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Meticillin-resistant  Staphylococcus  aureus  (MRSA)  remains  one  of  the  principal  multiply  resistant  bac-
terial  pathogens  causing  serious  healthcare-associated  and  community-onset  infections.  This  paper
reviews  recent  studies  that  have elucidated  the  virulence  strategies  employed  by  MRSA,  key  clinical
trials  of  agents  used  to  treat  serious  MRSA  infections,  and  accumulating  data  regarding  the  implications
of  antibacterial  resistance  in MRSA  for  clinical  success  during  therapy.  Recent  pre-clinical  data  support  a
species-specific  role  for Panton–Valentine  leukocidin  in  the  development  of  acute  severe  S.  aureus  infec-
tions and  have  elucidated  other  virulence  mechanisms,  including  novel  modes  of  internalisation,  varying
post-invasion  strategies  (featuring  both  upregulation  and  downregulation  of  virulence  factors)  and  phe-
notypic switching.  Recent  double-blind,  randomised,  phase  III/IV  clinical  trials  have  demonstrated  the
efficacy  of  linezolid  and  telavancin  in  hospital-acquired  pneumonia  (HAP)  and  complicated  skin  and
skin-structure  infections  (cSSSIs)  caused  by  MRSA.  Tigecycline  was  non-inferior  to  imipenem/cilastatin
in  non-ventilator-associated  HAP  but  was  inferior  in ventilator-associated  pneumonia  and  has  shown  a

higher rate  of  death  than  comparators  on  meta-analysis.  Ceftaroline  was  clinically  and  microbiologically
non-inferior  to vancomycin/aztreonam  in  the treatment  of MRSA  cSSSI.  Key  resistance  issues  include  a
rise  in  vancomycin  minimum  inhibitory  concentrations  in  MRSA,  reports  of  clonal  isolates  with  linezolid
resistance  mediated  by acquisition  of  the  chloramphenicol/florfenicol  resistance  gene,  and  case  reports
of daptomycin  resistance  resulting  in  clinical  failure.  Novel  antimicrobial  targets  must  be  identified  with
some regularity  or we  will  face  the  risk  of  untreatable  S.  aureus  infections.

© 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
. Introduction

Meticillin-resistant Staphylococcus aureus (MRSA) remains one
f the principal multiply resistant bacterial pathogens causing
omplicated skin and skin-structure infections (cSSSI) and seri-

us hospital-acquired infections, especially bloodstream infections
BSIs) and ventilator-associated pneumonia (VAP) [1–3]. Over-
ll, MRSA is estimated to cause 171 200 healthcare-associated

� This review is based on discussions held at the International Society of
hemotherapy (ISC) MRSA Consensus Meeting, 15–16 March 2011, Florence, Italy.
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infections (HAIs) in Europe each year, corresponding to 44% of all
HAIs. It is also estimated to cause 5400 attributable extra deaths and
over a million extra days of hospitalisation associated with these
infections [1].  Accumulating data indicate that MRSA infections are
associated with a worse prognosis than meticillin-susceptible S.
aureus (MSSA) infections [3–6]. Most recently, the BURDEN study,
an international prospective cohort study, found that MRSA bac-
teraemia almost doubled the odds of 30-day mortality compared
with MSSA bacteraemia [odds ratio (OR) 1.8; P = 0.04] and that
both cohorts had elevated mortality and length of stay compared
with controls [3].  The emergence of community-associated MRSA

(CA-MRSA) is of considerable concern, although these remain less
common in Europe than in the USA. Importantly, the simplis-
tic distinction between CA-MRSA and healthcare-associated MRSA
(HA-MRSA) infection has now been superseded, as CA-MRSA clones

otherapy. All rights reserved.
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re now a potential cause of HA infections and community-onset
nfections in hospitalised patients as well as MRSA infections in the
ommunity, particularly in the USA [7–9].

Meticillin resistance in S. aureus results from acquisition of
he mecA gene located within the mobile element known as
he staphylococcal cassette chromosome mec (SCCmec). Until
ecently, eight SCCmec types were defined according to the SCCmec
ype and the chromosomal background determined by multilocus
equence typing [10]. HA-MRSA infections are generally caused
y multidrug-resistant strains harbouring SCCmec  types I, II and

II, whereas CA-MRSA carry SCCmec  types IV, V or VII. In Europe,
equence type 80 (ST80), SCCmec type IV is the predominant CA-
RSA clone, whereas the ST8, SCCmec type IV clone exhibiting

he USA300 pulsed-field gel electrophoresis profile predominates
n the USA [8].  Whilst CA-MRSA are usually susceptible to most
ntibacterial classes, US300 strains with plasmid-mediated resis-
ance to clindamycin, mupirocin, gentamicin, trimethoprim and/or
oxycycline have been reported [11]. The novel SCCmec types IX
nd X, type V (5C2&5) subtype C and type IVa have recently been
escribed in clonal complex 398 MRSA strains [12].

