interaction of a
CPU with a simulated hardware platform (realized with HDL
languages as VHDL or SystemC). As a result, co-simulation
is a key solution to gain device driver validation before the

Fig. 5. Example of testbench for an error correction code (ECC) device,
where configuration, send and receive functionalities are enclosed in boxes.

target platform has been realized [24]. Indeed the device
driver interacts with both the operating system services (and
with the user applications, to check the compliance w.r.t. the
architecture and the SW layers) and with a simulated version
of the target devices (to check the compliance w.r.t. the device
communication protocol).

Co-simulation frameworks must recreate all HW-SW com-
munication mechanisms and provide support for the execution
of HdS. However, integration of HdS in a co-simulation
framework requires code modifications, to exploit the services
provided by the framework and to correctly interact with the
environment. As such, the device driver generation method-
ology must take into account the support of co-simulation
frameworks.

The proposed methodology adopts the co-simulation pre-
sented in [24] and depicted in Fig. 6, since [24] allows the
interaction of device drivers with the target OS and with
real user applications, thanks to an Instruction Set Simulator
(ISS), and with the devices simulated in SystemC. In this way,
communication with the respective drivers can be tested even
if the devices have not been synthesized yet. The framework
supports all mechanisms that allow HW/SW communication
via socket. Interrupts are used to detect when the simulated
platform has completed the application execution. Such inter-
rupts do not impact on the OS execution, as the device driver is
suspended and the registered interrupt number is chosen such
that it is a non shared one. This approach allows designers
to test correctness and performance of the generated device
drivers before the HW design flow has finished.

The adoption of this co-simulation approach impacts on
the communication between the device driver and the target
device. As an example, the low level driver must use the
read and write functions provided by co-simulation instead of
directly writing to the device registers or using I/O operations.
As a result, the proposed methodology supports co-simulation
to allow validation of the generated device driver and to test
its interaction with the device before the target final platform
is ready.

IV. EFSM Extraction from RTL Code

An EFSM is a transition system that allows a compact
representation of the design states with respect to the more



1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 6. Co-simulation approach proposed in [24].

traditional finite state machine (FSM) [25]. The EFSM model
partially mitigates the state explosion problem by adding ex-
pressivity to transitions and thus avoiding explicit enumeration
of all design states [26].

Definition 1: An extended finite state machine (EFSM) is
defined as a tuple M = 〈S , I ,O,D,En,Upd ,T 〉 where:

1) S is a finite set of states;
2) I = I 1 × . . . I m is a finite input alphabet, where I i is the

alphabet of the i-th input;
3) O = O1 × . . .O l is a finite output alphabet, where O i

is the alphabet of the i-th output;
4) D = D1 × . . . × Dn is a finite register alphabet, where

D i is the alphabet of the i-th register;
5) T is the transition relation, that is a binary relation over

states, T ⊆ S ×S ;
6) En maps every transition to a boolean function named

enabling function, En : T → (I ×D → {0, 1});
7) Upd maps every transition to a register updating function

named update function, Upd : T → (I ×D → D ×O).
The rest of this section shows how the EFSM representation

of a generic RTL implementation can be automatically ex-
tracted. The algorithm assumes that the testbench implementa-
tion contains only one process. Then, concatenation of EFSMs
is defined, to extended the methodology to implementations
with multiple processes and/or multiple testbenches.

Definition 2: A synchronization point is defined as a point
in the execution of a HDL process where synchronization
with the scheduler and with other processes is necessary. The
synchronization points are:

1) explicitly enumerated states;
2) synchronization constructs contained by the code, such

as invocations to the wait primitive in SystemC or
VHDL.

Definition 3: A synchronization graph SG is a Control Flow
Graph (CFG) where vertexes v are synchronization points and
an edge (vi, vj) exists when vj is one of the possible next
states defined for vi. Thus, SG is used to keep track of the
relationship between synchronization points.

An EFSM representation is automatically extracted from a
generic RTL implementation by applying the algorithm shown
in Fig. 7. Given a RTL implementation I containing one
process P and the synchronization point CFG SGI built for
I, the EFSM M = 〈S , I ,O,D,En,Upd ,T 〉 representing I
is built as follows:

1) S is defined by one state si for each synchronization
point vi in SGI (line 1 and lines 5-7);

Fig. 7. EFSM extraction algorithm.

2) I is defined by the set of alphabets for the inputs of I,
i.e., input ports of I, all signals declared by I that are
read by P, and all shared variables (line 2);1

3) O is defined by the alphabets for the outputs of I, i.e.,
output ports of I, all signals declared by I that are
written by P, and all shared variables (line 3);

4) D is defined as the alphabets for the registers of I
(line 4). Registers are a subset of registers and signals
defined by I. Signals and registers can be wires, i.e.,
used to connect different units, or registers, i.e., used to
preserve a certain value across clock cycles. The latter
are identified by synthesis patterns and implemented as
memory elements (e.g., latches). Thus, synthesis patterns
can be applied to identify the EFSM registers and their
alphabet;

5) T is defined by the set of couples of states (si, sj)
such that SGI contains an edge (vi, vj) between the
synchronization point vi, corresponding to si, and the
synchronization point vj , corresponding to sj (lines 9-
11). As a result, if T contains the couple (si, sj), then
sj is one of the possible next states of si;

6) En is defined by the set of conditions that activate
each transition (si, sj) ∈ T (line 12). The condition is
expressed as a logical statement and of the following
predicates:

a) activation of the sensitivity list2;
b) branch conditions that influence the determination

of the next state;
c) wait conditions. If the node si corresponds to a

wait synchronization point vi in the SGI , then
the conditions specified by the wait construct on
signals must hold.

