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Abstract

Message passing between components of a distributed physical system is non-instanta-

neous and contributes to determine the time scales of the emerging collective dynamics. In

biological neuron networks this is due in part to local synaptic filtering of exchanged spikes,

and in part to the distribution of the axonal transmission delays. How differently these two

kinds of communication protocols affect the network dynamics is still an open issue due to

the difficulties in dealing with the non-Markovian nature of synaptic transmission. Here, we

develop a mean-field dimensional reduction yielding to an effective Markovian dynamics of

the population density of the neuronal membrane potential, valid under the hypothesis of

small fluctuations of the synaptic current. Within this limit, the resulting theory allows us to

prove the formal equivalence between the two transmission mechanisms, holding for any

synaptic time scale, integrate-and-fire neuron model, spike emission regimes and for differ-

ent network states even when the neuron number is finite. The equivalence holds even for

larger fluctuations of the synaptic input, if white noise currents are incorporated to model

other possible biological features such as ionic channel stochasticity.

Author summary

Understanding the collective behavior of the intricate web of neurons composing a brain

is one of the most challenging and complex tasks of modern neuroscience. Part of this

complexity resides in the distributed nature of the interactions between the network com-

ponents: for instance, the neurons transmit their messages (through spikes) with delays,

which are due to different axonal lengths (i.e., communication distances) and/or non-

instantaneous synaptic transmission. In developing effective network models, both of

these aspects have to be taken into account. In addition, a satisfactory description level

must be chosen as a compromise between simplicity and faithfulness in reproducing the

system behavior. Here we propose a method to derive an effective theoretical description

—validated through network simulations at microscopic level—of the neuron population

dynamics in many different working conditions and parameter settings, valid for any

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007404 October 8, 2019 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mattia M, Biggio M, Galluzzi A, Storace M

(2019) Dimensional reduction in networks of non-

Markovian spiking neurons: Equivalence of

synaptic filtering and heterogeneous propagation

delays. PLoS Comput Biol 15(10): e1007404.

https://doi.org/10.1371/journal.pcbi.1007404

Editor: Bard Ermentrout, University of Pittsburgh,

UNITED STATES

Received: May 2, 2018

Accepted: September 16, 2019

Published: October 8, 2019

Copyright: © 2019 Mattia et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Work partially supported by the EU

Horizon 2020 Research and Innovation

Programme under HBP SGA2 (grant no. 785907 to

MM) and by the University of Genoa (MS). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0002-2356-4509
http://orcid.org/0000-0003-4958-074X
https://doi.org/10.1371/journal.pcbi.1007404
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007404&domain=pdf&date_stamp=2019-10-18
https://doi.org/10.1371/journal.pcbi.1007404
http://creativecommons.org/licenses/by/4.0/


synaptic time scale. In doing this we assume relatively small instantaneous fluctuations of

the input synaptic current. As a by-product of this theoretical derivation, we prove analyt-

ically that a network with non-instantaneous synaptic transmission with fixed spike deliv-

ery delay is equivalent to a network characterized by a suited distribution of spike delays

and instantaneous synaptic transmission, the latter being easier to treat.

Introduction

Large distributed systems like brain neuronal networks often have to satisfy both timing and

space constraints, irrespective of their size. Indeed, they have to be compact in order to be por-

table, and at the same time the neurons have to communicate always to the same pace, in part

determined by the environment [1]. Communication through spikes makes this possible in a

distributed highly-parallel architecture with low power density. Spike communication in these

networks relies on both a synaptic low-pass filtering and a suited distribution of axonal propa-

gation delays: a heterogeneous transmission mechanism, which in turn affects the collective

dynamics of the network. As a consequence, even in the simplest modeling condition of point-

like spiking neurons, the microscopic dynamics of their state variable (i.e., the membrane

potential V(t)) is non-Markovian, and hence multi-dimensional through Markovian embed-

ding [2, 3]. This microscopic dynamics spans a wide variety of time scales, affecting the stabil-

ity of various network dynamics [4], the selectivity in transmitting information [5] and the

reactivity to suddenly appearing exogenous stimuli [6].

Despite the long history of attempts in statistical physics to work out an effective dimen-

sional reduction leading to a Markovian description of the dynamics of a non-Markovian sys-

tem [2, 7], a theoretical framework valid for any correlation time of the synaptic input and any

neuronal activity regime is still missing. Indeed, theoretical approaches including non-instan-

taneous transmission rely on approximations valid only for relatively small time scales [6, 8–

10], or for quasi-adiabatic dynamical regimes [11, 12], or for neurons working with low-noise

supra-threshold inputs [13, 14].

Here, we address this issue by developing a theoretical framework in which from small to

large synaptic time scales the same dynamical model holds for the instantaneous firing rate of

spiking neuron networks. Starting from the population density dynamics of single-neuron

state variables under mean-field approximation, we extend to the colored-noise case the spec-

tral expansion of the associated Fokker-Planck (FP) equation previously derived under white-

noise assumption [15]. Resorting to a kind of central moment closure method [16], a zero-th

order approximation of the population density dynamics is worked out, recovering the same

theoretical framework as for the white-noise case. In this framework, the projections of the

population density onto the basis composed of the non-stationary eigenmodes of the FP opera-

tor (i.e., the eigenfunctions with non-zero eigenvalues) are used to fully represent the state of

the network. This basis moves driven by the time-varying moments of the synaptic current

which depends on a low-pass filtered version of the network spiking activity. In this way, the

basis effectively adapts to the population density evolution and the network dynamics is

described by a compact system, valid for a wide class of models and dynamical regimes. We

validate the effectiveness of this theoretical description showing a remarkable agreement with

microscopic simulations of networks with various integrate-and-fire (IF) neuron models

(leaky, exponential and VLSI), spike emission regimes (sub- and supra-threshold) and

dynamical states (asynchronous states, corresponding to stable equilibrium points of the
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instantaneous firing rate and oscillating synchronous states, corresponding to limit cycles),

even when finite-size fluctuations are taken into account.

Finally, we prove a formal equivalence between the two transmission mechanisms: a suited

distribution of spike transmission delays between neurons allows to fully reproduce the firing

rate dynamics of the same network having instead non-instantaneous synaptic transmission. It

is then not by chance that both strategies coexist in a huge cellular network like the one com-

posing our brain. Indeed, thanks to such interchangeability, the balance between these mecha-

nisms might be optimally tuned to satisfy both compactness and communication constraints.

Results

Theoretical results

Full population density model as a set of interacting Markovian systems. We consider

a network composed of N integrate-and-fire (IF) neurons, each receiving an input current I(t)
resulting from the low-pass filtered linear combination of the spikes emitted at times tj, with

Poissonian distribution, by a subset of presynaptic cells in the network [9, 17]. For simplicity,

here we assume a first-order dynamics for synaptic current I, with decay time τs and constant

efficacy J : ts
_I ¼ � I þ tm J

P
jdðt � tjÞ=R. The membrane potential V(t) of an IF neuron

evolves according to the general equation tm
_V ¼ � f ðVÞ þ R ðI þ IextÞ, with membrane decay

constant τm, neuron resistance R = τm/Cm, membrane capacitance Cm and a voltage-depen-

dent leakage drift f(V), which depends on the model neuron type. For instance, f(V) is a con-

stant drift for the perfect IF (PIF) neuron and f(V) = V for the leaky IF (LIF) [18, 19].

Neurons may receive an additional current Iext modeling external sources, like incoming

synaptic input from other networks. Once V crosses a threshold value vthr, a spike is emitted

and potential V is reset to vres < vthr (boundary conditions). Fig 1A shows a Poisson spike

train (top panel) and the corresponding input current I(t) (middle panel) and membrane

potential V(t) (bottom panel) for a LIF neuron with τs = 4 ms, τm = 10 ms and Iext = 0.

Due to the boundary conditions, even under stationary regimes single-neuron dynamics is

not analytically tractable. This is particularly apparent looking at the stationary probability dis-

tribution computed from the long time series partially shown in Fig 1A. The probability distri-

bution of states (V, I) worked out numerically is shown in Fig 1B. The absorbing barrier in vthr

and the reentering flux of realizations in vres modeling the emission of spikes make this distri-

bution asymmetric [6, 8, 20] and correlation between V and I non-monotonic, a feature even

more apparent for slower synaptic filtering, as shown in Fig 1C and 1D, obtained by increasing

τs to 64 ms.

Under diffusion approximation, holding for large rate of incoming spikes each only mildly

affecting V [18, 19], membrane potential dynamics is described by the following system of

Langevin equations [2]

tm
_V ¼ � f ðVÞ þ RðI þ IextÞ ; ts

_I ¼ � I þ
mI þ sI x

R
; ð1Þ

where RIext = μext + σext ξext is a Gaussian white noise. We remark that the filtering effect of

synaptic dynamics makes the noise colored, thus leading to finite correlation time constants.

Moreover, V(t), individually, is not Markovian but V(t) and I(t), together, constitute a bi-vari-

ate Markov process [2].

Fig 2 provides an at-a-glance description of our method to obtain the final population

dynamics and is used as a main reference throughout this section. The first intermediate Lan-

gevin model (1) corresponds to Fig 2A.
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When the mean driving force alone (i.e., the deterministic part of the input I + Iext) is not

enough to make the membrane potential V cross the threshold vthr, the neurons are evolving

in a noise-dominated (or subthreshold) regime and irregular firing occurs, due to the sto-

chastic part of the input. In the opposite case, the emission of an action potential can occur

also in the absence of noisy afferent currents, and the neurons are in a drift-dominated
(or suprathreshold) regime of activity, characterized by the regular emission of spike trains

[21–23].

The stochastic differential Eq (1) describe a single neuron where the time course of V(t)
and I(t) is probabilistic. Therefore, the dynamics of V and I is fully described by the probability

density ρ(V, I, t). Fig 1B and 1D are examples of distributions of (V, I) samples obtained from

the numerical integration of the single-neuron dynamics under stationary conditions and

before assuming the diffusion approximation. The probability density ρ(V, I, t) describes

(under diffusion approximation) how this distribution evolves in time.

If we consider a network of statistically identical neurons, each with a different realization

of the stochastic input, ρ(V, I, t) can be considered a population density. The population den-

sity approach [2, 24] provides a method to analyze the dynamics of ensembles of connected

neurons, relating the firing properties of a network to the features of single neurons and of

their synaptic connections. This is done by assuming the “mean-field” hypothesis, which

allows to use the probability density for independent neurons in a “self-consistent” way.

Fig 1. Spike input filtering by synaptic transmission. (A, C) Presynaptic activity modeled by a Poissonian spike train

(top) is low pass-filtered by the synaptic transmission to produce the input current I(t) (middle) to the membrane

potential V(t) (bottom) of a leaky integrate-and-fire (LIF) neuron. Examples are shown for fast (A, τs = 4 ms) and slow

(C, τs = 64 ms) synaptic filtering. (B, D) Stationary distribution in the plane (V, I) sampled from simulations of the

same LIF neurons as in A and C with fast (B) and slow (D) synaptic transmission. Red arrows: mean fluxes of

realizations (probability currents) at different (V, I). vthr: absorbing barrier representing the spike emission threshold.

vres: reset membrane potential following the emission of a spike. Here Iext = 0.

https://doi.org/10.1371/journal.pcbi.1007404.g001
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According to this theoretical ansatz, the infinitesimal moments of RI

mIðtÞ ¼ tm J C nðtÞ

s2
I ðtÞ ¼ tm J2 C nðtÞ

ð2Þ

characterize the white noise ξ driving the activity-dependent synaptic current [8, 25] as a func-

tion of the network firing rate ν(t) (i.e., the average number of spikes each neuron emits per

time unit) and the average number of presynaptic contacts C (� N) per neuron. The probabil-

ity density ρ(x, y, t) to find neurons at time t with membrane potential V(t) = x and synaptic

current I(t) = y/R follows the FP equation [2] (see Fig 2B):

@tr ¼ � @xF xðx; yÞ � @yF yðy; nÞ

� 1

tm
@x f ðxÞ � y � mextð Þ þ 1

2
s2

ext@x

� �
rþ

1

ts
@y ðy � mIÞ þ

1

2
s2

I@y

h i
r

� ðLx þ LyÞr :

ð3Þ

Fig 2. Sketch of the main steps of the theoretical derivation. (A) Diffusion approximation (right) of the single-neuron dynamics.