This review is based on discussions held at an expert panel
eeting sponsored by the International Society of Chemotherapy

ISC) in Florence, Italy, 15–16 March 2011. This paper adds to and
pdates previous statements by working groups from the ISC and
he European Society of Clinical Microbiology and Infectious Dis-
ases (ESCMID) [13,14].  It focuses on recent published data that
ave elucidated the virulence strategies employed by MRSA, on key
linical trials published since the last ESCMID/ISC statement, and on
he accumulating data regarding the clinical implications of resis-
ance during treatment for serious MRSA infections, principally in
ospitalised patients.

. Pathogenesis: new insights into MRSA virulence

Staphylococcus aureus is a versatile pathogen that can express
n array of virulence factors, including adhesins [e.g. fibronectin-
inding proteins (FnBPs) and protein A] that mediate binding
o host cells, enzymes (e.g. proteases and lipases), toxins [e.g.
-haemolysin and Panton–Valentine leukocidin (PVL)], phenol-
oluble modulins and capsular polysaccharides. Expression of these
irulence factors is controlled by complex staphylococcal regula-
ory networks, including the accessory gene regulator (agr) system,
nd these genes vary between strains. Recent data have shed light
n the role of PVL, an important yet controversial virulence fac-
or. PVL is a bicomponent pore-forming exotoxin produced by
–3% of clinical S. aureus isolates [15] and is almost universally
resent in CA-MRSA clones [8].  Clinical evidence suggests that
VL is associated with acute, severely necrotising skin infections
nd pneumonia [16,17] and with a greater systemic inflammatory
esponse and more severe local disease in osteomyelitis [18]. How-
ver, the pathogenic role of PVL has been questioned following a
ack of observable effects in mouse models of infection.

Evidence that the effects of PVL are species-specific may  explain
he seemingly contradictory evidence regarding its importance in
he pathogenesis of MRSA infections: PVL induces rapid activation
nd cell death in human and rabbit neutrophils, but not in murine
r simian cells [19,20].  Studies in rabbit models have confirmed
hat PVL expression in the S. aureus USA300 strain is associated
ith more severe skin infection lesions compared with non-PVL

trains [20]. In a rabbit osteomyelitis model, PVL expression was
ssociated with greater persistence of infection and with a signifi-

antly greater likelihood of bone deformation and extension of the
nfection to muscle and joints [21]. Evidence from a pneumonia

odel suggests that PVL causes lung necrosis by activating and
ysing polymorphonuclear leukocytes [22].
timicrobial Agents 39 (2012) 96– 104 97

New insights have also been gained into the pathogenic
mechanisms involved in S. aureus endovascular infections (e.g.
endocarditis, thrombophlebitis, and catheter-related or vascular
graft infections). Pathogenic strains attach to host endothelial
cells via adhesins before invading and triggering inflammatory
responses and cell death. Recent studies have also revealed a
novel FnBP-independent mechanism of staphylococcal internali-
sation mediated in S. aureus and Staphylococcus epidermidis by the
autolysin/adhesins Atl and AtlE, respectively, and by heat shock
protein as the host cell surface receptor [23]. It is now clear that
strains differ in their post-invasion strategies and that this explains
the different disease processes observed. Highly virulent strains
such as 6850 and ST239 express toxins and other virulence factors
following cell invasion, regulated by the agr system. In contrast,
others (e.g. Cowan I) persist within intact cells without caus-
ing dramatic inflammatory reactions or acute cytotoxicity owing
to a defective agr system [24]. These examples of downregula-
tion of certain virulence factors may  represent alternate strategies
whereby such strains can result in persistent or recurrent chronic
infections.

Furthermore, S. aureus appears to switch between phenotypes
according to its location. Small colony variant (SCV) phenotypes
of S. aureus are associated with persistent infections such as
osteomyelitis and endocarditis. Adapted for intracellular persis-
tence, SCV strains are characterised by slow growth and reduced
expression of most extracellular virulence factors [25]. Highly vir-
ulent wild-type isolates can also persist intracellularly and develop
SCV-like phenotypes, thereby representing a reservoir for chronic
refractory infections. These phenotypes then revert to the fully vir-
ulent wild-type form when leaving the intracellular location and
infecting new cells [26].

3. Clinical trials

Choice of antimicrobial therapy for suspected severe MRSA
infections should be based primarily on the local prevalence and
resistance profile of MRSA and on the risk factors and clinical
characteristics present in individual patients. In a previous state-
ment by the ESCMID/ISC MRSA Working Group, vancomycin was
recommended as the standard option for the initial treatment
of MRSA bacteraemia and endocarditis, in particular when sep-
sis is not life-threatening and the infecting strain has a minimum
inhibitory concentration (MIC) of ≤1 mg/L. A semisynthetic peni-
cillin should be added to cover MSSA in severe sepsis. A change
to daptomycin was  recommended in cases where there is a slow
response to vancomycin or in complicated bacteraemia, relapse or
breakthrough MRSA bacteraemia by organisms with a vancomycin
MIC  > 1.0 mg/L. Daptomycin may  be preferred for first-line initial
therapy in patients with life-threatening sepsis or renal impair-
ment and when the vancomycin MIC  is >1.0 mg/L and in patients
who  have previously received optimally conducted glycopeptide
therapy. Linezolid was  recommended for first-line empirical ther-
apy for suspected MRSA VAP and hospital-acquired pneumonia
(HAP), especially in patients with recent vancomycin exposure,
when the vancomycin MIC  is >1 mg/L or is considered likely to be
elevated, and in patients with renal failure [14]. Recent guidelines
issued by the Infectious Disease Society of America (IDSA) recom-
mend vancomycin or daptomycin for bacteraemia and endocarditis
(plus rifampicin for prosthetic valve infections) and vancomycin,
linezolid or clindamycin for HA-MRSA or CA-MRSA pneumonia
[27], with the choice depending on local resistance profiles of clin-