As a result, the transition (si, sj) can be activated only
if, in I, the sensitivity list fired an event, the wait
conditions are verified and the branch conditions for
reaching sj as next state are satisfied.

7) Given (si, sj) and the corresponding synchronization
points (vi, vj) in the SGI , the Upd function is defined
by all the instructions performed between the synchro-
nization points vi and vj in I.

1Note that the usage of shared variables is allowed in both VHDL and
SystemC.

2This is built as a logic OR on the ’event attribute of signals in VHDL-
like notation. The same behavior can be easily represented in SystemC and
Verilog.



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1299

Fig. 8. Example of EFSM generation starting from a HDL testbench.

Fig. 8 shows an example of EFSM generated from RTL
code. The size of the generated EFSM is strictly related to
the (finite) number of explicit states contained in the starting
implementation. It is also easy to note that none of the
performed operations is exponential in the number of analyzed
statements.

In order to extend the methodology to multiple processes
and testbenches, it is necessary to provide some definitions
over the states of an EFSM M = 〈S , I ,O,D,En,Upd ,T 〉.

Definition 4: An initial state for the EFSM M is a state
that has no incoming edges. State s is an initial state iff. ∀
(s1, s2) ∈ T s �= s2. Each EFSM has one only initial state,
represented as initialM .

Definition 5: A final state for the EFSM M is a state that
has no outgoing edges. State s is a final state iff. ∀ (s1, s2) ∈ T
s �= s1. The set of final states of the EFSM M is represented
as finalsM .

When more testbenches are provided for a single RTL
design, they are built for stimulating different operations
provided by the device independently. As such, the EFSMs
extracted from each testbench process must be activated one
after another, so that they do not affect each other’s evolution.
In this way, it is necessary to build a concatenation of EFSMs,
rather than their composition (that may lead to state explosion
[27]). Given two EFSMs M1 and M2, M1 is put after M2, with
an edge connecting the final states of M1 to the initial state of
M2. The enabling conditions of such edges are always satisfied
and the update functions do not modify the EFSM state. An
example of result of composition is shows in Fig. 11, where
dashed arrows are the edges added by composition to connect
the starting independent EFSMs.

The concatenation M = (M1, M2) of two EFSMs
M 1 = 〈S 1, I 1,O1,D1,En1,Upd1,T 1〉 and M 2 =
〈S 2, I 2,O2,D2,En2,Upd2,T 2〉 is thus defined as follows.
All the constitutive elements of the EFSM M are built as the

union of the corresponding elements of M1 and M2 (e.g., S =
S 1 ∪S 2). Furthermore, some elements are enriched:

1) T = T 1 ∪T 2 ∪ {∀s ∈ finalM1 , (s, initialM2 )}, i.e., an
edge is added between each final edge of M1 and the
initial state of M2;

2) En = En1 ∪En2 ∪ {∀s ∈ finalM1 , (s, initialM2 , true)},
i.e., the edges added between each final edge of M1 and
the initial state of M2 have an enabling function that
always evaluates to true;

3) Upd = Upd1 ∪Upd2 ∪ {∀s ∈ finalM1 , (s, initialM2 ,
nop)}, i.e., the edges added between each final edge
of M1 and the initial state of M2 have a simple update
function that does not modify the state of the EFSM.

It is important to note that neither states nor transitions grow
exponentially. States are exactly the union of states of M1 and
M2. Transitions are built as the union of transitions of M1
and M2, increased only with a linear number of concatenation
transitions (one per final state of M1).

V. Methodology Overview

The proposed methodology combines automatic extraction
of the communication protocol from the testbench with a few
simple manual steps related to the CPU organization. In this
way, the generated device driver follows the communication
protocol and at the same time it responds to needs and
problems that arise from the specific CPU organization.

The starting point of the methodology is a system composed
of a RTL device and the related testbench (see top of Fig. 9).
The proposed methodology is composed of five steps, that
will be described in depth in Section VI. In the first step,
the EFSM model of the testbench is extracted from its RTL
description. Then, the methodology scans the EFSM to detect
conditions that might be handled with interrupts. In the second
step a manual effort is required to identify the parts of the
EFSM that correspond to each driver function and interrupts.
The target architecture characteristics are defined in the third
step, to create a template for both the low level and the high
level device drivers. In the fourth step, the C code of the
high level device driver is automatically generated from the
tagged EFSM and from the template generated in the third
step. The architectural choices made in the previous steps
might add interrupt handling routines or mutual exclusion
resources implied by the chosen scenario. Finally, in the fifth
step, the low level device driver is automatically generated by
using the template produced by the third step to handle mutual
exclusion, interrupts and communication with the device.

The few manual steps required create a very versatile
methodology, that responds to the needs of a large set of
architectures and architectural choices. The effort required is
largely rewarded by the flexibility of the results obtained.

VI. Methodology in Depth

This section deepens the methodology steps shown in Fig.
9, with references to the technological issues analyzed in
the previous section. All the examples and figures show the
application of the methodology to the ECC device, whose
testbench is depicted in Fig. 5.

A. First Step: EFSM Extraction and Interrupt Discovery

The first step provides a deep analysis of the starting code,
divided into two major activities: extraction of the EFSM



1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 9. Methodology overview.

model that represents the device communication protocol, and
identification of interrupt-like behaviors.