(B) Probability density ρ(x, y) at fixed t, with the associated marginal distributions for both membrane potential (ρx, gray) and

current (ρy, orange). Orange dashed line: instantaneous mean μy of the current (see main text for details). (C) “Slices” of the two-

dimensional ρ(x, y) bounded by red dotted lines; each “slice” (which actually has infinitesimal thickness) corresponds to a one-

dimensional subpopulation of neurons with similar y and is described by the expansion coefficients {an(y)} of a suited one-

dimensional FP operator. (D) Partial firing rates νy (purple) are integrated over y to obtain the ν(t) of the whole network. (E) The

instantaneous firing rate ν(t) is now the only state variable needed to be fed back in order to operate the moment closure and take

into account only the “slice” centered around μy (the 0-th order approximation).

https://doi.org/10.1371/journal.pcbi.1007404.g002
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This is a continuity equation in which the density changes are determined by the divergence of

the probability current ðF x;F yÞ (i.e., the flux of realizations) together with few specific bound-

ary conditions (see Fig 1): i) spike emission as an absorbing barrier at x = vthr (only for y> 0

if σext = 0), ii) reentering flux of absorbed realizations at the reset potential vres and iii) lower

bound for the membrane potential implemented as a reflecting barrier at vmin� vres [8, 15,

26, 27].

In general, Eq (3) is hard to solve and only approximated solutions (mainly under station-

ary conditions) have been worked out [2, 6, 7, 28]. Here we derive a solution for this two-

dimensional problem without making any assumption like stationarity in time and restricted

ranges for the synaptic filtering timescale. We extend the spectral expansion approach

exploited to study the one-dimensional case [15, 26], by describing ρ(x, y, t) as the superposi-

tion of an infinite set of one-dimensional interacting sub-populations; each sub-population col-

lects the neurons that at time t receive a synaptic current y/R. Therefore we have iso-current
sub-populations labeled by y and changing in time as the realizations move along the y-dimen-

sion due to the action of F y. In other words, we “slice” the two-dimensional diagrams of the

probability current ðF x;F yÞ corresponding to ρ(x, y, t) along the y direction, thus obtaining

probability densities rðx; y; tÞjy¼�y , as sketched in Fig 2C.

The dynamics of each iso-current sub-population is studied, as in [15], by projecting ρ at

fixed y on the eigenfunctions {|ϕmi} of a suited one-dimensional FP operator, which here we

set to be

Lxy ¼
1

tm
@x½f ðxÞ � y � mext� þ

1

2tm
s2

ext þ s
2ðyÞ

� �
@

2

x; ð4Þ

with an additional diffusion term σ2(y) with respect to Lx of Eq (3), which is the variance of an

arbitrary Gaussian white noise depending on the state variable y.

As shown later, this additional term will play a crucial role in our dimensional reduction.

Indeed, σ2(y) will be chosen self-consistently to take into account the statistical variability

of the input currents received by all the iso-current subpopulations. This unconventional

choice allows us to use an expansion in eigenfunctions of this FP operator, with coefficients

anðy; tÞ ¼ hcnjri ¼
R vthr

vmin
cnðx; yÞ rðx; y; tÞ dx, which now explicitly depend on the term y

and where hψn| is the n-th eigenfunction of the adjoint operator of Lxy. The stationary

mode with eigenvalue λ0 = 0 has hψ0| = 1, thus a0(y, t) is the marginal probability density

ryðy; tÞ ¼
R vthr

vmin
rðx; y; tÞ dx (Fig 2, orange distribution).

The dynamics of an can be worked out by deriving an with respect to time [15, 26], and

rewriting Lx ¼ Lxy �
1

2tm
s2ðyÞ@2

x:

_an ¼ hcnjðLx þ LyÞri ¼ hcnjLxri þ hcnjLyri ¼

¼ hcnjLxyri �
s2ðyÞ
2tm
hcnj@

2

xri þ hcnjLyri ¼

¼ lnan �
s2ðyÞ
2tm

X

q

aqhcnj@
2

x�qi þ
X

q

hcnjLy aq�qi :

ð5Þ

where |ϕqi and hψn| are the eigenfunctions of the operator Lxy and of its adjoint, respectively.

For n = 0, the dynamics of ρy(y, t) = a0(y, t) can be worked out, as both Ly and {aq} do not
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depend on x:

_ry ¼ Ly ry � ry
s2ðyÞ
2tm

Z vthr

vmin

@
2

x�0ðx; yÞ dx :

The integral on the r.h.s. can be solved by parts and turns out to be 0 thanks to both

the conservation of the flux of realizations exiting from vthr and re-entering in vres

(@x�0jx¼vthr
¼ @x�0jx¼vresþ

� @x�0jx¼vres �
) and the reflecting barrier condition in vmin, provided

that the reasonable assumption ϕ0(vmin, y) = 0 holds (this is surely true for vmin! −1, as ϕ0 is

a probability density). Thus, the ρy dynamics reduces to

_ry ¼ Ly ry ¼ @y

ðy � mIÞry

ts
þ
s2

I

2ts
@

2

yry : ð6Þ

Note that this expression can be derived directly from the FP Eq (3).

Relying on the same spectral expansion as in [15], each ‘partial’ rate nyðy; tÞ ¼ F xðvthr; yÞ
(Fig 2, purple distribution) can be decomposed as follows:

nyðy; tÞ ¼ ryðy; tÞFðy; nÞ þ
X

n6¼0

anðy; tÞ fnðy; nÞ ; ð7Þ

where the stationary mode contribution is separated from the others. The network firing rate

ν(t) is obtained by integrating the partial rates νy(y, t) over y, as sketched in Fig 2D:

nðtÞ ¼
Z 1

� 1

F xðvthr; yÞdy �
Z 1

� 1

nyðy; tÞdy ; ð8Þ

In this framework, Fðy; nÞ � F xðvthr; yÞjr¼�0
is the firing rate of the stationary one-dimen-

sional density ϕ0 at fixed y, while the other nonstationary modes contribute with the fluxes

fnðy; nÞ � F xðvthr; yÞjr¼�n
. Both F and fn depend on the total firing rate ν(t) through the input

current moments μI and σI. The main advantage of having transformed the original two-

dimensional description into a set of infinite one-dimensional FP equations is that the dynam-

ics described by these equations for each iso-frequency population is known to be tractable for

a wide range of network settings. This is crucial to derive an approximated dynamics of ν(t)
valid for any synaptic time scale τs, neuron model and dynamical regime, as shown in the

following.

Dimensional reduction of the firing rate dynamics. Eqs (7) and (8) together are a

reformulation of the original problem (3), not a solution. However, in this framework a pertur-

bative approach can be envisaged. From Eq (6), synaptic current y results to have time-depen-

dent mean μy(t) = hyi and variance s2
yðtÞ ¼ h½y � myðtÞ�

2
i

ts _my ¼ � my þ mI ; ts _s2
y ¼ � 2s2

y þ s
2
I ; ð9Þ

like an Ornstein-Uhlenbeck process with nonstationary input moments μI(t) and σI(t) [2]. We

remark that s2
y should not be confused with the arbitrary and additional diffusion term σ2(y)

introduced in the definition of Lxy: s
2
y is the variance of the synaptic current y, whereas σ2(y) is

the state-dependent variance of an unknown diffusion process included in Lxy, which will be

chosen later to obtain a self-consistent equation for the firing rate ν(t).
Synaptic current displacement in time is jy � myj ¼ OðsIÞ and, for small σI,—i.e., for σI�

vthr – we can assume a negligible role for a y distant enough from μy. This assumption of a nar-

row ρy centered around y = μy allows to simplify the integrals across the y domain weighted by

the expansion coefficients {an(y, t)}. Indeed, approximations of these integrals can be obtained
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by expanding in Taylor’s series the y-dependent functions in the integrands, as detailed in the

S1 Appendix and sketched in Fig 2E.

The next step is to find a self-consistent approximation (neglecting terms of order OðsIÞ)

of ν(t) in terms of 0-th order functions F0(ν)� F(μy, ν) and f0n(ν)� fn(μy, ν) and of corre-

sponding coefficients:

n � F0ðnÞ þ
X

n6¼0

a0n f0nðnÞ: ð10Þ

The dynamics of the n-th expansion coefficient is ruled by the following equation, neglect-

ing again terms of order OðsIÞ:

_a0n � l0n a0n þ _my

X

q

h@ycnj�qijy¼my
a0q; ð11Þ

where λ0n� λn(μy) (see details in the S1 Appendix).

This is a dimensional reduction of Eq (5) as the coefficients a0nðtÞ �
R1
� 1

anðy; tÞ dy do not

depend on y, and it holds provided that y has a narrow distribution across neurons at each

time t (i.e., small σI(t)), leaving τs unconstrained.

To obtain a self-consistent equation for the firing rate ν(t), we still need to choose a suited

σ(y) in Lxy. To this purpose, the case of instantaneous synaptic transmission τs = 0 can be used

as reference, as Eq (3) reduces to a one-dimensional FP equation with the only operator

Lx0 ¼ � 1=tm @x½mI þ mext � f ðxÞ� þ ðs2
ext þ s

2
I Þ=ð2tmÞ@

2

x [15, 21, 27]. Hence, Lxyjy¼my

must tend to Lx0 for vanishing τs, which is the case if σ2(y) = Jy. Indeed, in this limit

s2ðmyÞ ¼ tm J2 C n ¼ s2
I , being μy = μI = τm J C ν from Eq (9). This implies that eigenvalues λ0n

and eigenfunctions in Eq (11) are the same as in the one-dimensional case with δ-correlated

synaptic input, but with collective firing rate ν(t) = μy(t)/(τm JC).

To summarize, s2
I is the variance of the white noise driving the synaptic current and

depends on ν(t) (see Eq (2)); s2
ext is the variance of the Gaussian white noise representing the

external input (see Eq (1)); s2
y is the variance of the synaptic current y (see Eq (9)); σ2(y) = Jy is

the variance of the diffusion process appearing in Lxy (see Eq (4)), which is different for each

iso-current “slice” being dependent on y. However, in the limit τs! 0 (where the decay time

τs is the relaxation time of μy(t), see Eq (9)), the synaptic transmission becomes instantaneous

and s2
y ! s2

I =2, differently from the variance σ2(y) which in the relevant iso-current “slice” at

y = μy is s2
I .

In conclusion, this dimensional reduction extends the firing rate equation previously

worked out for τs = 0 [15], and, by combining Eqs (9)–(11) and neglecting OðsIÞ terms, it

results to be

_~a 0 ¼ ðΛ0 þW0 _myÞ~a0 þ ~w0 _my

_my ¼ ðmIðnÞ � myÞ=ts

n ¼ F0 þ
~f 0 �~a0

:

8
>>>><

>>>>:

ð12Þ

Here, the infinite vectors~a0 ¼ fa0ng and~f 0ðnÞ ¼ ff0nðnÞg are introduced together with the

eigenvalue matrix Λ0 = diag(λ0n). Separating stationary from non-stationary modes, the synap-

tic coupling vector ~w0 ¼ fh@ycnj�0ijy¼myg and matrix W0 ¼ fh@ycnj�mijy¼my
g

m6¼0
are also

included, respectively. For the chosen σ(y), we remark that all these terms depend on the total

firing rate ν(t) only through μy(t).
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As in [15], Eq (12) expresses the firing rate ν(t) as a superposition of contributions due

to both the stationary mode for a given μy(t) (i.e., the input-output gain function F0), and the

firing rate due to non-stationary modes (~f 0 �~a0) depicting how far the actual density is from

the equilibrium. As a result, the farther the system from the equilibrium, the larger the contri-

bution to ν(t) due to the non-stationary modes. Indeed, under these conditions the expansion

coefficients~a0 are significantly different from 0, whereas under stationary conditions~a0 ¼ 0

and ν = F0.