ical MRSA isolates. Options for empirical treatment of cSSSIs in
hospitalised patients include vancomycin, linezolid, daptomycin,
telavancin (not yet available in Europe) or clindamycin [27,28].
Options for empirical treatment of CA-MRSA SSSIs in outpatients
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nclude oral clindamycin, trimethoprim/sulfamethoxazole (SXT), a
etracycline or linezolid [27].

The following section reviews recent clinical studies and meta-
nalyses of recommended and investigational agents for MRSA
nfections.

.1. Linezolid

On meta-analysis, linezolid has shown efficacy similar to
omparators in the treatment of Gram-positive pneumonia and
acteraemia [29,30]. Two recent meta-analyses did not show a sig-
ificant benefit of linezolid over glycopeptides in terms of clinical
uccess, microbiological eradication or mortality in the treatment
f HAP, including MRSA infections [31,32].

Results from the randomised, double-blind, multicentre, phase
V, ZEPHyR study of linezolid [600 mg  intravenous (i.v.) every 12 h
q12 h)] versus vancomycin [15 mg/kg i.v. q12 h with therapeutic
rug monitoring (TDM)] in MRSA culture-proven HAP have recently
een reported in abstract form [33]. This was a non-inferiority trial
ith a nested superiority hypothesis. Clinical success rates at the

nd of the study (7–30 days after the end of therapy; primary end-
oint) in the per-protocol (PP) group were 57.6% for linezolid and
6.6% for vancomycin (Table 1). Linezolid was non-inferior and
tatistically superior (P = 0.042) to vancomycin according to this
ndpoint and according to rates of clinical and microbiological suc-
ess at the end of therapy, respectively. The 60-day mortality rate
as similar between the groups (94 deaths in the linezolid group

nd 100 in the vancomycin group), but the study was  not powered
o compare these rates. These preliminary data show a significant
enefit of linezolid over vancomycin in HAP due to MRSA, although
he clinical success rates remain low. Subanalyses of the results in
atients with VAP and those with bacteraemia would be useful.

Several recent meta-analyses have shown significantly supe-
ior clinical and/or microbiological success rates for linezolid
ersus vancomycin for MRSA-confirmed cSSSIs [30,34–36].  A large,
nternational, open-label, phase IV trial compared linezolid with
ancomycin (15 mg/kg i.v. q12 h, adjusted to trough levels) in
atients with MRSA-confirmed cSSSI (n = 1052) [37]. This was  a
on-inferiority study with a nested superiority test. In terms of
linical success, linezolid was non-inferior to vancomycin in the
P population (primary analysis) at the end-of-study assessment,
ith rates of 191/227 (84%) versus 167/209 (80%) (P = 0.249) at

he end of treatment. Linezolid was significantly superior to van-
omycin in the modified intention-to-treat (mITT) population at
he end of the study assessment [223/276 (81%) vs. 196.266 (74%);

 = 0.048]. Microbiologically, linezolid was significantly better than
ancomycin in the PP population at the end of treatment and had
imilar efficacy at the end-of-study assessment. Linezolid was  also
ssociated with a shorter duration of hospitalisation and i.v. ther-
py [37].

According to meta-analyses, overall rates of adverse events
AEs) and discontinuations are similar for linezolid and vancomycin
30,32,35].  Nephrotoxicity is more common with vancomycin
ccording to some meta-analyses [30,35], although not all [31]. Gas-
rointestinal effects and thrombocytopenia are more common with
inezolid [31,35].

.2. Daptomycin

Daptomycin (Cubicin®; Novartis) is a lipopeptide agent
pproved in Europe for the treatment of cSSSIs, right-side endo-
arditis and S. aureus bacteraemia in adults [38]. It is not effective

n (or approved for) pneumonia therapy owing to its inactivation
y lung surfactants.

According to a pre-specified subset analysis of a randomised
rial, daptomycin (6 mg/kg/day) was as effective as vancomycin
timicrobial Agents 39 (2012) 96– 104

plus gentamicin in patients (total n = 88) with MRSA bacteraemia
or endocarditis [39]. More recently, data on 38 cancer patients with
catheter-related BSI caused by Gram-positive bacteria treated with
daptomycin were matched with data for historical controls treated
with vancomycin [40]; 68% of patients in the daptomycin group and
80% in the vancomycin group had organisms with vancomycin MICs
of 1–2 mg/L. Results from this small study suggest that daptomycin
may  be associated with improved 48-h clinical and microbiological
response, improved overall response and lower risk of nephrotox-
icity, although the two  groups were comparable with respect to
length of hospital stay and death.