1) EFSM Extraction: The EFSM representation of the
testbench is automatically extracted from the corresponding
RTL description with the algorithm proposed in Section IV. It
is important to note that, in case more EFSMs are extracted
from the testbench, such EFSMs can be concatenated in a
new EFSM. As a result, the follow of this paper will refer to
a single EFSM.

2) Interrupt Discovery: RTL testbenches are made of
a sequence of read and write operations on RTL device
ports. Testbenches control any communication with the device.
Indeed, the device can not actively send a signal and raise an
interrupt. On the contrary, the testbench may repeatedly read
a device port until a certain condition is met, thus implying a
polling communication style with the device. The result is that,
in any testbench, interrupts actively sent from RTL devices
become testbench operations. The testbench will repeatedly
check the RTL ports until a certain condition happens, causing
a hardware interrupt. Once that the testbench is turned into a
synchronous EFSM, the methodology may identify interrupt-
like conditions as self loops in the extracted EFSM (Fig.
10). Interrupt-based approaches are often more efficient than
polling.

These considerations have effects on the device driver
generation methodology. The EFSM is extracted from the
testbench. Then, the methodology scans the EFSM looking
for self loops and these conditions are pointed out to the user
as possible interrupts. Both EFSM extraction and interrupt
discovery are automated. In the second step (Section VI-B)
of the methodology, the user will decide which self loops are
real interrupt by using a special directive [DD INTERRUPT
(accepted interrupt name)]. Fig. 10 compares the
device driver code generated by using interrupts (left side) or
polling (right side).

Fig. 10. Effect of interrupt discovery on the generated code. The loop on
the ELABORATE signal is handled with an interrupt on the left hand side,
whereas polling is adopted on the right hand side.

Whenever a self loop is accepted as an interrupt, the
methodology will substitute the state with an OS macro that
suspends the execution until the corresponding interrupt is
received (e.g., the wait event interruptible prim-
itive in Linux OS). The interrupt handler function will be
handled by the high level driver and it will just let the driver
resume the execution of the communication protocol (e.g.,
with the wake up interruptible function in Linux
OS).

All the self loops that are not accepted as interrupts will be
handled with polling. In the resulting device driver they will
be implemented with a while loop containing a read operation
on the device registers, repeated until the guard condition is
verified.

This mechanism allows designers to manage communication
with the device in an efficient way and to handle hardware
interrupts correctly. While requiring some manual specification
by the designer, this improves correctness and effectiveness of
the final code.

B. Second Step: EFSM Tagging and Interrupt Identification

After EFSM extraction, a preprocessing tagging stage on the
EFSM is required. In detail, the designer is required to add
information that can not be automatically determined, since it
is strictly dependent on the specific device and on the desired
behavior of the final device driver code.

1) Tagging of the EFSM Subgraphs of the Driver Func-
tionalities: Device driver functionalities, such as send data,
receive data, initialization and configuration, must be identified
in the EFSM of the testbench by tagging the initial and final
states of the subgraph visited for testing the corresponding
device functionality. The EFSM extracted during the first step
is shown to the designer, who can label the EFSM states as
part of a certain functionality.

Fig. 11 shows an example of EFSM tagging applied to the
testbench of Fig. 5. The initial state and the final state of
EFSM subgraph performing a CONFIG operation are tagged



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1301

Fig. 11. Example of tagged EFSM obtained from the testbench in Fig. 5.

with BEGIN CONFIG and END CONFIG. Similarly, BEGIN
SEND/END SEND and BEGIN RECEIVE/END RECEIVE
tags are used to identify the subgraphs of the EFSM perform-
ing data sending and data receiving.

This step provides the necessary support to automatically
extract information about the RTL protocol encapsulated in
the testbench.

2) Identification of Parameters of Driver Commands: In
this phase, the designer determines the parameters passed by
applications when invoking a device driver command. Indeed,
the data used to stimulate the device may be hard coded or
chosen randomly. Some of the inputs may be configuration
inputs that remain the same even in the actual driver. On the
other hand, other inputs may depend on user defined data, e.g.,
inputs set by the application. To allow this level of flexibility,
one can declare that certain variables or data passed in input
should be considered parameters of the device driver functions,
to allow passage of data from the application. This allows the
device driver to take inputs that differ from the ones used in
the starting testbench.

To perform this step, the designer is required to label
variable declarations in the graphical representation of the
testbench EFSM. Then, the methodology will consider all
instances of the labeled variables as accesses to parameters of
the driver functionalities. For each command, the parameter
choice is strictly related to the EFSM subgraphs identified in
the previous phase. For example, if the command performs
a 32-bit data sending operation, the designer can choose
as command parameter the unsigned 32-bit value. On the
other hand, if an EFSM subgraph represents a loop where
n sending operations are performed transferring 32-bits of
data at a time, the designer may identify as parameter the
pointer to an array of unsigned 32-bit values, thus forcing
the corresponding command to implement the loop and the
communication protocol to send each one of the n data values.

3) Interrupt Identification: The user must consider the
interrupt-like conditions pointed out in the previous step and
decide which ones must be handled as real interrupts by using
the DD INTERRUPT keyword, associated to the interrupt
identifier (Fig. 10). The consequences of this choice are
described in Section VI-A2 and have effects on the high level
driver content (Section VI-D).

C. Third Step: Architectural Specification

The third step is a crucial step in the methodology because
the target platform characteristics are defined. This requires an
interaction with the designer, that must specify the following
information: target scenario, type of platform (i.e., whether
the device driver will be executed in a cosimulated platform

Fig. 12. Example of specifications and corresponding low level driver tem-
plate for a SMP architecture with real execution of the synthesized device.

or in a real one) and device class. These choices are used by
the methodology to generate a precise template for both the
low level and high level drivers, containing (whenever needed)
interrupt handling resources, ioctl functions, mutual exclu-
sion resources and co-simulation structures (Fig. 12). Such
templates can be automatically generated and they constitute
a skeleton of the device driver code. Then, the template must
be integrated with the device specific code and information
extracted during the second step. The templates will be used
in the next steps (Section VI-D and VI-E) for the device driver
generation.