The first row of Eq (12) is an infinite set of equations for the infinite expansion coeffi-

cients {a0n}. It describes their relaxation dynamics towards an equilibrium point which can

change with time, as the stationary one-dimensional density ϕ0 depends on μy(t). Time scales

of this relaxation are dictated by the eigenvalues Λ0 and the coupling coefficients W0, the lat-

ter being 0 as the synaptic efficacy J vanishes. Also F0,~f 0, Λ0 and W0 depend on μy(t) and

on the other changes in the input current received by the neurons. This means that Eq (12)

incorporates both slow and fast time scales. The former are due to the slowest a0n relaxation

or to the synaptic low-pass filtering for large τs, as pointed out by the second row of Eq (12).

On the other hand, fast time scales can be due to the fast changes of the input affecting

directly the aforementioned equation coefficients, such as the gain function F0. This multi-

scale nature of Eq (12) makes this theoretical representation of general applicability, as

shown later.

Eq (12) is one of our main results, obtained following a procedure that can be summarized

as follows (see Fig 2). We described the single-neuron dynamics as a two-dimensional Lange-

vin Eq (1), relying on the diffusion approximation. From this, an extended mean-field

approximation [25] led us to derive Eq (3), a two-dimensional continuity equation for the

dynamics of the population density ρ(x, y, t). We then represented ρ as the time evolution of

its projections onto the axes defined by the eigenfunctions of the FP operator, as shown in

Eqs (7) and (8) – an approach similar to the Hartree-Fock method in quantum mechanics

but with the main difference that here we take into account also the temporal dimension.

Finally, ρ(x, y, t) is approximated assuming y’ μy(t), which is a low-pass filtered version of

μI(t). This allows us to operate a central moment closure focusing on the instantaneous firing

rate ν(t). We remark that this dimensional reduction aims at finding an effective model of

the firing rate ν(t), not of the full probability density ρ(x, y, t). This means we are not expect-

ing to recover accurately the full dynamics of the neuronal membrane potential V(t), as

detailed later.

Equivalence of non-instantaneous synaptic transmission and distribution of axonal

delays. So far, we considered the filtering activity operated by local synapses transmitting

incoming spikes as a post-synaptic potential non-instantaneous in time. Here, we recall

the known dynamics of a network of spiking neurons where synaptic transmission is

instantaneous but a distribution of axonal delays is taken into account [15, 27, 29]. In

this one-dimensional case (τs = 0), the network dynamics can be simply worked out

by replacing ν in the expressions of μI and s2
I (see Eq (2)) with the instantaneous rate

~nðtÞ ¼
R1

0
nðt � dÞrdðdÞdd of spikes received by neurons when a distribution ρd(δ) of axonal

transmission delays δ is taken into account. Thus, the population density ρx(x, t) follows the

one-dimensional FP equation

@trx ¼
1

tm
@x f ðxÞ � mIð~nÞ � mextð Þ þ 1

2
s2

ext þ s
2
I ð~nÞ

� �
@x

� �
rx

_~n ¼ ðn � ~nÞ=td ;

8
<

:
ð13Þ

with instantaneous firing rate n ¼ ðs2
ext þ s

2
I Þ=ð2tmÞ@xrxjx¼vthr

.
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The spectral expansion of this continuity equation leads to a known firing rate equation with

coefficients resulting to have a straightforward relationship with those in Eq (12). Indeed, the

elements of the synaptic coupling vector and matrix now are h@~ncnj�mi ¼ tm J Ch@ycnj�mijy¼my

for any n and m, since

~n ¼
my

tm J C

for what shown above. Due to this, the searched firing rate equation equivalent to the 1D FP Eq

(13) reduces to

_~a ¼ ðΛ0 þW0 tm J C _~nÞ~a þ ~w0 tm J C _~n

_~n ¼ ðn � ~nÞ=td

n ¼ F0 þ
~f 0 �~a

;

8
>>>><

>>>>:

ð14Þ

where the specific delay distribution

rdðdÞ ¼
1

td
e� d=td YðdÞ ð15Þ

has been taken into account. This leads ~n to be a version of the collective firing rate ν smoothed

in time by a first-order low-pass filter with decay time τd. Θ(δ) is the Heaviside function, as only

positive transmission delays are admitted.

A comparison between Eqs (12) and (14) remarkably points out the equivalence of having,

in a spiking neuron network, a non-instantaneous synaptic transmission or a suited distribu-

tion of axonal delays. In Eq (14) the expansion coefficients in~a refer to the one-dimensional

density ρx(x, t), while in Eq (12)~a0 is only an effective representation of the two-dimensional

density ρ(x, y, t). Nevertheless, provided that τs = τd, both the dynamics seen from the perspec-

tive of ν(t) are the same, as the functions F0,~f 0, ~w0, W0 and Λ0 are the same. In other words,

under mean-field approximation and for not too large synaptic current fluctuations σI, having

a local synaptic filtering with cut-off frequency 1/τs is equivalent to having random axonal

delays with exponential distribution (15) and decay constant τd = τs. Although such equiva-

lence might appear as not surprising, to the best of our knowledge this is the first proof of

its general validity, i.e., holding for any IF neuron model, dynamical regime and synaptic

timescale.

Numerical validation of the theory

The theory (including the equivalence between Eqs (12) and (14)) developed in the previous

section has been tested through extensive numerical simulations by using NEST [30] and the

high-performance custom simulator implementing the event-based approach described in

[31]. The parameters for the numerical simulations have been identified following the proce-

dure described in the Methods section, where also the network parameters corresponding to

the proposed results are summarized.

We resorted to this strategy as the dynamics represented by Eq (14) is known to display a

remarkable agreement between theory and simulations for spiking neuron networks with

instantaneous synaptic transmission and distribution of delays [15, 29, 32].

Match between input-output gain functions. As a first evaluation of the effectiveness of

the low-dimensional description derived above, we inspect the simplest condition given by the

asymptotic firing rate of isolated neurons with or without a synaptic filtering of the incoming
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spike trains. In the absence of recurrent connectivity and under stationary condition, from Eq

(12) the firing rate ν is given for any τs by the single-neuron input-output gain function F0(μ,

σ). In Fig 3, we show the results of this test by comparing the steady-state firing rates of LIF

neurons measured from single-neuron simulations and their theoretical input-output gain

function F0(μ, σ) [27, 33, 34]:

1

F0ðm; sÞ
¼ 2 tm

Z vthr � m
s

vres � m
s

dy ey2

Z 1

y
dz e� z2

; ð16Þ

where μ = μI + τmIext/Cm is the total mean input current and s2 ¼ s2
I þ s

2
ext is the total vari-

ance. Each curve has been obtained by changing the rate ν of the external source of Poissonian

spikes, such that both μI and σI change simultaneously, according to Eq (2).

The 0-th approximation provided by Eq (16) (gray dashed curves in Fig 3-left) perfectly

overlaps with the simulation of a single LIF neuron incorporating instantaneous synaptic

transmission (τs = 0, red curves), confirming the validity of the diffusion approximation. How-

ever, the output firing rates at fixed input μ change with increasing τs, as described in [8, 11].

Such discrepancy can be better appreciated from the central panels of Fig 3, where the differ-

ences ΔF between F0 and the gain functions Fts
from simulations are shown to mainly

increase with τs. This could seem in contradiction with the fact that our low-dimensional

Fig 3. Match between theory and simulations in the input-output gain function of LIF neurons. Gain functionsF

for N = 4000 LIF neurons (uncoupled and coupled), obtained by varying the total mean current μ = μI + τmIext/Cm for

different τs and different size σI of the synaptic current fluctuations: (A) sI jm¼vthr
¼ 0:5 mV and (B) sI jm¼vthr

¼ 2:0 mV.

In the explored range of μ, σI varies between 74% and 138% of its value at μ = vthr. Left panels in (A-B): theoreticalF0

from 0-th order approximation (τs = 0, gray dashed curves) and measuredFts
for τs 2 {0, 1, 4, 16} ms (reddish curves)

from single-neuron simulations. Central and right panels in (A-B) show the differences DF ¼ Fts
� F0, either

including (right) or excluding (middle) an additional unfiltered white noise with sext ¼ sI jm¼vthr
. Only the three curves

with τs > 0 are shown as the simulations with τs = 0 largely overlap the x-axis due to the remarkable agreement with

the theoreticalF0. (C) Gain functions Fts
versus the mean external current μext for a network of excitatory neurons.

Network topology and neuron parameters as in Panel (B) with σext = 2.0 mV, but with 50% of recurrent synapses (the

others receive Poissonian spike trains as in (B)). Thick arrows: values of μext = {15.2, 17.5, 20.5} mV driving the

network from noise- to drift-dominated regimes, respectively. Bottom panel, steady-state firing rates (fulfilling the

equilibrium conditionF0(ν�) = ν�) of the network with non-instantaneous synaptic transmission (blue plots) and

distribution of axonal delays (red plots) at the highlighted μext. Shaded strips in all panels: mean ± SEM from 10

independent simulations (see Methods for further details and parameters).

https://doi.org/10.1371/journal.pcbi.1007404.g003
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reduction is independent of the synaptic filtering timescales arising in the steady-state

firing rate of isolated neurons, but it is not. Indeed, by comparing two examples at relatively

small and large size σI of the synaptic current fluctuations (Fig 3A and 3B, respectively), the

equivalence is recovered as long as σI� vthr, according to the assumption at the basis of our

0-th order approximation.

Note that the largest discrepancies are found in a relatively small range of the mean current

μ around vthr, where synaptic fluctuations have a major role in the spike emission process and

this range shrinks with decreasing σI. Outside this range of μ, our 0-th order approximation is

still valid to describe the steady-state firing rate of single-neurons both under noise- and drift-

dominated regime.

Finally, we remark that the discrepancy between theory and simulations can be further

reduced by adding the white noise with size σext > 0. We introduced this additional input in

the limit σext! 0 in Eq (4) to safely manage the boundary conditions in the spectral expansion

of the one-dimensional operator Lxy. However, it has been suggested to effectively model sev-

eral neuronal features like the ionic channel stochasticity [35, 36] and the effect of thermal

noise [37]. As a result, under this biologically plausible condition, the match between theoreti-

cal input-output gain function and simulations is recovered also for relatively large σI (Fig 3B-

right).

As a second test, we consider the same network as above, with the same total number of aver-

age synaptic inputs per neuron, but with 50% of synaptic contacts from external Poisson-like

excitatory neurons and 50% of recurrent synapses. Under stationary condition, we obtain results

similar to those observed in the absence of recurrent connectivity: Fig 3C shows the gain func-

tionsFts
for this network, plotted versus the mean external current μext (upper panel) and the

steady-state firing rates of the network, satisfying the equilibrium conditionF(ν�) = ν� [25], plot-

ted versus τs = τd (lower panel). The abscissa μext is the sum of two mean currents: the white

noise with drift and the exogenous Poissonian input. Notice that the average firing rate ν0 when

delay distributions are incorporated in simulation (red curves in lower panel) does not change

by varying τd. This is an expected result, as under stationary conditions the input firing rate ~n in

Eq (14) coincides with the equilibrium value independently of τd. It is also apparent that the

mean-field equilibrium point ν� (dashed lines) mildly overestimates the simulated equilibrium

point ν0 when both a delay distribution (red lines) or synaptic filters (blue lines) are incorpo-

rated. This is due to the assumptions underlying the diffusion and the mean-field approxima-

tions. Increasing the number of synaptic contacts per neuron and the network size N by keeping

unchanged drift and diffusion coefficients of the related Langevin equation leads to reduce the

difference |ν0 − ν�|. Finally, due to the changes in the input-output gain functionF0 shown in

the top panel, the measured mean firing rates ν0 in the network with non-instantaneous synaptic

transmission are different from those with distribution of axonal delays, and the difference

increases with τs = τd [8, 10, 11]. This trend is particularly apparent around the critical value μ =

vthr (see the case μext = 17.5 mV in the bottom panel), where our 0-th order perturbative

approach is less accurate unless σI� vthr. We remark that the equivalence between delay distri-

bution and synaptic filtering holds in both noise- (subthreshold) and drift-dominated (supra-

threshold) regimes, and it is less accurate only at the transition between these two conditions.