The approved dose of daptomycin is 4 mg/kg once daily in non-
bacteraemic cSSSI and 6 mg/kg once daily in bacteraemic cSSSI
and endocarditis [38]. Use of a 6 mg/kg/day dose has also been
recommended in other circumstances, including rapidly progress-
ing SSSI, sepsis syndrome, osteomyelitis and infections caused
by vancomycin-intermediate S. aureus (VISA) [41]. Some experts
recommend the use of even higher dosages of daptomycin, i.e.
8–10 mg/kg once daily, in order to reduce the risk of resistance
selection during therapy (discussed below) [27]. The effectiveness
and tolerability of daptomycin at these doses is supported by ret-
rospective registry data [42,43] and case series studies [44,45].  In
one case series, 22 patients received daptomycin at a standard
dose (mean 5 mg/kg/day) and 31 received a higher dose (mean
8 mg/kg/day, range 7–9 mg/kg), mostly for the treatment of S.
aureus bacteraemia or cSSSI [44]. The median treatment duration
was  13.5 days and 19 days for the standard and high-dose groups,
respectively. The higher dose was  associated with higher rates of
clinical success (94% vs. 73%, respectively; P = 0.05) and microbio-
logical success (93% vs. 68%, respectively; P < 0.05), with no clear
increase in toxicity [44]. Recent data from 270 patients within a
European prospective registry indicate that the rates of AEs and
serious AEs were similar in patients treated with daptomycin doses
of ≥8 mg/kg (n = 270) and <8 mg/kg (n = 3330).

3.3. Tigecycline

Tigecycline (Tygacil®; Wyeth), a bacteriostatic glycylcycline, is
approved in the USA for the treatment of adults with cSSSI, compli-
cated intra-abdominal infections (IAIs) and community-acquired
pneumonia (CAP) [46] and in Europe for cSSSIs and IAIs [47].

Results were recently published from a large, phase III, multi-
centre, randomised, double-blind study that compared tigecycline
(100 mg  i.v., then 50 mg  q12 h), plus optional adjunctive ther-
apy with ceftazidime [2 g i.v. every 8 h (q8 h)] for Pseudomonas
aeruginosa coverage, versus the carbapenem imipenem/cilastatin
(0.5–1 g i.v. q8 h) plus optional adjunctive therapy with vancomycin
(1 g i.v. q12 h) for MRSA coverage in patients with HAP (n = 945)
[48]. The co-primary efficacy endpoints were clinical response
at the test-of-cure assessment for the clinically evaluable and
clinical mITT populations. Overall, tigecycline was  non-inferior
to imipenem/cilastatin in the mITT population (62.7% and 67.6%,
respectively) (Table 1). However, tigecycline was  inferior to the car-
bapenem in the clinically evaluable population (67.9% vs. 78.2%,
respectively) (Table 1) owing to lower efficacy in the subset of
patients with VAP. Indeed, tigecycline did not meet the crite-
ria for non-inferiority in VAP patients in either the clinically
evaluable or mITT populations. Tigecycline gave a clinical cure
in 8/17 patients (47.1%) with non-VAP MRSA infection and 4/10
patients (40.0%) with MRSA VAP; the corresponding rates in the
imipenem/cilastatin arm were 14/19 (73.7%) and 9/11 (81.8%),
respectively. The overall mortality rate was similar in the two  arms,

but the mortality rate in VAP patients was  higher in the tigecy-
cline arm. Exploratory analyses could not explain the difference in
efficacy in VAP/non-VAP patients, although mechanical ventilation
alone did not appear to be causative per se. The authors speculated
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Table  1
Clinical cure rates in recent double-blind, randomised, multicentre, prospective, phase III/IV trials in patients with hospital-acquired pneumonia (HAP) and/or ventilator-
acquired pneumonia (VAP).

Study/population Infection/test Treatment (dose) Difference (95% CI)

ZEPHyR [33] MRSA-positive NP Linezolid (600 mg i.v.
q12 h)

Vancomycin (15 mg/kg i.v. q12 h)

PP  EOS 57.6% (95/165) 46.6% (81/174) (0.5–21.6); P = 0.042
ATTAIN 1 & 2 (pooled) [54] Gram-positive HAP Telavancin (10 mg/kg

i.v. q24 h)
Vancomycin (1 g i.v. q12 h)

All  treated TOC 58.9% (441/749) 59.5% (449/754) −0.7 (−5.6 to 4.3)
CE TOC 82.4% (257/312) 80.7% (276/342) 1.7 (−4.3 to 7.7)
ME:  MRSA TOC 74.8% (104/139) 74.7% (115/154) 0.4 (−9.5 to 10.4)
Study  311 [48] HAP (including VAP) Tigecycline (100 mg

i.v., then 50 mg  q12 h)a
Imipenem/cilastatin (0.5–1 g i.v. q8 h)a

c-mITT TOC: all patients 62.7% (276/440) 67.6% (290/429) −4.8 (−11.0 to 1.3); non-inferiority
test, P = 0.001