1) Target Scenario: This parameter describes the platform
characteristics, chosen from the taxonomy described in Section
III. The choice has effects on the handling of concurrency and
mutual exclusion, as well as on preemption of the device driver
code. For example, scenarios that imply concurrency need to
handle mutual exclusion with spinlock resources.

The designer is required to specify also other architectural
information, such as the OS that will run on the target
platform, as this has effects on the primitives and the mutual
exclusion resources used, and the chosen endianness.

2) Type of Platform: The RTL device can be integrated in
the target platform as a real device (after a synthesis process)
or at RTL level in a co-simulation environment where a real
system interacts with simulated devices. The device driver gen-
eration methodology must support both alternatives. During
the third step (Section VI-C) the user can decide between a
real-execution approach and a co-simulated approach. There
are three possible scenarios, as shown in Fig. 13:

1) Abstracted bus. The target platform is realized at trans-
action level [28] with a non cycle-accurate bus. Co-
simulation is between the low level driver and the
simulated platform. Thus, the low level driver must use
the function provided by the co-simulation environment
to communicate with the device. This implies that the
methodology must generate an appropriate low level
driver.

2) Actual bus and co-simulated platform. The low level
device driver communicates with the bus driver of an



1302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 13. Co-simulation flow versus real execution flow.

actual bus, but the platform is implemented at RTL level.
The bus driver can be either the OS driver managing
the bus or the load and store units, whenever the CPU
is directly controlling the bus interface. Co-simulation
is between the actual bus and the simulated platform.
Thus, the low level driver behaves as if the RTL device
was a synthesized device and the bus driver will hide
co-simulation from the driver.

3) Actual bus and real execution. The target platform is
synthesized and there is no need for co-simulation. The
low level driver communicates with the device through
a bus driver with I/O operations or with read and write
operations on the device registers.

The choice has effect on the low level driver, that will handle
the communication with the device with different approaches.

3) Device Class: By choosing a device class, such as
Ethernet network devices, the designer selects a set of behav-
iors that the device driver must support, such as I/O queues
or maintenance of statistics. This choice has effects on the
functions implemented by the high level device driver. In
this paper, we do not further focus on device class-specific
feature specification, our main focus being on specific features
concerning the target scenario. For device class categorization,
state-of-art approaches can be applied, such as [13].

It is important to note that the methodology supports the
generation of device drivers for simple character and network
devices. Complex communication mechanisms (such as DMA
and buffer management) and block devices have not been
faced yet. However, this would imply to extend the device
class support, whereas the core methodology would remain
untouched.

D. Fourth Step: high level Driver Generation

The high level driver implements the communication pro-
tocol to correctly interact with the device and handles the
interrupts identified by the user in the second step.

The previous steps have collected all the information
needed. The device communication protocol has been obtained
from the RTL testbench, the interrupts identified at the second
step add interrupt handling resources and the architectural
choices made in the third step might have effects on the
handling of race conditions. The automatic generation of the
high level driver consists of the following three main phases
(Fig. 14).

1) Data Table Generation: A data table is generated in
which all the RTL device ports are listed as well as the
corresponding data size and type by parsing the testbench
code. The data table is necessary to generate the driver data
structures that provide support for exchanging data between
the device driver and the device.

Fig. 14. Example of generation of the high level driver for the testbench
reported in Fig. 5.

2) Device Driver Functionality Generation: Each of the
EFSM subgraphs identified during the second step corresponds
to a precise driver functionality (Section VI-B), used to fill in
the high level template.

The subgraphs are automatically elaborated to obtain the
high level driver functions by exploiting the data table struc-
tures previously generated. The functions of the generated
device driver may be invoked by applications in an order that
differs from the one followed in the starting testbench, thus
increasing flexibility in the device driver usage.

For each command, the device driver sets each structure
field following the corresponding protocol. In this context, if
a field corresponds to a command parameter chosen in the
second step (Section VI-B), that field is set with the formal
parameter values passed by the application. On the other hand,
the methodology extracts data values for fields specific to
the RTL interface, such as values for handshaking sequences,
flags, burst cycles, etc. Thus, from the application point of
view, the device functionalities are joined disregarding these
details since they are inherited from the testbench and trans-
parently handled by the device driver. Furthermore, the device
driver does not constrain the order in which functionalities are
invoked by the application.

The architectural choices made during the third step might
add mutual exclusion resources, such as spinlock attainment
and release.

Interrupt handling routine generation. If one or more
interrupts have been identified in the testbench during the
second step, the corresponding interrupt handling routines
must be generated. As described in Section VI-A2, these
routine will only wake up the driver (e.g., with a wake up
interruptible primitive in any Linux OS).

Fig. 14 summarizes this methodology step. The subgraphs
of the testbench EFSM representing a certain driver function-
ality (top of Fig. 14 on the left) are inserted into the driver
template generated according the architectural configuration



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1303

(bottom of Fig. 14 on the left). The result is the high
level driver code (right of Fig. 14), implementing the device
communication protocol.