Responses to a time-varying input. In the comparison between steady-state firing rates,

neither delay distribution nor out-of-equilibrium conditions have been explicitly tested as the

input-output gain function is a single-neuron feature and the adopted input currents had sta-

tionary mean and variance.

To overcome this limited testing condition, here we further test the first-order statistics of

the firing rate, by simulating the network of LIF neurons shown in Fig 7A with a time-varying
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input (Fig 4A). To this purpose, the rate of external spikes νext(t) was modulated as a periodic

wave with period T = 200 ms. Average responses of the firing rate ν(t) across a stimulation

period are shown in Fig 4B for networks with the same mean-field parameters but different

time scales τd = τs. Remarkably, in all conditions, the average firing rate of each network with

synaptic filters (blue curves) widely overlaps with the one computed in the equivalent network

incorporating a suited distribution of transmission delays (red curves) and also with the

numerical integration (using the Python library described in [38]) of the one-dimensional FP

Eq (13) equivalent to Eqs (12) and (14). We remark that very similar results can be obtained by

using only the two slowest modes of the FP operator spectrum.

The similarity of the response in the theoretical ν(t) and the two simulated networks is

apparent for any τs = τd ranging from 1ms to 64 ms, during both the fast transient elicited by

Fig 4. Network response to a periodic step-wise input. (A) Example of response of a network of LIF neurons to

periodic modulation of νext(t) = (1 + Δνext erf(2 sin(2πt/T))) 40 Hz with T = 200 ms and Δνext = 0.05 (top). Spiking

activity and firing rate ν(t) (middle and bottom, respectively). Same network as in Fig 7A at drift-dominated regime

with instantaneous synaptic transmission and a distribution of axonal delays with τd = 1 ms. (B) Average responses to a

stimulation period (200 ms) of (blue curves) the same LIF neuron network with synaptic filters at different timescales

τs = 1, 4, 16, 64 ms and (red curves) the equivalent networks with distributions of delays (τd = 1, 4, 16, 64 ms). White

and gray shaded intervals mark the time when neurons in the network work in drift- (μI + μext> vthr) and noise-

dominated (μI + μext< vthr) regime, respectively. Averages are computed across 300 periods, removing a first transient

response (1 s). A grand average of this ν(t) is eventually computed across 10 networks with same mean-field

parameters but randomly different connectivity matrices. Gray dashed curves: theoretical ν(t) resulting from the

numerical integration of the one-dimensional FP Eq (13).

https://doi.org/10.1371/journal.pcbi.1007404.g004
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the sudden changes of νext (at t = 0 and 100 ms), and the relaxation phases when the networks

drift towards a new equilibrium point. The latter effect is not a surprise, being due to the

expected low-pass filtering. However, notice the reduction of the time lag in crossing 40 Hz

(firing rate of the unperturbed networks) as τd = τs increases. For networks with synaptic filter-

ing, when the input suddenly changes, the non-instantaneous synaptic transmission leads to

have a uniform shift of the probability density ρx(x, t) towards the emission threshold (towards

right in Fig 1). As a consequence, firing rates can display arbitrarily fast reactions, which are

even faster as τs increases [6, 9]. Conversely, networks with transmission delays do not express

the same mechanism, as they have vanishing probability densities for V! vthr. Here, the coex-

istence of slow and fast dynamics is likely due to the fact that, for τd long enough compared

to T/2, ρx(x, t) has not enough time to approach its asymptotic value. As a consequence, just

before the input has a step transition, a fraction of neurons (those with the longest pre-synaptic

transmission delays) has still memory of the previous stimulation phase. This subset of neu-

rons, whose size increases with τd, are the first to be primed, thus leading the whole network to

rapidly react to νext changes.

We remark that, as ν(t) changes across the stimulation period, not only μI, but also s2
I

changes accordingly. This notwithstanding, the match of the three curves is remarkably good

under both drift- and noise-dominated regimes (white and gray shaded intervals in Fig 4B,

respectively), witnessing the quite general validity of the proposed approach.

Equivalence in the asynchronous state of finite-size networks. As the equivalence

between synaptic filter and delay distribution holds for the mean ν(t), here we evaluate the

equivalence validity also for the second-order statistics of the firing rate around a stable equi-

librium point. To this purpose, we inspect the activity in the presence of an endogenous

noise in a network of a finite number N of neurons trapped into a stable asynchronous state.

As previously done in [15], finite-size fluctuations can be incorporated into Eqs (12) and (14)

as an additive forcing term to the expansion coefficient dynamics, giving rise to an equation

for the firing rate νN(t) of a finite pool of neurons (see Methods for details). The resulting

dynamics can be linearized around the equilibrium point ν� = F0(ν�). This allows to compute

the Fourier transform νN(ω), and from it the power spectral density P(ω) = |νN(ω)|2, which

turns out to be

PðoÞ ¼
1þ 2Re

h
~f 0 � ðioI � Λ0Þ

� 1~c0

i

�
�
�1 �

h
F0

0
þ io~f 0 � ðioI � Λ0Þ

� 1
~w0

i
rðioÞ

�
�
�
2

n�

N
: ð17Þ

Here, I is the identity matrix, all the coefficients depending on ν(t) are now constants

computed at ν(t) = ν�, F0
0
¼ @nF0 and r(iω) is the ratio between the Fourier transforms of μy

and μI, which results to be r(iω) = 1/(1 + iωτs). Note that r(iω) coincides with the Fourier

transform ρd(iω) of the delay distribution (15) with τd = τs. If we consider an additional

fixed transmission delay δ, this transform generalizes to r(iω) = exp(−iωδ)/(1 + iωτs) [15,

29].

We compared this theoretical result with the P(ω) estimated from simulations of networks

composed of simple IF neurons with synaptic filtering (see Methods for details), finding a

remarkable agreement (Fig 5). Here we resorted to the VIF neuron model [21], an extended

version of the widely used PIF neuron [39], for its amenability to analytical treatment [15] (see

Methods for details).

As stated above, the theoretical power spectral density has an equilibrium point ν�. On the

other side, the microscopic simulations provide a firing rate νN(t) whose mean value (averaged

over 10 simulations with different random synaptic matrices and same mean-field parameters)
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is ν0. Each power spectral density plot provides information about the frequencies at which the

νN(t) variations are stronger.

The theoretical P(ω) from Eq (17) is computed on the first 4096 modes/eigenfunctions of

the FP operator. The large number of modes is justified by the need of capturing the network

behavior over a wide frequency range, characterized by the presence of many narrow resonant

peaks.

Besides the good matching between theory (solid lines) and simulations (shaded strips), it is

interesting to note how resonant peaks are differently affected by increasing τs. Not surpris-

ingly, high-ω peaks are broadened due to the low-pass filtering of synaptic transmission. These

resonances are related to the synaptic reverberation of spiking activity, which gives rise to the

so-called transmission poles in the linearized dynamics [15, 40]. In an excitatory network

working in drift-dominated regime as in Fig 5, these are expected to be found at frequencies

multiple of the inverse of the average time needed by a presynaptic spike to affect postsynaptic

potential, here roughly 1/(δ + τs). On the other hand, the low-ω peaks do not display any shift

in frequency, although their power is broadened as well. This is because such peaks are due to

the so-called diffusion poles in the linearized dynamics [15, 41]. They occur when neurons

emit spikes at drift-dominated (suprathreshold) regime. In this regime, the distribution of the

inter-spike intervals is narrow and resonant peaks emerge at ω/2π multiples of ν� (equal to 10

Hz in Fig 5). We remark that, due to the shifting at low-ω of the transmission peaks, a con-

structive interference with diffusion peaks may occur. This explains the non-monotonic

change of power of the second diffusion peak at 20 Hz in Fig 5. Indeed, its power decreases

when τs is increased from 0 ms to 4 ms, as expected, whereas due to the mentioned

Fig 5. Match between theory and simulations in networks of VIF neurons working in drift-dominated regime

with different synaptic decay times τs. Power spectral densities P(ω) of the finite-size network firing rate νN(t) are

shown for τs = {0, 4, 32} ms. All networks have a stable equilibrium point at ν� = 10 Hz, and are composed of N = 2000

excitatory VIF neurons. Synaptic matrices are random with connection probability C/N = 5% and average synaptic

efficacy J = 7.510−3 vthr. Spikes are delivered to the postsynaptic targets with a fixed transmission delay δ = 10 ms (see

Table 1 for other parameters). Solid lines: theoretical P(ω) from Eq (17) computed relying on the first 4096 modes of

the FP operator spectral expansion. Shaded strips: mean ±3 SEM (standard error mean) of P(ω) from 10 simulations

with different random synaptic matrices and same mean-field parameters. Power spectra are normalized by N/ν0,

where ν0 is the average in time of νN(t) and ν0 = ν� for theoretical P(ω).

https://doi.org/10.1371/journal.pcbi.1007404.g005
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interference it is heightened for τs = 32 ms. This is because the lowest transmission peak in this

case is expected to be found at ω/2π = 23.8 Hz, not too far from 2ν� = 20 Hz.

Equivalence under noise- and drift-dominated regime. To further test the equivalence,

we investigated whether this match worked well for networks of neurons not only under drift-

dominated spiking regime, as shown in Fig 5, but also under noise-driven regimes. Indeed,

synaptic filtering may have significantly different effects on the steady-state firing rate in these

two regimes [9, 11], as shown in Fig 3.

Fig 6A shows for comparison the power spectral densities P(ω) of the firing rate ν(t) from

an excitatory VIF neuron network working under noise-dominated regime by varying τs(=

τd), in which either non-instantaneous synaptic transmission (blue curves) or a distribution of

transmission delays (red curves) was incorporated. The theoretical P(ω) from Eq (17) (gray

dashed curves) overlaps the simulation results for a wide range of ω. Notice that we used the

first 256 modes of the FP operator spectrum, i.e., 16 times less modes than for the drift-domi-

nated case: this points out the greater effectiveness of our approach in the noise-dominated

regime. It is also important to remark that the discrepancy observable at low-ω is not due to a

Fig 6. Equivalence of non-instantaneous synaptic transmission and distribution of synaptic delays in a network of

VIF neurons. (A) Power spectral densities P(ω) of ν(t) obtained for τs(= τd) = {0, 4, 32} ms in an excitatory VIF neuron

networks under noise-dominated regime with either non-instantaneous synaptic transmission (blue) or distribution of

transmission delays (red). Gray dashed curves: theoretical P(ω) from Eq (17) computed relying on the first 256 modes

of the FP operator spectral expansion. (B) Power spectral density Ps(ω) of the simulated network activity in the case of

non-instantaneous synaptic transmission, varying the synaptic time constant τs. Dashed lines: P(ω) sections plotted in

Fig 5 and in panel A. (C) Pd(ω) for networks with an exponential distribution of spike transmission delays and with

instantaneous synaptic transmission, varying the delay time constant τd. In B and C, top and bottom panels show the

results for the network set in an asynchronous state in which neurons are in a drift- (top) and noise-dominated

(bottom) regime, respectively. (D) Iso-power curves from panels B (solid lines) and C (dashed lines). (E) Average firing

rate ν0 from the simulations used for the left panels with non-instantaneous synaptic transmission (blue plots) and

distribution of axonal delays (red plots). Error bars representing SEM are not visible. The not specified network

parameters are as in Fig 5 (see Table 1). Also here, power spectra are averages across 10 simulations with different

random synaptic matrices and same mean-field parameters.

https://doi.org/10.1371/journal.pcbi.1007404.g006
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failure of our approximation, as it occurs also at τs = τd = 0 ms, when synaptic transmission is

instantaneous. This indeed is related to the mean-field approximation, which overestimates

the firing rate of the equilibrium point, as explained more in detail later in this subsection.