TOC:  VAP 46.5% (37.6–55.5%) 57.8% (48.2–66.9%) −11.3 (−24.6 to 2.0)
TOC:  non-VAP 69.3% (63.9–74.4%) 71.2% (65.9–76.2%) −1.9 (−9.4 to 5.6)

CE TOC:  all patients 67.9% (182/268) 78.2% (190/243) −10.4 (−17.8 to −3.0); non-inferiority
test, P = 0.120

TOC:  VAP 47.9% (36.1–60.0%) 70.1% (57.7–80.7%) −22.2 (−37.8 to −4.9)
TOC:  non-VAP 75.4% (68.7–81.3%) 81.3% (74.7–86.7%) −5.9 (−14.5 to 3.0)

CI, confidence interval; MRSA, meticillin-resistant Staphylococcus aureus; NP, nosocomial pneumonia; i.v., intravenous; q12 h, every 12 h; PP, per-protocol; EOS, end of study;
q24  h, every 24 h; TOC, test of cure; CE, clinically evaluable; ME,  microbiologically evaluable; q8 h, every 8 h; c-mITT, clinical modified intention-to-treat.
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a Patients treated with tigecycline could receive optional adjunctive therapy
mipenem/cilastatin could receive adjunctive therapy with vancomycin (1 g i.v. q12

hat the results may  be explained by an insufficient area under the
oncentration–time curve (AUC) exposure to tigecycline with the
ose used [48].

Another group recently published a meta-analysis of eight ran-
omised, phase III trials of tigecycline (n = 4651) in the management
f cSSSI, CAP and IAI, seven of which were double-blind [49]. There
ere no statistically significant differences between tigecycline

nd comparators in clinical success rates in clinically evaluable
atients overall or in cSSSI or CAP. Tigecycline was significantly

ess efficacious than comparators, however, in the treatment of
AI in evaluable patients [OR = 0.80, 95% confidence interval (CI)
.65–0.98; P = 0.03] and overall there was a trend for lower effi-
acy for tigecycline in the clinical mITT population (OR = 0.86, 95%
I 0.74–1.01; P = 0.06).

Tigecycline gave numerically higher microbiological eradica-
ion rates than comparators against MRSA, but numerically lower
radication rates against MSSA, although no differences were sig-
ificant. Tigecycline was associated with significantly more AEs
especially gastrointestinal events) than comparators as well as a
on-significantly higher mortality rate [49]. Meta-analyses by the
uropean Medicines Agency (EMEA) [50] and the manufacturer of
igecycline [51] have also documented a numerically higher inci-
ence of death amongst tigecycline recipients in phase III and IV
rials compared with comparator arms. The cause of this increased

ortality risk has not been established.
Patients who develop superinfections, in particular HAP, appear

o be associated with poorer outcomes and should be monitored
ccordingly. In February 2011, the EMEA Committee for Medicinal
roducts for Human Use (CHMP) recommended that the tigecycline
abel should be amended to warn of the mortality risk and to specify
hat tigecycline should only be used in situations where it is known
r suspected that other alternatives are not suitable [50]. The US
abel for tigecycline was amended in 2010 to warn of this issue
46].

.4. Telavancin
Telavancin (Vibativ®; Astellas), a bactericidal lipoglycopeptide,
s approved in the USA for the treatment of cSSSI [52]. In phase III
rials, telavancin was clinically and bacteriologically non-inferior
o vancomycin in patients (n = 579) with MRSA cSSSI [53]. Cure
 ceftazidime (2 g i.v. q8 h) for Pseudomonas aeruginosa. Patients treated with
 MRSA coverage.

rates against MRSA infection were 91% for telavancin and 86% for
vancomycin (95% CI for the difference, −1.1% to 9.3%). Microbio-
logical eradication rates were 90% and 85%, respectively (95% CI
for the difference, −0.9% to 9.8%). More recently, a meta-analysis
showed significantly superior success rates for telavancin versus
vancomycin for MRSA-confirmed cSSSIs [36].

Results have recently been reported from the two double-blind,
randomised, phase III, non-inferiority ATTAIN 0015 and 0019 stud-
ies, which compared telavancin (10 mg/kg i.v. every 24 h) with
vancomycin (1 g i.v. q12 h) in a total of 1503 patients with Gram-
positive HAP [54]. Vancomycin levels were measured at some
sites, according to local protocols; the lack of these data from all
sites complicates the interpretation of the study results. The pri-
mary efficacy analysis was a non-inferiority analysis of clinical
response at follow-up/test of cure in each study. In addition, there
was  a pre-specified secondary superiority analysis in pooled data
from patients with MRSA pneumonia in the two  studies. Overall,
ca. 50% of the population were aged ≥65 years and 58% in both
treatment arms were in intensive care at baseline. Approximately
one-quarter had an Acute Physiology and Chronic Health Evalua-
tion (APACHE) score of ≥20 and 6% had bacteraemia. Telavancin
was  non-inferior to vancomycin in each of the studies and in the
pooled all-treated population, with pooled cure rates of 58.9% vs.
59.5%, respectively (Table 1). Telavancin and vancomycin gave simi-
lar cure rates in MRSA infections overall (74.8% vs. 74.7%). According
to post hoc analysis, telavancin gave a statistically higher cure rate
than vancomycin against all monomicrobial S. aureus infections
(84.2% vs. 74.3%, respectively; 95% CI for the difference, 0.7–19.1%)
and a numerically higher cure rate against monomicrobial MRSA
infections (81.8% vs. 74.1%, respectively) and monomicrobial MSSA
infections (87.9% vs. 75.0%, respectively).