E. Fifth Step: low level Driver Generation

The final step of the proposed methodology is the
low level driver generation (Fig. 12). It relies on the template
produced during the third step, which contains information
about interrupt handling, mutual exclusion and target platform.
The low level driver is common for all the high level drivers
that rely on the same communication technology. Thus, at most
one low level driver for each communication style must be
generated.

The crucial choice for this step is the type of communication
with the device. Real execution and co-simulation have great
effects on the read and write primitives and on data handling.

If the target platform implies co-simulation, the low level
driver will use the functions provided by the co-simulation
environment to communicate with the simulated platform
(Section III-D).

Else, with real execution, the RTL ports listed in the data
table generated during the fourth step must be mapped to
memory addresses, to implement a MMIO approach.

The RTL testbench accesses the RTL device functionality
by writing to PIs and reading from POs. Once the device
has been synthesized, the driver performs the corresponding
tasks by writing to and reading from physical addresses. Thus,
each port of the RTL device model is associated to a physical
address assigned after synthesis and platform integration. In
general, an address is associated to a device and the PIs/POs of
the device are identified by adding an offset to such an address.

If the device is fixed or it has already been synthesized, then
the methodology adopts the mapping to physical addresses
embedded in the design. Else, if the device is configurable and
it has not been synthesized yet, a mapping algorithm builds
an optimized mapping to physical addresses, with the goal of
saving memory and communication overheads.

The basic algorithm to assign physical addresses is the
following. A device address is associated to each device port
with port size no larger than a word. If the port exceeds the
word size, it is associated to more than one address. The
left side of Fig. 15 shows an example of application of this
algorithm to the ECC device. This algorithm wastes bus cycles
required to communicate with the device, since each write or
read operation on a single port would require one entire bus
cycle, even if only one significant bit is transferred.

To improve the quality of the device driver code, the
methodology adopts an optimization of the assignment al-
gorithm. Device ports are divided into two classes (input
ports and output ports) and divided into groups such that the
cumulative width is maximum 32 bits. A physical address is
then assigned to each of these groups. This simple approach
reduces the number of addresses used, as highlighted on the
right side of Fig. 15.

Such an approach is recommended by HdS generation tech-
niques to save address space and increase system performance
[5] and it is feasible with the support of a particular C struct
attribute, packed , used in structure declarations to
assign the minimum memory required to each field. This
would require also a redesign step of the device, to extract
values from the packed structure and to map them
to device ports. However, this straightforward step is balanced
by benefits in terms of communication overhead.

Fig. 15. Example of address table built for the ECC device and its optimiza-
tion.

TABLE I

Benchmark Characteristics

Device
PI PO Gates FF IP Processes Modules
(#) (#) (#) (#) (loc) (#) (#)

ECC 25 32 993 79 174 3 1
CRC 56 34 9,213 385 589 18 1
DSPI 25 21 1,335 132 3,361 53 12
DIV 35 33 383 69 1,167 8 4
GCD 67 67 2,277 166 4,797 22 6

ROOT 36 33 319 110 870 6 4
FFT 92 114 87,397 1,359 3,335 27 1
ETH 93 42 46,113 4,955 2,307 9 1

VII. Experimental Results

The goal of the experiments is to evaluate the automatic
generation of device drivers in the context of the design space
exploration of embedded platforms. After the explanation of
the benchmarks, this section reports the results of the auto-
matic driver generation in terms of driver characteristics. Then,
the section concludes with the evaluation of the applicability
and efficiency of the proposed methodology by generating
device drivers for the design exploration of a case study
platform.

A. Device Characteristics

The proposed methodology has been applied to generate the
following set of device drivers for devices (i.e., IPs synthesized
to FPGA) provided by STMicroelectronics:

1) an error correction code (ECC);
2) a cyclic-redundancy checking (CRC);
3) a synchronous peripheral interface (DSPI);
4) a filter for RGBA representation of pixels (DIV);
5) a device calculating the greatest common divisor (GCD);
6) a square root device (ROOT);
7) a Fast Fourier Transform (FFT);
8) a cs8900a Ethernet Controller (ETH).
The device testbenches, which have been provided by the

device vendor, have not been modified to apply the proposed
methodology, to preserve both the structure and the content of
the code. This highlights the feasibility and the practicality of
the methodology on industrial testbenches. Table I summarizes
the characteristics of the devices and the corresponding RTL
testbenches.



1304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

TABLE II

Testbench Characteristics

Device
Loc EFSM EFSM EFSM Wait Interrupts

States (#) Trans. (#) time (ms) (#) (#)
ECC 93 10 11 130 12 0
CRC 442 13 12 152 13 0
DSPI 462 49 52 843 43 1
DIV 71 3 4 56 3 0
GCD 47 6 8 87 2 1

ROOT 57 3 4 66 4 1
FFT 198 24 27 541 23 1
ETH 342 44 43 769 57 0

Columns PIs and POs show the number of primary inputs
(PI) and primary outputs (PO) respectively. Column Gates
reports the number of gates, whereas column FF shows
the number of flip flops. The following columns outline the
characteristics of each design, i.e., lines of code (column
IP (loc)), number of processes (column Processes (#)) and
number of modules (column Modules).

Table II shows the main characteristics of the testbenches
used for each design and of the extracted EFSM. Column Loc
shows the number of lines of SystemC code of the testbenches
that have been analyzed by the parser for extracting the driver
information. Columns (EFSM States (#)) and (EFSM Trans.
(#)) presents the number of states and of transitions of the
EFSM automatically extracted from the testbench itself. Col-
umn EFSM time (ms) shows the time needed to automatically
extract the EFSM from the starting testbench. Column Wait
(#) shows the number of wait statements used in the RTL
testbench for sending data to the RTL device, which are
then converted in a corresponding function call to the write
operation implemented in the low level of the driver. Finally,
column Interrupts (#) shows the number of signals selected
as interrupt signals from the analysis of the self loop in the
testbench code, as explained in Section VI-A2. This Table
shows that automatic extraction of the EFSM of the testbench
has been successfully obtained on all the designs and that
the generation time was extremely low (less than 1 s for all
designs).