Fig 6B (non-instantaneous synaptic transmission) and Fig 6C (distribution of transmission

delays) show the same comparisons for a larger set of τs = τd values (in logarithmic scale), cor-

responding to networks working in noise- (bottom panels) or drift-dominated (top panels)

regimes; in this case, the power spectrum amplitude is color-coded. The power spectral densi-

ties in panel A correspond to the cuts marked by dashed horizontal lines in (bottom) panels B

and C. A remarkable agreement between simulations in the two tested conditions is confirmed

by Fig 6D, showing iso-power curves from panels B (solid lines) and C (dashed lines): the

equivalence of non-instantaneous synaptic transmission and distribution of axonal delays is

witnessed by the tight overlapping of solid and dashed iso-power curves for a wide range of fil-

ter timescales.

The same good matching between these two network types is apparent also under noise-

dominated regime (bottom panels). As expected in this regime, the diffusion poles become

real numbers [15] and resonant peaks at frequencies multiple (by ω/2π) of the equilibrium fir-

ing rate ν� disappear, although the high-ω resonances corresponding to transmission poles

remain almost unaffected by this change of regime. We point out that widening the filtering

time window (i.e., increasing τs and τd) leads to almost flat power spectra (see Fig 5), compati-

bly with the flattening of the response amplitude of isolated neurons receiving colored noise as

input currents [9, 10].

As shown in Fig 1B–1D, the section of ρ(x, y, t) close to firing threshold vthr shrinks when τs

increases from 4 ms to 64 ms. In our perturbative approach this dependence is completely

neglected, as the distribution is assumed to be a Dirac’s δ.

We remark that the shown comparisons rely on normalized spectra, i.e. P(ω)N/ν0. On the

one hand, this means that power spectra shapes do not depend on the particular transmission

protocol implemented in the network. On the other hand, this does not guarantee, as shown

for the LIF neuron case, that average firing rates ν0 are the same and do not change with the

protocol-related timescales. To address this issue, in Fig 6E the measured ν0 are compared,

showing features completely similar to those observed in Fig 3 for the LIF neuron model.

Notice that the discrepancy between theory and simulations (ν0 and ν�, respectively)

explains the differences found at low-ω in Fig 6A. Indeed, such difference leads to have differ-

ent slopes of the gain function (F0
0
ðn0Þ 6¼ F0

0
ðn�Þ), which in turn affect differently the power

spectrum at low-ω as Pðo ¼ 0Þ / ð1 � F0
0
Þ
� 2

.

Since we already checked the accuracy of the theoretical P(ω), in the rest of the paper we

will focus on the power spectral densities estimated from microscopic simulations. Taking as

reference these simulations instead of Eq (14) in the comparison with the supposedly equiva-

lent networks with synaptic filtering has indeed the advantage of allowing to test our theoreti-

cal prediction also in neuron models for which analytical expressions for the eigenvalues and

eigenfunctions of the FP operator are not available, as in the case of exponential IF (EIF, [42])

neurons. Moreover, this strategy allowed us to overcome the possible issue related to comput-

ing a large number of modes of the FP operator spectrum for more realistic single-cell

models.

Independence from spiking neuron models. The developed theory is of general applica-

bility, i.e. it applies to a wide range of spiking neuron models. As a result, the equivalence

proved for a network of simplified VIF neurons together with the theoretical expression for

the power spectra of ν(t) are both expected to hold also for networks of more realistic single-

cell models like the LIF and the EIF neurons.
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To verify this expectation, we directly simulated networks of LIF and EIF neurons with a

mean-field stable equilibrium point at ν� = 40 Hz. In Fig 7 the mean P(ω)N/ν0 for these kinds

of networks is compared both under drift-dominated (top panels) and noise-dominated (bot-

tom) regimes. A remarkable agreement is apparent for both LIF and EIF neuron networks

(Fig 7A and 7B, respectively), confirming the generality of the developed approach. To further

test the absence of any bias due to the specific neuron model chosen, we computed the relative

differences between the power spectral densities when non-instantaneous synaptic filtering

(Ps) and transmission delay distribution (Pd) are taken into account. The cumulative distribu-

tions of these discrepancies across all tested time scales (τs = τd) and Fourier frequencies (ω/

2π) are shown in Fig 7C. Interestingly, no significant differences are visible for the three cho-

sen models (VIF, LIF, EIF), further proving that in all regimes (drift- and noise-dominated)

our dimensional reduction does not depend on the specific single neuron dynamics.

Starting from this, it is not surprising to note here that spectral features similar to those

highlighted in Fig 6 for VIF neuron networks are also displayed by LIF and EIF neuron net-

works. More specifically, resonant peaks at multiple frequencies of ν0 under drift-dominated

regimes and resonances at higher-ω due to the transmission poles—i.e., those related to the

average spike transmission delay—are also visible in both Fig 7A and 7B in LIF and EIF neu-

ron networks, respectively.

Equivalence beyond the asynchronous state. So far, we tested the validity of the equiva-

lence between non-instantaneous synaptic transmission and delay inhomogeneity in lineariz-

able dynamical regimes like the asynchronous state and in purely excitatory networks. To

further assess the generality of our theoretical results, we simulated a multi-modular network

Fig 7. Equivalence between synaptic filtering and delay distribution in networks with different types of IF

neurons. Match between relative power spectral densities P(ω)N/ν0 in networks of leaky (A) and exponential (B)

integrate-and-fire excitatory neurons (LIF and EIF, respectively) with non-instantaneous synaptic transmission (solid

lines) and distributions of synaptic delays (dashed lines). Network parameters are set in order to have an asynchronous

state with average firing rate ν0 = 40 Hz. Contour lines as in Fig 6D. P(ω) are averages across 10 simulations with

different random synaptic matrices and same mean-field parameters. (C) Cumulative distribution of relative

differences ΔP(ω) = Pd(ω)/Ps(ω) − 1 across different time scales (τs and τd) and Fourier frequencies ω from panels A

and B for LIF (red) and EIF (orange) neuron networks, respectively. As a reference, also the same cumulative

distribution for VIF neuron networks (obtained from P(ω) in Fig 6D) is plotted (black). ΔP(ω) are measured as z-

scores, i.e. averages divided by standard deviations of values across simulations. Top and bottom panels: networks

working under drift-dominated and noise-dominated regime, respectively (see parameters in Tables 2 and 3).

https://doi.org/10.1371/journal.pcbi.1007404.g007
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containing an inhibitory (I) and an excitatory (E) population of LIF neurons (Fig 8A, see

Methods), with the purpose of analyzing its dynamical behaviors by changing a bifurcation

parameter.

In this specific example network, the bifurcation parameter is the percentage cEI = cII� cαI
of outward inhibitory synaptic connections per neuron. To compensate for these changes in

the inhibitory component, the synaptic efficacies of both recurrent and external excitatory

neurons are progressively increased: this allows to keep an equilibrium point ν� = F0(ν�) at the

same relatively high firing rate n�E ¼ n
�
I ¼ 10 Hz for both populations, regardless of its stability

(see details in Methods). For low enough cαI, this equilibrium point is unstable and only an

asynchronous irregular state at low firing rate (denoted as AL) can be reached by both popula-

tions, as shown in Fig 8B-bottom for the E-I network with cαI = 10% and non-instantaneous

synaptic transmission. A suited increase of cαI stabilizes the high-frequency asynchronous state

(denoted as AH), in which the neurons fire at the equilibrium rate of 10 Hz (Fig 8B-middle,

cαI = 50%). A stronger synaptic inhibition eventually leads the E-I network to display synchro-

nous firing with coherent global oscillations (GO) of the spiking activity (Fig 8B-top, cαI =

90%).

We compared networks with both synaptic filtering and delay distribution across this rep-

ertoire of dynamical regimes, by making extensive simulations on a finer grid of cαI values, by

using the same mean-field parameters (Fig 8C). In all cases the networks undergo the same

state transitions at the same critical cαI values. More specifically, the value cαI� 12.5% marks a

Fig 8. Comparison between multi-modular networks of inhibitory and excitatory LIF neurons with either synaptic filtering or transmission delay

distribution. (A) Sketch of the multi-modular network. (B) Three examples of firing rate time evolution for each network stable state. Plum and orange

curves represent inhibitory and excitatory neuronal populations, respectively, with synaptic filter. (C) Left plots: mean (να0, α = E, I) and standard

deviation (σν) of the instantaneous firing rate across time (binning size of 0.1 ms, discarding the first second of the time series) for inhibitory (bottom

panels) and excitatory (top panels) populations. Right plots: match between relative power spectral densities P(ω)N/να0 for excitatory (top panel) and

inhibitory (bottom panel) populations with non-instantaneous synaptic transmission (solid lines) and distributions of transmission delays (dashed

lines). Contour lines as in Fig 6D. Different states are obtained by increasing the connection probability with pre-synaptic inhibitory neurons, namely

cαI� cEI = cII (see text for details). The spectra P(ω) are averages across 10 simulations with different random synaptic matrix realizations. Dashed

horizontal lines roughly mark the bifurcations. Rightmost arrows point out the values of cαI corresponding to the examples displayed in panels B and D.

(D) Comparisons between relative spectra from networks with delay distribution (red lines) and synaptic filtering (blue lines) for the three network

states AL (dotted lines), AH (dashed-dotted lines), and GO (solid lines), for excitatory (top panel) and inhibitory (bottom panel) populations.

https://doi.org/10.1371/journal.pcbi.1007404.g008
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transcritical bifurcation where the low-frequency and the 10-Hz equilibrium points exchange

their stability and the transition from AL to AH occurs. In both networks, the mean firing rate

ν0 of the AL state increases with its standard deviation σν (Fig 8C-left) until the 10-Hz equilib-

rium point corresponding to the AH state becomes the lowest stable equilibrium point. This

point undergoes a supercritical Hopf bifurcation at cαI� 70%, where the network has a transi-

tion from the AH to the GO state. The resulting synchronous oscillations of the firing rate

have an amplitude that increases with cαI. This is why σν increases and ν0 remains unchanged

at 10 Hz. Even in this case, the first two moments of the firing rate in networks with both

non-instantaneous synaptic transmission (blue) and distribution of axonal delays (red) match

almost perfectly.

This close resemblance is also apparent in the relative power spectra P(ω)N/ν0 shown in Fig

8C-right, although significant changes in the power distribution emerge when the network

state has a transition. To better appreciate the comparison between non-instantaneous synap-

tic transmission (solid lines) and distributions of axonal delays (dashed lines), Fig 8D (where

cαI = {10, 50, 90}%, as in Fig 8B) shows three paradigmatic relative spectral densities. As

expected, P(ω) for the network in the AL state close to the bifurcation (red and blue dotted

curves) displays a large peak at low-ω due to the slow fluctuations of the firing rate determined

by the weakening of the 10-Hz attractor stability. As Pðo ¼ 0Þ ’ ð1 � F0
0
Þ
� 1

(see Eq (17)), the

small but significant differences between the spectra at low-ω for non-instantaneous synaptic

transmission (blue) and distributions of axonal delays (red) have to be attributed to the differ-

ent shape of the input-output gain functions F0. Indeed, our approximated F0 overestimates

the steady-state firing rate when τs > 0 (see Fig 3) in a relatively narrow range of the mean

input current μ around vthr, thus affecting also the slope F0
0
. This difference is also responsible

for the small discrepancies between the measured ν0 and ν� as in Fig 6E. Further increasing the

recurrent inhibition cαI, in the AH state (dashed-dotted lines) resonance peaks due to trans-

mission poles at ω/2π� 50 Hz pop up. In the GO state (solid lines) also higher-order harmon-

ics start to be visible in both Pd(ω) and Ps(ω). Although the overlap between these spectra

is remarkable also in the GO regime, a small unexpected shift of the resonant frequencies is

visible, highlighting a mild increase of the oscillation frequency when the synaptic filter is

incorporated.