Telavancin was significantly more effective than vancomycin
in monomicrobial S. aureus infections with a vancomycin
MIC  ≥ 1 �g/mL (87.1% vs. 74.3%; P = 0.03). Vancomycin gave a non-
significantly higher cure rate overall in patients with mixed Gram-
positive/Gram-negative infection (66.2% vs. 79.4%). Cure rates were
similar between the groups amongst patients with mixed infec-

tions who received adequate Gram-negative coverage. However,
‘adequate’ was  not defined. Moreover, piperacillin/tazobactam or
aztreonam were used for Gram-negative coverage and the for-
mer  also covers MSSA. Overall rates of death and AEs were similar
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etween the groups. The most common treatment-emergent AEs
n both arms were diarrhoea, anaemia, hypokalaemia, constipation
nd renal impairment. Potentially clinically significant increases
n serum creatinine levels were numerically more common in
he telavancin group than in the vancomycin group (16% vs. 10%,
espectively), as were serious AEs (31% vs. 26%, respectively) and
Es leading to discontinuation of study medication (8% vs. 5%,
espectively). The most common serious AEs in both groups were
eptic shock, respiratory failure and multiorgan failure [54].

Evidence of a risk of acute renal failure caused by telavancin
as prompted the CHMP to recommend limited approval of tela-
ancin in Europe for the treatment of adults with HAP, including
AP, known or suspected to be caused by MRSA only in situations
here it is known or suspected that other alternatives are not suit-

ble [55]. An application for the indication of cSSSI in Europe has
een withdrawn.

.5. Ceftaroline

Ceftaroline, the active component of the pro-drug cef-
aroline fosamil (Teflaro®; Forest), is an advanced-generation
ephalosporin that is approved in the USA for acute bacterial SSSI
nd CAP [56] but which is not yet approved in Europe.

Results were recently published from two identical, inter-
ational, randomised, double-blind, phase III trials known as
eftAroliNe versus VAncomycin in Skin and Skin Structure Infec-
ions (CANVAS) 1 [57] and CANVAS 2 [58], together with a pooled
nalysis of these studies [59]. Adults with cSSSI were randomised
o treatment with ceftaroline (600 mg  i.v. q12 h; n = 693) or van-
omycin (1 g q12 h, adjusted according to local policies) plus
ztreonam (1 g q12 h). Ceftaroline was clinically and microbiologi-
ally non-inferior to vancomycin/aztreonam in PP and ITT analyses,
n the individual trials and the pooled analysis, including in mixed
nd polymicrobial infections. On pooled analysis, the two regi-
ens gave similar clinical cure rates against MRSA in evaluable

atients [142/152 (93.4%) for ceftaroline and 115/122 (94.3%) for
ancomycin/aztreonam] as well as in the ITT population and against
nfections caused by MSSA. A trend for a lower rate of clinical cure
n patients with bacteraemia is of unclear significance owing to the
mall number of cases. Amongst patients with MRSA bacteraemia,
ure rates were 6/7 (85.7%) for ceftaroline and 2/2 (100.0%) for
ancomycin/aztreonam [58]. Rates of AEs, serious AEs and discon-
inuations were similar between the groups. Vancomycin plasma
evel data were not reported, complicating evaluation of the results.

.6. Investigational agents

A regulatory submission for the developmental lipoglycopep-
ide oritavancin for cSSSIs was declined by the US Food and Drug
dministration (FDA) owing to insufficient data, and an EMEA
pplication was subsequently withdrawn [60]. Results of the multi-
entre, double-blind, randomised, phase II SIMPLIFI study (reported
n abstract form) suggest that oritavancin is similarly efficacious
gainst Gram-positive cSSSI (including MRSA) when administered
s a single dose (1200 mg)  or infrequently (i.e. 800 mg  on Day 1,
ith an optional 400 mg  dose on Day 5) compared with daily dosing

200 mg  for 3–7 days) [61].
Other agents in clinical development include nemonoxacin (TG-

73870), a novel non-fluorinated quinolone with in vitro and
n vivo activity covering MRSA [62,63], and omadacycline (PTK796),
n aminomethycycline structurally related to the tetracyclines [64].

omething should be said about dalbavancin. An (American) Advi-
ory Board on the development of dalbavancin was  held in Milan
fter the 21st European Congress of Clinical Microbiology and Infec-
ious Diseases (ECCMID) (2011), indicating that clinical trials are
timicrobial Agents 39 (2012) 96– 104

in progress or contemplated very seriously. We  could try to see
whether something has been reported on this drug.