B. Automatic Device Driver Generation

The proposed methodology has been implemented in
D2Gen, a tool built on top of HIFSuite [7]. D2Gen currently
supports the generation of device drivers targeting Linux
operating systems. As future work, it will be extended to
support other operating systems.

First, the starting VHDL and SystemC testbenches have
been automatically translated to the HIF intermediate format
by the HIFSuite front-end (vhdl2hif and sc2hif ). Then, D2Gen
has been run on the HIF models. D2Gen provides the user with
a graphic interface to ease EFSM tagging and the specification
of the target architecture configuration (see Section VI-C). The
HIF description generated as a result by D2Gen has been then
converted to C code by using the HIFSuite hif2c back-end tool.
The final C code is ready to be compiled and executed in the
target (or co-simulated) architecture.

Table III reports the main characteristics of the generated
device drivers. Column CPU organ. reports the CPU orga-
nizations presented in Section III for which the drivers have
been generated. All drivers are generated for a Linux operating
system.

TABLE III

Characteristics of the Generated Drivers for Each Different

CPU Organization

Device CPU D.Driver D2Gen
organ. (loc) time (s)
SP-SD 457 3.40
SP-MD 457 3.42

ECC SMP-SD 469 3.43
SMP-MD 481 3.45
AMP-SD 457 3.41
AMP-MD 457 3.42
SP-SD 421 3.49
SP-MD 421 3.48

CRC SMP-SD 433 3.51
SMP-MD 445 3.52
AMP-SD 421 3.49
AMP-MD 421 3.49
SP-SD 609 4.34
SP-MD 609 4.34

DSPI SMP-SD 621 4.36
SMP-MD 633 4.38
AMP-SD 609 4.33
AMP-MD 609 4.34
SP-SD 367 1.91
SP-MD 367 1.92

DIV SMP-SD 379 1.93
SMP-MD 391 1.95
AMP-SD 367 1.92
AMP-MD 367 1.90
SP-SD 389 1.72
SP-MD 389 1.73

GCD SMP-SD 401 1.74
SMP-MD 413 1.76
AMP-SD 389 1.73
AMP-MD 389 1.73
SP-SD 398 1.39
SP-MD 398 1.39

ROOT SMP-SD 410 1.41
SMP-MD 422 1.42
AMP-SD 398 1.39
AMP-MD 398 1.40
SP-SD 441 3.50
SP-MD 441 3.51

FFT SMP-SD 453 3.52
SMP-MD 465 3.54
AMP-SD 441 3.53
AMP-MD 441 3.53
SP-SD 432 4.05
SP-MD 432 4.05

ETH SMP-SD 438 4.07
SMP-MD 442 4.08
AMP-SD 432 4.06
AMP-MD 432 4.06

The total number of lines of code of each device driver
is reported in column D.Driver (loc). This highlights that
D2Gen successfully generated devices drivers for a variety
of configurations and for devices of different characteristics
and complexity.

Finally, column D2Gen time (s) reports the time needed
for the code generation process. This time includes only
the automatic elaboration performed by D2Gen to obtain
the code. The time required both for the analysis of the
testbench to identify the communication protocol and for
determining the target architecture characteristics (such as, the
CPU configuration) is not included. However, also the manual
implementation of device drivers requires to study the device
protocol specification and to determine the target architecture
requirements. Thus, this analysis time is common to both the
methodology proposed in this article and to traditional manual
implementation flows.



ACQUAVIVA et al.: SEMI-AUTOMATIC GENERATION OF DEVICE DRIVERS FOR RAPID EMBEDDED PLATFORM DEVELOPMENT 1305

Fig. 16. Case study platform: (a) Single processor. (b) SMP multiple de-
vices. (c) SMP single device combined with multiple devices.

The generation time is dominated by the EFSM extraction
process. Table II shows that this step is almost instantaneous
for the analyzed devices. The core claim is that more complex
devices, with more complex testbenches, would lead to bigger
EFSMs, with a larger number of states and transitions. How-
ever, the EFSM extraction algorithm scales well on complex
testbenches, as highlighted in Section IV. Furthermore, even
though the user may tag more and more complex function-
alities, the underlying algorithm would still hold. A larger
number of functions exported to the SW domain implies that
a larger number of functionality subgraphs can be detected in
the starting testbench. As a result, even though the number
of subgraphs grows, the complexity does not explode, as the
function generation steps and the subgraph elaboration are
applied to single subgraphs (see Section VI-B). Thus, the
entire semi-automatic generation methodology is promising to
be applicable to more complex devices.

For each device, a few minutes of manual work have
been spent for setting the parameters corresponding to the
target CPU organization and for tagging the EFSM of the
testbenches. Then, Table III shows that the driver generation
by D2Gen takes few seconds for each scenario. On the other
hand, an average of 12 person-days have been spent for
implementing the equivalent device drivers by hand.

It is important to note that the driver code generated by
D2Genmay not get the same performance as the code devel-
oped and optimized by programmers specialized in Hardware-
dependent Software. However, this methodology goal is to
provide a first implementation of the device driver, to allow
quick integration in the target platform and, as a consequence,
to support rapid design space exploration. Then, the device
drivers may be further optimized and customized to the
specific needs.