Similar results were obtained for the same network topology by changing the filtering time-

scales, as shown in Fig 9. Fig 9A shows relative power spectral densities for the inhibitory pool

with non-instantaneous synaptic transmission. As expected, increasing τs from 1 ms to 16 ms

(from bottom to top panels, respectively) makes the network more stable, thus shifting at

higher cαI the critical value at which the transition to the GO state occurs and the peaks associ-

ated to higher-order harmonics pop up. Larger τs also imply a reduction of the pace of the

damped and synchronous oscillations from ω/2π� 90 Hz to� 40 Hz.

The cumulative distributions of the Z-score ΔP(ω) = Pd(ω)/Ps(ω) − 1 in Fig 9B show, for

the three considered timescales (τs = τd), that the differences of spectra display always the

same statistics for both excitatory (orange) and inhibitory (blue) populations, similarly to

Fig 7C. This equivalence under these conditions is also apparent by comparing the coeffi-

cient of variation cv = std(ν)/mean(ν) = σν/ν0 for the excitatory and inhibitory pools (top

and bottom panels in Fig 9C, respectively), with non-instantaneous synaptic transmission

(blue) and exponential delay distributions (red). These plots confirm and complete the

results already described in Fig 8C for τs = τd = 4 ms: for low cαI (network in the AL state)

the relative large variability is mainly due to a reduction of ν0; moreover, cv remains at its

lowest value until the transition from AH to GO occurs. After this bifurcation, it increases

with the amplitude of the global oscillation. As remarked above, the Hopf bifurcation

Dimensional reduction in networks of non-Markovian spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007404 October 8, 2019 20 / 35

https://doi.org/10.1371/journal.pcbi.1007404


value increases with τs = τd. In all cases, these plots confirm the sequence of state transitions

already pointed out.

Altogether, these results further prove the generality of the theoretical equivalence proposed

in this paper, clearly pointing out that both communication protocols give rise to the same col-

lective dynamics not only in a tameable condition like the linearizable asynchronous state, but

also for multi-modular networks working in nonstationary states like the GO regime.

Limitations of the theoretical approximation. To reduce the dimensionality of the popu-

lation density dynamics, we introduced a forcing white noise current with an arbitrarily small

size σext, as in [43]. This allowed us to safely manage the boundary conditions in the spectral

expansion. The intrinsic stochasticity of ionic channels of neuronal membrane potential

can be the source of this additional white noise current [35, 36]. However, it is important to

remark that, in the absence of this external noise, the spectral expansion we used is no longer

valid, as it relies on the eigenfunctions of a FP operator with ρ(vthr, y, t) = 0 [8, 10, 28, 44].

Fig 9. Match between the same multi-modular networks as in Fig 8 for different timescales. (A) Relative power

spectra P(ω) of the inhibitory population activity in the case of non-instantaneous synaptic transmission for three

different synaptic time constants (τs = 1, 4, 16 ms). (B) Cumulative distribution (in terms of Z-scores) of relative

differences between power spectra ΔP(ω) = Pd(ω)/Ps(ω) − 1 across Fourier frequencies ω for three timescales (τs = τd =

1, 4, 16 ms), as in Fig 7C. Orange and plum curves are associated to excitatory and inhibitory populations respectively,

whereas different line styles mark different values of τs = τd (see legend). (C) Coefficient of variation cv = std(ν)/mean

(ν) of ν(t) versus cEI = cII for excitatory (top) and inhibitory (bottom) populations, with non-instantaneous synaptic

filtering (blue lines) and distributions of transmission delays (red lines). Different line styles mark different values of τs

= τd, as in (B).

https://doi.org/10.1371/journal.pcbi.1007404.g009
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More specifically, if σext = 0 a different basis for the probability density decomposition must be

adopted.

To investigate this aspect more in depth we exploited the multi-modular architecture of the

last analyzed network. Indeed, the inhibitory population receives two excitatory contributions:

one memoryless from CI,ext synaptic contacts with Poisson-like external neurons, and another

recurrent from the neurons composing the excitatory population. Both kind of synapses share

the same synaptic efficacy and all the pre-synaptic (external and recurrent) neurons emit

spikes at the same rates. Under mean-field approximation, this implies that, even replacing

external with internal synapses, the statistics of the excitatory input received by the inhibitory

neurons does not change. As a result, the equilibrium point at 10 Hz persists across variations

of the balance between internal and external excitatory input. This is not the case for the equi-

librium stability, which is lost as the recurrent contribution increases, giving rise to global

oscillations, as shown in Fig 10A. By gradually decreasing the fraction of the external synaptic

Fig 10. Test of the limitations of the theoretical approximation. (A) Marginal densities of the synaptic current [left, limt!1 ρy(I, t) = ρ(I) =
R
ρ(V, I)dV]

and the membrane potential [right, limt!1 ρx(V, t) = ρ(V) =
R
ρ(V, I)dI] represented also versus the balance CI,ext/(CIE + CI,ext) between recurrent (synaptically

filtered) and external (memoryless) excitatory connections. White lines, iso-density curves. Marginal densities are averaged across 20 randomly chosen

inhibitory neurons and 10 simulations with same mean-field parameters but different synaptic matrix realizations. Multi-modular network configuration as in

Fig 8, with cEI = cII = 1% and τs = τd = 16 ms. (B) Three examples of marginal densities ρ(V) with different balance between recurrent (filtered) and external

(memoryless) excitatory input (see dashed arrows and lines in panel A for the balance value). Blue and red curves: marginal densities from networks with

synaptic filtering (as in panel A) and delay distribution, respectively. Gray dashed curves, sections of the density ρ(V, I) centered around the mean synaptic

current I = μI/R estimated from inhibitory neurons with synaptic filtering. (C) Average power spectral density P(ω) of the firing rate νI(t) of the inhibitory

neurons for the same example networks shown in panel B. The inset network sketches the change in the balance of the recurrent external currents. Color and

styles as in panel B. Horizontal dashed lines: asymptotic values (νI0/NI) of the spectra.

https://doi.org/10.1371/journal.pcbi.1007404.g010
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contacts CI,ext/(CIE + CI,ext), the peak in the marginal density ρ(I) shrinks, due to the increasing

weight of the low-pass filtered component of the synaptic input I(t). This shrinking effect is

highlighted by the white iso-density curves in Fig 10A-left. Under this condition, a more drift-

driven membrane potential V is expected and, due to the global oscillations of the firing rate

ν(t), the peak in the marginal density ρ(V) widens (Fig 10A-right). This spreading of V fluctua-

tions can be better appreciated looking at the three selected cuts of ρ(V) shown in Fig 10B

(blue curves). As expected, ρ(V) in networks with synaptic filters is significantly different from

the marginal densities of V in the equivalent networks with a distribution of axonal delays (Fig

10B, red curves). This difference is even more apparent when V approaches vthr, as the blue

curve does not converge to 0 due to the progressive lack of a diffusive component in the synap-

tic current. Intriguingly, almost irrespective of these differences, the power spectral density

Pd(ω) matches remarkably well with Ps(ω) (Fig 10C, red and blue, respectively). Even when

the memoryless contribution to the synaptic current received by the inhibitory neurons is

completely replaced by the recurrent one (Fig 10C-bottom), resonance peaks and the band-

pass filtering features widely overlap.

The reasons for the effectiveness of our approximated description are mainly two. Firstly,

in networks with synaptic filtering, the marginal density ρ(V) and the related slice of the full

probability density ρ(V, I) centered around the average synaptic current μI (dashed gray curves

in Fig 10B) are almost indistinguishable, at least for fractions of external synaptic contacts

above 20%. In other words, the “slice” at I = μI/R (ρ(V, μI/R)) is well representative of the two-

dimensional ρ(V, I). We remark that Eq (12) results from a 0-th order approximation of the

current fluctuations which takes into account only this slice. This explains why the equivalence

between synaptic filters and delay distributions still holds even when σext provides a minor

contribution to the fluctuations of I(t).
Secondly, we remind that in our approach the effective population dynamics of the

slice at I = μI/R is governed by the operator Lxy, which incorporates an additional diffusion

term proportional to σ2(y). This means that the probability density of membrane potentials

changes in time according to this one-dimensional FP operator. As a result, Eq (12) actually

describes a system with approximately the same firing rate dynamics but with a different

ρ(V, t). In other words, we derived an equivalent stochastic diffusion process V(t) capable

to have approximately the same flux of realizations crossing vthr (in part due to σ2(y)), but at

the same time differing from the original system in the density of V. This occurs as σ2(y) and

the slope @xrðx; tÞjx¼vthr
are adjusted in such a way that the flux of realizations crossing the

absorbing barrier at x = vthr (given by their product, see Eq (13)) is the same as for the 2D

case.

The power spectra in Fig 10C allow us to test the limitations of our approximation not only

for second-order statistics of the firing activity ν(t), but also for the first-order statistics, i.e.,

the mean. Indeed, from Eq (17), the asymptotic power limω!1 P(ω) = νI0/NI of the inhibitory

population provides this information (blue dashed lines in Fig 10C). From this measure, it is

rather apparent that no significant changes occur as the diffusion white noise term σ2(y) is pro-

gressively replaced by the equivalent filtered synaptic input provided by the excitatory popula-

tion (σ2(y)∝ CI,ext! 0). At a first sight, this could seem to contradict what shown in Fig 3C,

where the mean-field equilibrium point ν� predicted by our 0-th order approximation is the

same for any mean delay τd and differs from the ones measured by incorporating different syn-

aptic filters. Actually, the network displays global oscillations (GO regime) such that the time

spent with μ’ vthr is small and, outside a small interval around this critical value, F0 is a good

approximation of Fts
both under noise- and drift-dominated regimes. Therefore, this result is

perfectly in line with the ones shown in Fig 3C.
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Discussion

The main result of this paper is a novel perturbative approach to the population density

dynamics of networks with spiking neurons having non-Markovian membrane potentials.

This general method consists of a dimensional reduction of the two-dimensional population

density dynamics arising from the Markovian embedding [2, 3] of the membrane potential

evolution when non-instantaneous synaptic transmission is incorporated. The effective one-

dimensional description we obtained relies on both an extended mean-field approximation

[25] and the assumption of a relatively low synaptic noise (low σI(t)). No additional constraints

on the correlation time associated to the incorporated synaptic filtering are imposed. We

obtained the same firing rate equation as the one arising from the spectral expansion of the

one-dimensional FP equation for the population density in the absence of synaptic filtering

[15], but with an important difference: drift and diffusion coefficients, related to the infinitesi-

mal mean and variance of the input currents, respectively, in this case depend on a low-pass fil-

tered version of the instantaneous firing rate of the network.

This theoretical framework led us to obtain our second main result, i.e., the proof that non-

instantaneous synaptic transmission and distribution of axonal delays in networks of spiking

neurons are equivalent. The conditions of validity of such equivalence are two: the synaptic

noise is relatively small (i.e., σI� vthr) and the non-instantaneous post-synaptic currents from

incoming spikes have the same time course as the distribution of spike transmission delays

across axons and dendrites.