3.7. Older agents

Trimethoprim is commonly used in the management of uncom-
plicated skin abscesses caused by CA-MRSA, although the benefit of
antibiotic therapy in this setting is not well characterised. Recently,
a multicentre, double-blind, randomised, placebo-controlled trial
has evaluated whether use of antibiotic therapy with oral SXT for
uncomplicated SSSI reduces the rate of treatment failures dur-
ing the 7 days after incision and drainage and the rate of new
lesion formation within 30 days [65]. There was a similar inci-
dence of treatment failure in patients receiving SXT (15/88; 17%)
and placebo (27/102; 26%) (P = 0.12). However, the 30-day rate of
new lesions was significantly lower in patients treated with the
antibiotic (4/46; 9%) versus placebo (14/50; 28%) (difference, 19%,
95% CI of the difference, 4–34%; P = 0.02). Therefore, antibiotic ther-
apy may  not improve treatment success rates in patients but may
reduce the risk of subsequent lesions. Data are awaited from an
ongoing randomised, open-label study comparing SXT and van-
comycin in invasive MRSA infections in Israel (Clinicaltrials.gov
identifier NCT00427076).

Other studies underway include a European trial compar-
ing SXT plus rifampicin against linezolid for MRSA infections
(NCT00711854) and a large US study of SXT, clindamycin or placebo
within the outpatient management of uncomplicated SSTIs, includ-
ing CA-MRSA, in children and adults (NCT00730028).

In contrast to previous findings, data from a small, randomised
study in South Korea suggest that rifampicin (300 mg  orally twice
daily) might provide benefit when added to vancomycin (1 g i.v.
twice daily) in the management of confirmed MRSA HAP [66]. The
clinical cure rate in the mITT population was  significantly higher in
patients treated with vancomycin/rifampicin (53.7%; 22/41) com-
pared with vancomycin monotherapy (13/42; 31.0%) (P = 0.047) as
was  the rate of 60-day mortality (50.0% vs. 26.8%; P = 0.042). The
very small numbers of patients should be emphasised.

4. Resistance, clinical failure and dosing

4.1. Vancomycin

Vancomycin has long been the gold-standard agent for the
empirical management of serious MRSA infections in hospitalised
patients [13,14,27,28]. However, it has well-recognised limitations,
including slow cidality, poor activity against MSSA, uncertainty
regarding the prevalence of heterogeneous VISA (hVISA) strains,
variations between and within patients in tissue distribution, and
the need for TDM to ensure adequate levels and to minimise the
risk of nephrotoxicity [67]. Although vancomycin remains active
against MRSA [68,69],  rising MICs within the susceptible range (MIC
creep or leap) is a concern [14]. International data from the Tigecy-
cline Evaluation and Surveillance Trial (T.E.S.T.) involving 20 004
S. aureus isolates show that the proportion of MRSA with van-
comycin MICs ≥ 2 mg/L increased from 5.6% in 2004 to 11.1% in
2009 (P < 0.001). The proportion of MSSA isolates with vancomycin
MICs ≥ 2 mg/L rose from 2.6% in 2004 to 5.6% in 2009 (P < 0.001) [70].
Strains with high-level vancomycin resistance (acquired via the van
A plasmid) remain very rare, although cases have been reported in
the USA [71,72],  India [73] and Iran [74]. The likelihood of reduced
vancomycin susceptibility is significantly increased by recent prior

vancomycin use [75].

MRSA strains with a vancomycin MIC  of 2 mg/L have been asso-
ciated in some prospective multivariate analyses with an increased
risk of treatment failure and even an increased mortality rate in
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acteraemic patients compared with strains with a lower MIC. Sori-
no et al. [76] prospectively evaluated the effect of vancomycin
IC  on outcome of vancomycin therapy in 414 patients with
RSA bacteraemia. Multivariate analysis selected receipt of empir-

cal vancomycin and an isolate with a vancomycin MIC  of 2 mg/L
OR = 6.39, 95% CI 1.68–24.3) as significant independent predictors
f mortality [76]. Recent retrospective analyses suggest that VISA
trains may  contribute to vancomycin treatment failure and death
n patients with MRSA bacteraemia, whereas heteroresistance may
nly reduce response rates without affecting mortality [77–79].

With regard to pharmacokinetics, vancomycin should be dosed
o achieve a trough plasma concentration of 15–20 mg/L [14,27,67].
n Scotland, Thomson et al. [80] used a population pharmacokinetic

odel to derive new dosage guidelines predicted to achieve a tar-
et trough of 10–15 mg/L earlier (using loading doses) and more
onsistently than previous dosage guidelines and to attain a sat-
sfactory AUC24/MIC ratio in 87% of patients. TDM measurements
eport the total vancomycin level rather than levels of free (i.e. non-
rotein bound) active drug. Recent data have confirmed that free
ancomycin levels are highly variable both within and between
atients and cannot be predicted from total vancomycin levels [81].
his raises important questions about how vancomycin should be
sed and how TDM can be optimised. There are insufficient data
o support a recommendation on continuous vancomycin infusion
14], although this mode of administration is considered unlikely
o improve clinical outcomes [67].