C. Semi-Automatic Driver Generation in Embedded Platform
Exploration

This section aims at analyzing, with a case study, the impact
of D2Gen in automating the device driver generation in the
context of embedded platform design exploration.

Fig. 16 depicts the analyzed case study. The SW application
consists of data intensive elaborations, which rely on four
IPs, i.e., ECC, FFT, DSPI and CRC. In the design explo-
ration, different architecture configurations are evaluated: sin-
gle processor in which the application is executed sequentially

TABLE IV

Result of Design Space Exploration Applied to the

Example in Fig. 16

Single proc. SMP-MD SMP-SD
low level (loc) 160 160 312 (152+160)
high level (loc) 1472 1568 1556

Driver invoc. (#) 398 398 398
D2Gen time (s) 14.75 14.89 14.85
Exec. time (s) 738 624 552

(Fig. 16(a)); a SMP multiple devices configuration where the
application is decomposed on two tasks (Fig. 16(b)), and SMP
single device combined with SMP multiple device configu-
ration (Fig. 16(c)). Each configuration affects the platform
performance in terms of synchronization overhead to access
the devices and to manage computation.

The different versions of device drivers have been instan-
taneously generated with D2Genby setting the corresponding
scenario parameters. The results of such generation are out-
lined in Table IV. Column Single proc. shows data related to
the single processor scenario, column SMP-MD refers to the
SMP - multiple devices scenario, whereas column SMP-SD
refers to the SMP - single device scenario. Lines high level
and low level level (loc) report the overall lines of code of
the high level and low level device drivers respectively. Line
Driver invoc. (#) shows the number of invocations of the low
level and high level drivers made by the application. Finally,
line D2Gen gen. time (s) shows the time required to generate
all the device drivers, calculated as the sum of generation times
for the four device drivers.

The application has been run with the three configurations
by exploiting the cosimulation framework presented in [24]
and outlined in Section III-D. In this way, it is possible
to validate the generated device drivers and to estimate the
application performance in the different platform scenarios.
Line Exec. time (s) of Table IV reports the time necessary to
run the application in the three scenarios.

Looking at the results, the designer can verify that the
synchronization overhead on the SMP configuration decreases
the performance gain of partitioning on multiple processors.
Looking at the application, the designer may realize that one
of the two parallel tasks communicates only with the DSPI
device. When the low level driver is shared, the device driver
requests from the second application are queued to the requests
of the first one, even if they are accessing to different devices.
Thus, the designer may want to generate the DSPI device
driver with the single device configuration, to have a separate
low level device driver devoted to the DSPI device (and thus
to the second application). The result of this new generation
step is shown in Table IV (Column SMP-SD). As highlighted
by the execution time, the new solution reduces contention on
the shared resources and thus it is preferred to the previous
solutions.

This simple case study shows that D2Gen supports fast con-
figuration of device drivers and it offers further optimization
directions in the design space exploration phase.

VIII. Concluding Remarks

In this article we presented an automatic device driver gen-
eration and customization methodology for rapid development
of embedded platforms based on different CPU organizations.
The methodology exploits the testbench provided with the



1306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

RTL model of the device to automatically generate the formal
model of the device communication protocol. The device
driver code is then customized to fulfill the requirements of the
target platform, whose description is selected by the designer
among a set of architectural alternatives. Synchronization
primitives are added whenever needed by the specific CPU
model and organization of the target platform. The generated
drivers have been tested on a family of embedded platforms
with different CPU organizations.

References

[1] STMicroelectronics. (2010). SPEAr Embedded Microprocessors
[Online]. Available: http://www.st.com/stonline/products/families/
embedded mpu/embedded mpus%.htm

[2] Freescale. (2009). MPX4080: Integrated Pressure Sensor [Online].
Available: http://www.freescale.com/webapp/sps/site/prod summary.
jsp?code=MPX4080

[3] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D.
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S.
Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, and T. Mattson, “A
48-Core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in Proc. IEEE ISSCC, 2010, pp. 19–21.

[4] J. Henkel, X. Hu, and S. Bhattacharyya, “Taking on the embedded
system design challenge,” Computer, vol. 36, no. 4, pp. 35–37, Apr.
2003.

[5] W. Ecker, W. Muller, and R. Domer., Hardware-Dependent Software.
Berlin, Germany: Springer, 2009.

[6] T. Henzinger and J. Sifakis, “The discipline of embedded systems
design,” Computer, vol. 40, no. 10, pp. 32–40, Oct. 2007.

[7] EDALab s.r.l.. HIFSuite [Online]. Available: URL: http://www.hifsuite.
com

[8] H. Sertic, F. Rus, and R. Rac, “UML for real-time device driver
development,” in Proc. IEEE ConTel, Jun. 2003, pp. 631–636.

[9] S. Honda and H. Takada, “Evaluation of applying SpecC to the inte-
grated design method of device driver and device,” in Proc. ACM/IEEE
DATE, Mar. 2003, pp. 138–143.

[10] M. O’Nils and A. Jantsch, “Device driver and DMA controller synthesis
from HW/SW communication protocol specifications,” ACM TODAES,
vol. 6, no. 2, pp. 177–205, 2001.

[11] S. Wang, S. Malik, and R. A. Bergamaschi, “Modeling and integration
of peripheral devices in embedded systems,” in Proc. ACM/IEEE DATE,
Mar. 2003, pp. 136–141.

[12] S. Wang and S. Malik, “Synthesizing operating system based device
drivers in embedded systems,” in Proc. ACM/IEEE CODES+ISSS, Oct.
2003, pp. 37–44.