We tested both the generality of the developed theory and the above equivalence through

extensive numerical simulations, finding a remarkable agreement with theoretical expectations

in a variety of dynamical scenarios, including noise- and drift-dominated regimes, equilibrium

states and collective oscillations, excitatory and inhibitory synaptic connections, and for a

wide set of spiking neuron models and synaptic timescales. This because in our ‘dynamic’

mean-field approach no constraints on the collective dynamics are imposed, such as those

focusing on perturbations of the firing rate around equilibrium points. The nonlinear and

state-dependent coupling between the network activity and the membrane potential distribu-

tion are fully incorporated into the FP operator through its dependence on the instantaneous

firing rate ν(t). As a result, the time-varying basis composed of the eigenfunctions of this oper-

ator effectively follows the evolution of the population density ρ at any time resolution keeping

small the projections of ρ onto the basis axes. Although this basis is shaped by both the specific

neuron model (i.e., a specific FP operator) and the neuron coupling structure of the network,

the firing rate dynamics derived in Eq (12) does not change and makes this representation of

general applicability.

The local-distributed transmission protocol equivalence ultimately allows to map a

many-body system with non-Markovian coupled elements onto another many-body system

where many Markovian units have delayed interactions [45]. Therefore, the theoretical

framework developed in this paper is expected to be exportable to other filtering systems.

For instance, the non-Markovian dynamics underlying neuronal spike-frequency adapta-

tion—determined by the activity-dependent modulation of the hyperpolarizing potassium

conductances [46–48]—can undergo a dimensional reduction similar to the one introduced

here.

Finally, an important question is how the results proposed in this paper can be used in a

broader context. In general, axonal delays and non-instantaneous synaptic transmission coex-

ist in biological neuron networks. So, what happens when axons with given distributions of

transmission delays couple on synapses with given time constant? The theoretical approach

we developed can be straightforwardly extended to describe also this modeling framework
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(see S1 Appendix section “Cascade of synaptic filters and delay distributions”), leading to a

generalization of Eq (12). This network setting appears to be equivalent to a cascade of two

first-order low-pass filters, as shown in Fig 11 (top insets of panels B and C). In turn, these

networks have firing rate dynamics equivalent to those obtained with instantaneous synaptic

transmission and a suited unimodal distribution of transmission delays. Power spectra of ν(t)
estimated from simulations of E-I networks of LIF neurons (see Fig 11B and 11C) confirm this

equivalence.

Comparison with previous studies

Reducing into an effective one-dimensional Markovian problem the dynamics of a non-Mar-

kovian system—which in turn can be embedded into a larger set of coupled Markovian pro-

cesses—has a long history in statistical physics [2, 7]. The resulting approximation schemes

have unavoidable limitations in representing the dynamics of the original non-Markovian

problem. Nevertheless, many successes were accumulated in the late 80s [3, 49–53]. Many of

these approaches focused on the nonstationary dynamics underlying the specific problem of

the first-passage time, thus taking into account an absorbing barrier, similarly to the spike

emission threshold in neuronal modeling [3, 53] and in the limit of small noise and/or small

correlation times τs [50, 51]. Other perturbative approaches have been worked out to cover the

long-τs range [52, 54], but the effectiveness of these approximations is limited by the lack of a

proper management of the boundary conditions [7, 28, 44]. Intriguingly, by including the

Fig 11. Cascade of synaptic filters and delay distributions. (A) Power spectral densities P(ω) of the excitatory and

inhibitory populations (top and bottom, respectively) firing rate να(t) (α 2 {E, I}) of the LIF neuron network shown in

Fig 8, with cαE = 5%, cαI = 50%, τd = 16 ms (red) and τs = 16 ms (blue). This setting corresponds to a network stable

asynchronous state with να0 = 10 Hz. The legend (top inset) shows the delay distribution ρd(δ) (red shaded) and the

post-synaptic current (PSC, blue shaded), both exponentials in this case. (B-C) Same networks as in (A), in which both

the synaptic filter and the delay distribution are simultaneously incorporated keeping fixed the sum τs + τd = 16 ms. (B)

Power spectral densities P(ω) when τs = 4 ms and τd = 12 ms (light green), and τs = 12 ms and τd = 4 ms (dark green).

As a reference, a network with instantaneous synaptic transmission and delay distribution ρd(δ) = β(δ|τd1, τd2)

resulting from the convolution of two exponentials is also shown (red, see S1 Appendix for details). (C) Power spectral

density P(ω) when τs = τd = 8 ms (green). The other two spectra are from a network with delay distribution ρd(δ) = α
(δ|τd only (red) and with non-instantaneous synaptic transmission only (blue) giving rise to a PSC elicited by an

isolated incoming spike with the same α-shape of ρd(δ) (see S1 Appendix for details).

https://doi.org/10.1371/journal.pcbi.1007404.g011
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proper absorbing barrier prescription due to the presence of a forcing white noise with arbi-

trarily small size σext (similarly to [43]), the theoretical derivation we obtained in Eq (12) even-

tually recovers a representation with time-varying state-dependent diffusion coefficients (see

for instance Section V.B of [7]). Indeed, all the coefficients of this Eq (12) depend on a filtered

version μy(t) of the total firing rate ν(t), which from Eq (8) is in turn a nonlinear functional of

the probability density ρ(x, y, t).
In addition, other dimensional reductions of the FP dynamics arising when synaptic filter-

ing is incorporated in network of spiking neurons have been proposed in the past, to obtain

effective kinetic representations amenable to numerical integration [55–57]. They mainly rely

on the centered moment closure method usually applied to kinetic problems in statistical phys-

ics [16]. Drawbacks of this approach are related to their limited applicability to noise-domi-

nated regimes [57, 58], which are of particular relevance in neuroscience, being associated to

activity states with balanced excitation and inhibition [59–61]. Even when some of these limi-

tations are removed by introducing modifications to the standard mean-field approximation

[58], this kind of dimensional reduction basically remains a computational method in which,

in addition to the dynamics of the centered moments, a one-dimensional partial differential

equation has to be numerically integrated. On the contrary, in our theoretical framework,

insights on the dynamical properties of the networks can be obtained without strongly relying

on numerical integration, similarly to what previously done in [15, 48, 62] by focusing on the

slowest modes of the expansion.

Finally, it is important to remark that power spectra and Fourier transfer functions of the

population activity in network of spiking neurons and synaptic filtering are typically character-

ized outside biologically relevant regimes. This is because theoretical approaches are perturba-

tive and target extreme conditions, in which either fast [6, 9, 10] or slow [11, 12] synapses are

considered, or in which neurons work under strong drift-dominated (low-noise) regimes [13,

14]. Here, we bridge this gap by presenting a theoretical description valid for both regimes,

and for the whole synaptic time scales and significant frequencies (Figs 5–7).

Other limitations

The developed theoretical description of the network dynamics with synaptic currents is

approximated, and as such it is subject to several limitations. Our starting point is a popula-

tion density approach which, like others [15, 26, 27], relies on both a diffusion and a mean-

field approximation. The underlying hypotheses require that each neuron receives a large

amount of spikes per unit time, and that postsynaptic currents due to single spikes induce

small changes of the membrane potential. These conditions are well satisfied in neocortex

[18, 25].

Another strong simplification we implemented was to consider small enough the fluctua-

tion size σI of the synaptic currents. Such a low-noise regime gave us the possibility to assume

the marginal distribution of the current I(t) narrowly distributed around its time-varying

mean μy(t)/R. As a result, the V − I dynamics were reduced to a one-dimensional FP equation

centered around I(t) = μy(t)/R. Rather surprisingly, such a rough approximation, for which

the shape of the marginal distribution ρ(I) is completely neglected, seems to work remarkably

well, and this is due to the almost perfect overlap between the marginal distribution ρ(V) and

the one-dimensional density ρ(V, μI/R), as shown in Fig 10B. The only main discrepancy we

found is in the mean firing rate, which our method systematically overestimates (see Figs 3C

and 6E). This is an expected error, since synaptic filtering is known to mildly reduce the firing

rate of spikes in both the small- [8, 10, 11] and the large-τs [11] limit. This discrepancy should

disappear if higher-orders of the centered moment closure were incorporated in our method.
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Indeed, this would allow to take into account also other features of ρ(I), such as its standard

deviation and skewness.

Methods

Power spectral density P(ω) of νN(t)
In a network of a finite number N of neurons, the instantaneous firing rate νN(t) displays

endogenous fluctuations. Indeed, due to the finite number of spikes emitted by such a network

in relatively small time intervals, the counting Poissonian statistics makes νN(t) well described

by a stochastic variable whose variance scales as 1/N [15, 27, 41]. These activity fluctuations

can be seen as an ongoing stimulation of the infinite-size network and can be obtained by

introducing an effective stochastic driving force different for each eigenmode of the FP opera-

tor [15]. Following this approach and generalizing Eq (12) to the case of a finite-size network,

we obtain the following stochastic firing-rate equations

_~a 0 ¼ ðΛ0 þW0 _myÞ~a0 þ ~w0 _my þ
~c0 ZN

_my ¼ ðmIðnNÞ � myÞ=ts

n ¼ F0 þ
~f 0 �~a0

nN ¼ nþ ZN

;

8
>>>>>>>><

>>>>>>>>:

ð18Þ

where ηN(t) models the finite-size fluctuations of the instantaneous firing rate ν(t) in the

infinite-size limit. For large enough N, ηN is well approximated by a Gaussian memoryless

white noise, with zero mean and variance ν(t)/N. In the above equations the coefficients

depend on νN(t) instead of ν(t), as the infinitesimal mean μI and variance s2
I are functions

of the instantaneous firing rate of the presynaptic neurons. The additional coefficients

~c0 ¼ fcnðvres; yÞjy¼myg result from having incorporated finite-size fluctuations to the bound-

ary condition on the flux conservation of the realizations V(t) exiting from vthr and reenter-

ing in vres [15].

In the N!1 limit, the network dynamics can be set into an asynchronous state such that

ν(t) = ν� is an equilibrium point [ν� = F0(ν�)] with local stability [F0
0
ðn�Þ < 1] and the single-

neuron spiking activity is asynchronous [22, 25]. In this state, finite-size fluctuations bring

νN(t) to wander around ν�, and Eq (18) can be linearized by neglecting the terms of order

higher than OðZNÞ in the Taylor’s series expansion around ν(t) = ν�. From this linearized

dynamics, the Fourier transform νN(ω) can be obtained (see [15, 32] for details), and the

power spectral density P(ω) = |νN(ω)|2 turns out to be

PðoÞ ¼
1þ 2Re

h
~f 0 � ðioI � Λ0Þ

� 1~c0

i

�
�
�1 �

h
F0

0
þ io~f 0 � ðioI � Λ0Þ

� 1
~w0

i
rðioÞ

�
�
�
2

n�

N
; ð19Þ

which is the expression detailed in Eq (17).

Identification of mean-field parameters

To find the parameters for the numerical simulations (with NEST [30] and the high-perfor-

mance custom simulator implementing the event-based approach described in [31]), the fol-

lowing procedure has been adopted.
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A firing rate equilibrium point ν� was fixed a priori, and the contour line in the (μ, σ2)

plane defined byF(μ, σ2) = ν� was numerically determined.F(μ, σ2) was computed analytically

for the VIF [21] and LIF [25, 33, 34] neuron models. For the EIF neuron model, in the absence

of an analytical expression for F(μ, σ2) valid in all the considered conditions, we used a

numerical cubic interpolation (using the Matlab – The MathWorks, Natick, MA – function

interp2) passing through samples obtained from NEST simulation data. Depending on the

regime of interest (noise- or drift-dominated), a proper point was chosen along the iso-fre-

quency line F(μ, σ2) = ν�.
Once determined μ and σ2, also J can be determined by imposing the value of d

dnFðm; s
2Þ at

the equilibrium point ν�, which is directly related to its degree of stability [15]. Indeed, by tak-

ing into account Eq (2), it is sufficient to solve the following second-order equation in J:

d
dn
Fðm; s2Þ ¼ tmCJ

@F

@m
þ J

@F

@s2

� �

ð20Þ

where both @F/@μ and @F/@σ2 can be suitably computed from F(μ, σ). Among the possible

solutions, we take the one corresponding to the stable equilibrium point F(μ, σ2) = ν� with the

highest firing rate, since it is related to the proper range of ν values.