Recommendations for the management of MRSA infections
efractory to vancomycin treatment, in addition to necessary
rainage or surgical debridement, include the use of high-dose
aptomycin (10 mg/kg/day) if the isolate is susceptible, possibly

n combination with another agent (e.g. gentamicin, rifampicin,
inezolid, SXT or a �-lactam) [27].

.2. Linezolid

Linezolid resistance was initially reported to occur most com-
only as a result of a G2576T mutation in the drug target site,

rimarily the rRNA of the large ribosomal subunit [82]. This resis-
ance has appeared only sporadically and is usually mediated by
he presence of mutations in one or more alleles of the target
3S rRNA gene [83]. In 2008, linezolid-resistant isolates were iso-

ated from 12 patients in a Spanish hospital [84,85]. These isolates
emained susceptible to SXT, glycopeptides, tigecycline and dapto-
ycin. Instead of the previously reported G2576T mutation, these

lonal isolates were resistant owing to their possession of the chlo-
amphenicol/florfenicol resistance (cfr) gene. The cfr gene mediates
ethylation of the 23S rRNA subunit and affects the binding of chlo-

amphenicol, lincosamides (e.g. clindamycin), pleuromutilins and
treptogramin A. This gene is thought to have been transmitted
orizontally from coagulase-negative staphylococci [85]. Staphylo-
occus aureus and S. epidermidis isolates with cfr-mediated linezolid
esistance have also been identified in the USA [68]. This mecha-
ism is of concern owing to the potential for transmissibility and
ecause it could threaten the effectiveness of other antibacterials
hat act against protein synthesis.

.3. Daptomycin

Daptomycin resistance in wild-type MRSA is rare but is cer-
ainly of clinical concern, hence microbiology laboratories must
rovide daptomycin MICs in certain situations if daptomycin is
o be used. Stepwise incubation of MRSA in increasing concen-

rations of daptomycin can increase the MICs of both daptomycin
nd vancomycin [86,87].  Although daptomycin is active against
ost hVISA and many VISA [88], heteroresistance to dapto-
ycin has been reported [89]. In a randomised study, resistant
timicrobial Agents 39 (2012) 96– 104 101

post-treatment isolates were found in 7/53 patients (13.2%) with
S. aureus bacteraemia/endocarditis treated with vancomycin com-
pared with 7/120 patients (5.8%) treated with daptomycin [90].
Selection of vancomycin resistance during vancomycin therapy can
confer daptomycin cross-resistance [91–93].  The daptomycin MIC
should therefore be checked when this agent is used in patients
who  have previously received vancomycin therapy [14]. Although
the mechanisms of daptomycin resistance are not clear, resistance
and clinical failure have been linked to sequential mutations and
various changes in membrane structure and function (including
drug binding) [69,87,94],  analogous to vancomycin resistance [82].

According to a post-marketing retrospective registry, the over-
all rate of clinical failure in 187 patients with confirmed MRSA
infections treated with daptomycin was 11% [95]. According to
multivariate analysis of registry data from 1227 patients with S.
aureus infections, endocarditis, bacteraemia, severe renal dysfunc-
tion and diabetes mellitus were significantly and independently
associated with higher rates of daptomycin treatment failure [96].
Up until March 2011, we identified 28 well-documented case
reports of daptomycin treatment failure in MRSA infections asso-
ciated with the development of daptomycin resistance [97–101].
Treatment failure is generally associated with: the presence of sig-
nificant co-morbidities; serious, high bacterial load infections (e.g.
endocarditis); delay in drainage or removal of the infected focus;
persistent bacteraemia or recurrence despite glycopeptide therapy;
and the use of relatively low daptomycin doses (i.e. ≤6 mg/kg/day).
Daptomycin MICs typically rose from 0.5 mg/L to 4–8 mg/L. The
number of cases is small in light of the total usage of daptomycin.
However, it is likely that other cases have gone unreported owing to
the difficulties involved in full documentation. Measures that may
reduce the risk of daptomycin failure include prompt and effective
drainage or removal of abscesses, prompt initiation of therapy, and
dosing at 10–12 mg/kg/day. In future it might be possible to use
TDM to optimise daptomycin exposure, but no recommendation is
possible at present.

Options for the treatment of infections caused by organisms
with reduced susceptibility to both vancomycin and daptomycin
include quinupristin/dalfopristin, SXT, linezolid or telavancin, pos-
sibly in combination with other agents [27].

5. Conclusions

Significant developments have taken place in recent years in our
understanding of the pathogenicity of S. aureus and MRSA infections
and the development of resistance in these organisms. In addition,
new clinical data are now available to provide better guidance on
the use of existing and newly available antibiotics. These data make
clearer the increasing limitations of the older glycopeptides and
underscore the need for additional new agents.

The major obstacle to the development of new antibiotics for
MRSA infections is the need for novel molecular targets. Whilst
extant classes of agents effective against MRSA currently provide a
variety of options for therapy for the majority of MRSA infections,
history shows us that S. aureus may develop widespread resistance
to any, and perhaps all, of them. As highlighted by the IDSA (in its
‘10 × 20′ initiative) and other bodies, novel targets must be identi-
fied with some regularity or we  will face the risk of untreatable S.
aureus infections.
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