[13] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser, “Automatic
device driver synthesis with Termite,” in Proc. ACM/IEEE SIGOPS, Oct.
2009, pp. 73–86.

[14] T. Katayama, K. Saisho, and A. Fukuda, “Prototype of the device
driver generation system for Unix-like operating systems,” in Proc. IEEE
ISPSE, Nov. 2001, pp. 302–310.

[15] Y.-T. Hsu, Y.-J. Wen, and S.-D. Wang, “Embedded Hardware/Software
design and cosimulation using user mode Linux and SystemC,” in Proc.
IEEE ICPPW, Sep. 2007, pp. 17–22.

[16] J. C. Park, Y. H. Choi, and T. ho Kim, “Domain specific code gener-
ation for Linux device driver,” in Proc. IEEE ICACT, Feb. 2008, pp.
101–104.

[17] F. Merillon, L. Reveillere, C. Consel, R. Marlety, and G. Muller, “Devil:
An IDL for hardware programming,” in Proc. OSDI, vol. 4. Oct. 2000,
p. 2.

[18] G. Schirner, A. Gerstlauer, and R. Domer., “Automatic generation of
HdS for MPSoCs from abstract system specifications,” in Proc. ASP-
DAC, 2008, pp. 271–276.

[19] V. Chipounov and G. Candea, “Reverse engineering of binary device
drivers with RevNIC,” in Proc. ACM SIGOPS/EuroSys, 2010, pp. 167–
180.

[20] N. Bombieri, F. Fummi, G. Pravadelli, and S. Vinco, “Correct-by-
construction generation of device drivers based on RTL testbenches,”
in Proc. ACM/IEEE DATE, 2009, pp. 1500–1505.

[21] A. Jerraya and W. Wolf, “Hardware/software interface codesign for
embedded systems,” Computer, vol. 38, no. 2, pp. 63–69, Feb. 2005.

[22] G. K.-H. J. Corbet and A. Rubini, Linux Device Drivers. O’Reilly, 2009.

[23] J. Bergeron, Writing Testbenches: Functional Verification of HDL Mod-
els. Norwell, MA, USA: Kluwer Academic, 2003.

[24] F. Fummi, G. Perbellini, D. Quaglia, S. Saggin, and S. Vinco, “Mixing
simulated and actual hardware devices to validate device drivers in a
complex embedded platform,” in Proc. IEEE MTV, Dec. 2009, pp. 63–
68.

[25] P. Chu and M. T. Liu, “Synthesizing protocol specifications from service
specifications in FSM model,” in Proc. IEEE CNS, Apr. 1988, pp. 173–
182.

[26] F. Slomka, M. Dorfel, and R. Munzenberger, “Generating mixed
hardware-software systems from SDL specifications,” in Proc.
ACM/IEEE CODES+ISSS, Apr. 2001, pp. 116–121.

[27] D. Bresolin, G. Di Guglielmo, F. Fummi, G. Pravadelli, and T. Villa,
“The impact of EFSM composition on functional ATPG,” in Proc. IEEE
DDECS, Apr. 2009, pp. 44–49.

[28] Transaction Level Modeling Working Group. OSCI TLM 2.0 [Online].
Available: http://www.systemc.org

Andrea Acquaviva (M’03) received the Ph.D. de-
gree in electrical engineering from the University of
Bologna, Bologna, Italy, in 2003.

From 2001 to 2003, he was a Research Intern
with Hewlett Packard Labs, Palo Alto, CA, USA.
From 2005 to 2007, he was a Visiting Researcher
with the Ecole Polytechnique Federale de Lausanne,
Lausanne, Vaud, Switzerland. Since 2008, he has
been with the Department of Computer Engineering
and Automation, Politecnico di Torino, Turin, Italy.
His research (between 2000 and 2012) yielded more

than 100 papers in international journals and peer-reviewed international con-
ference proceedings. His current research interests include parallel computing,
sensor networks, and computational biology.

Nicola Bombieri (M’05) received the Ph.D. degree
in computer science from the University of Verona,
Verona, Italy, in 2008.

Since 2008, he has been a Researcher and As-
sistant Professor with the Department of Computer
Science, University of Verona. He has been involved
in several national and international research projects
and has published more than 50 papers on confer-
ence proceedings and journals. His current research
interests include TLM design and verification of
embedded systems and automatic generation and

optimization of embedded SW.

Franco Fummi (M’92) received the Ph.D. degree
in electronic engineering from the Politecnico di
Milano, Milan, Italy, in 1995.

He has been the Head of the Department of Com-
puter Science, University of Verona, Verona, Italy,
since 2012. He was a Full Professor at the Depart-
ment of Computer Science, University of Verona.
Since 1995, he has been with the Department of
Electronics and Information, Politecnico di Milano,
as an Assistant Professor. In July 1998, he became an
Associate Professor in computer architecture at the

Department of Computer Science, University of Verona. His current research
interests include electronic design automation methodologies for modeling,
verification, testing, and optimization of embedded systems.

Sara Vinco (M’09) received the Masters degree in
computer science from the University of Verona,
Verona, Italy, in 2009. She is currently pursuing the
Ph.D. degree in computer science at the University
of Verona.

During the Ph.D. degree, she spent six months
as a visiting student at the University of Michigan,
working with Prof. V. Bertacco from June 2011 to
December 2011. She is currently a Post-Doctoral
Research Associate at the Department of Computer
Science, University of Verona. Her current research

interests include electronic design automation methodologies for simulation
and validation of heterogeneous embedded systems.