The final step is to determine mean μext and variance s2
ext of the external current Iext to be

added to the recurrent synaptic contribution in order to obtain the chosen μ and σ2. Iext is the

sum of a constant current bias IDC and a Poissonian spike train produced by Cext independent

sources firing at rate νext through an instantaneous synaptic transmission with efficacy Jext.
Under diffusion approximation, Iext is a memoryless Wiener process and by imposing the

spike rate Cext νext from the external neurons, the two remaining parameters IDC and Jext are

uniquely determined, in the distribution of delays case, by solving the following system

(
m ¼ tmJCn� þ tmJextCextnext þ R IDC

s2 ¼ tmJ2Cn� þ tmJ2
extCextnext

: ð21Þ

When the non-instantaneous synaptic transmission is incorporated, the recurrent synaptic

efficacy has to be simply rescaled by the time constant τs, i.e., J! J/τs. This is the approach

used to design all the VIF, LIF and EIF neuron networks analyzed in Figs 5–7.

The multi-modular networks devised to obtain the results shown in Figs 8–10 are com-

posed of NE excitatory and NI inhibitory LIF neurons sparsely connected, each receiving syn-

aptic inputs from CE,ext and CI,ext, respectively, external Poisson-like excitatory neurons firing

at rate νext = 10 Hz. Neurons in the networks do not receive any additional current bias (IDC =

0). As for the single-module networks, synapses with external neurons instantaneously trans-

mit spikes, and their efficacies Jext lead all neurons to fire at rates νE = νI = ν� = 10 Hz in the

absence of recurrent synapses (uncoupled network). The other connectivity parameters are

chosen starting from this condition, firstly by setting up an average number CXI (with X 2 {E,

I}) of recurrent inhibitory connections, each with the same synaptic efficacy JXI. The value of

JXI is chosen to explore the three regimes shown in Fig 8 when cXI = CXI/NI varies from 0 to

100%. The external coupling strength Jext is increased according to the current value of CXI to

keep unchanged the rate ν� = 10 Hz. Finally, CEE = CIE recurrent connections from excitatory

neurons are randomly chosen, by replacing the same number of synaptic contacts with exter-

nal neurons. This operation does not change the equilibrium properties, provided that excit-

atory recurrent and external synapses have the same efficacy: JEE = JIE = Jext.
Following this design strategy, all the E-I networks share the same configuration with only

one exception. In Fig 10, instead of varying CXI, we kept it small and fixed (cXI = 1%), and we
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replaced a variable fraction of the external excitatory synapses CI,ext directed to the inhibitory

neurons with the same number of contacts from randomly chosen recurrent excitatory neu-

rons. This allowed to keep constant the total number CIE + CI,ext of excitatory synapses

received by each inhibitory neuron.

Details on the numerical simulations

The software used to obtain the results presented in this paper is available upon request. All

the simulated IF neuron networks working in asynchronous state (Figs 5–7) are modeled by

considering a sparse recurrent connectivity with connection probability C/N, being C the aver-

age number of synapses per neuron. Each neuron receives an external input from independent

Poissonian spike trains with frequency Cext νext through instantaneous synapses with efficacy

Jext. Spikes are always delivered to post-synaptic neurons with a minimum delay δmin. The val-

ues of both the synaptic time constant τs and the decay constant τd of the exponential delay dis-

tribution are 0, 1, 2, 4, 8, 16, 32, 64 ms. For LIF and EIF neurons, the stochastic current due to

the Poissonian spiking activity of external neurons is incorporated as an equivalent (under the

diffusion approximation) Wiener (Gaussian) process with mean μext and variance s2
ext

(
mext ¼ Cm Jext Cext next 10� 3

s2
ext ¼ ðCm JextÞ

2Cext next 10� 3=dt
; ð22Þ

where, in order to have the moments of the current expressed in pA, the firing rate νext (usually

expressed in Hz) is rescaled by one thousand to have it in ms−1.

The VIF neuron networks in Figs 5 and 6 are composed of the VIF (‘VLSI’ integrate-and-

fire) neurons introduced in [21]. This model is an extended version of the standard ‘perfect

integrate-and-fire’ (PIF) neuron model introduced in [39]: in addition to a constant leakage

current f(V) = β, which here we consider as a part of the current bias IDC, a reflecting barrier

at V = 0 is set to avoid a divergent diffusion towards negative membrane potentials. Contrary

to the PIF neuron, this makes the VIF neuron capable of having a non-zero (positive) mean fir-

ing rate also under subthreshold regimes, i.e., for negative drifts (μ< 0). For the VIF neuron,

input-output gain function F(μ, σ), eigenfunctions and eigenvalues of the related FP operator

have explicit analytical expressions [15, 21, 32], which make this model particularly suited for

matching theory and simulations. The parameters for the VIF neuron networks used in this

paper are listed in Table 1. For this model the natural unit of measure for the membrane volt-

age is the firing threshold vthr.

Table 1. Parameters of the VIF neuron networks at drift-dominated (DD) and noise-dominated (ND) regimes

(Figs 5 and 6).

Parameter Value (DD) Value (ND)

Number of excitatory neurons N 2000 2000

Mean excitatory synapses per neuron C 100 100

Excitatory PSP amplitude due to recurrent spikes J [vthr] 0.0075 0.014

Minimum transmission delay δmin [ms] 10 10

External spike rate Cext νext [Hz] 3000 3000

Excitatory PSP amplitude due to external spikes Jext [vthr] 0.0114 0.0726

Current bias IDC [vthr/ms] −0.032 −0.242

Refractory period τref [ms] 0 0

Firing threshold vthr 1 1

Resting potential VE [vthr] 0 0

Reset potential vres [vthr] 0 0

Firing rate ν� [Hz] 10 10

https://doi.org/10.1371/journal.pcbi.1007404.t001
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For the LIF [18] and the EIF [42] neuron networks corresponding to the results shown in

Fig 7, the parameters at drift- (DD) and noise-dominated (ND) regimes are listed in Tables 2

and 3, respectively.

In Fig 3A and 3B we simulated a set of 4000 uncoupled LIF neurons with same single-neu-

ron parameters as in Fig 7A. Each neuron received an independent source of Poissonian spikes

with rate Cν 2 [8.06, 205] kHz (Fig 3A) and [0.504, 12.8] kHz (Fig 3B), and with synaptic

Table 2. Parameters of the simulated LIF neuron networks at drift-dominated (DD) and noise-dominated (ND)

regimes (Figs 7 and 4).

Parameter Value (DD) Value (ND)

Number of excitatory neurons N 2000 2000

Mean excitatory synapses per neuron C 100 100

Excitatory PSP amplitude due to recurrent spikes J [mV] 0.140 0.213

Minimum transmission delay δmin [ms] 3 3

External spike rate Cext νext [Hz] 12000 12000

Excitatory PSP amplitude due to external spikes Jext [mV] 0.272 1.518

Current bias IDC [nA] −1.23 −9.16

Membrane time constant τm [ms] 20 20

Refractory period τref [ms] 0 0

Firing threshold vthr [mV] 20 20

Membrane capacitance Cm [pF] 500 500

Resting potential VE [mV] 0 0

Reset potential vres [mV] 0 0

Firing rate ν� [Hz] 40 40

https://doi.org/10.1371/journal.pcbi.1007404.t002

Table 3. Parameters of the EIF neuron networks at drift-dominated (DD) and noise-dominated (ND) regimes (Fig

7).

Parameter Value (DD) Value (ND)

Number of excitatory neurons N 2000 2000

Mean excitatory synapses per neuron C 100 100

Minimum transmission delay δmin [ms] 3 3

External spike rate Cext νext [Hz] 12000 12000

Excitatory PSP amplitude due to external spikes Jext [mV] 0.0804 1.76

Spike rate from external neurons Cext [Hz] 12000 12000

Current bias IDC [pA] −8.46 −223

Membrane time constant τm [ms] 10 10

Refractory period τref [ms] 1.7 1.7

Spike slope factor ΔT [mV] 3.48 3.48

Firing threshold vthr [mV] −59.9 −59.9

Membrane capacitance Cm [pF] 500 500

Resting potential Vm [mV] −65 −65

Leak potential EL [mV] −65 −65

Reset potential vres [mV] −68 −68

Leak conductance gL = Cm/τm [nS] 50 50

Excitatory PSP amplitude due to recurrent spikes J [mV] 0.134 0.272

Vpeak [mV] 0 0

Firing rate ν� [Hz] 40 40

https://doi.org/10.1371/journal.pcbi.1007404.t003
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efficacy J = 0.0114 mV and 0.183 mV in Fig 3A and 3B, respectively. In both cases Iext = −46.1

pA and νext = 0 for σext = 0. For σext = 0.5 mV and 2.0 mV, Iext = −50.2 pA and −112 pA, and

the added white noise current had moments set as in Eq (22) with Cext νext = 5.42 Hz and 86.8

Hz, respectively. In both cases, σext > 0 and Jext = 1.52 mV. In Fig 3C, a network of excitatory

LIF neurons was simulated by taking the same parameters as in Panel B with σext = 2.0 mV,

with two exceptions: the independent source of Poissonian spikes has rate Cν 2 [0.505, 10.1]

kHz and that each neuron receives 50 synapses from other cells in the network. In all panels,

for each input Cν, simulations were 2 seconds long, and asymptotic firing rates were estimated

discarding the first second to avoid transient effects. To estimate the mean and SEM of the out-

put firing rates, 10 independent simulations were performed.

Table 4 lists the parameters for the multi-modular E-I networks shown in Figs 8–10,

with average numbers of external connections CE,ext = CI,ext = 1800, firing rate νext = 10 Hz,

percentage of excitatory connections cEE = cIE = 5%, and recurrent inhibitory synaptic effica-

cies JEI = JII = −0.05 mV. Figs 8 and 9 have been obtained by changing cXI and the excitatory

synaptic efficacies (expressed in mV) as

Jext ¼ JEE ¼ JIE ¼ ð9:56� 10� 5 cXI þ 0:0234ÞcXI þ 0:0485 :

Fig 10 has been obtained by setting synaptic efficacies Jext = JEE = JIE = 0.0487 mV, JII = JEI =

−0.05 mV, connections with external neurons CE,ext = CI,ext = 1960, and recurrent connection

probability 0.01% for all neurons.

The simulations performed with NEST have been implemented using iaf_psc_delta
and iaf_psc_exp neuron models. The recurrent connections were introduced

following the fixed_indegree rule to lower quenched noise effects, relying on the

static_synapse model. In the case of distribution of delays and instantaneous synaptic

transmission the NEST neuronal model adopted was iaf_psc_delta. The distribution of

delays was exponential_clipped from the NEST library, where the following parame-

ters were used: lambda = 1/τs, low = δmin + dt, high = float(‘inf’), with dt as integra-

tion time step. Synaptic efficacies expressed in mV were converted in pC (total electric charge)

by multiplying them by Cm.

Supporting information

S1 Appendix. Theoretical derivation and cascade of synaptic filters. Details about the

dimensional reduction of the firing rate dynamics and about networks of neurons

Table 4. Parameters of the LIF neuron networks used for the multi-modular tests (Figs 8, 9 and 10).

Parameter Value

Number of inhibitory neurons Ninh 1000

Number of excitatory neurons Nexc 4000

Membrane time constant τm [ms] 20

Refractory period τref [ms] 0

Firing threshold vthr [mV] 20

Membrane capacitance Cm [pF] 100

Resting potential EL [mV] 0

Reset potential vres [mV] 10

Time step dt [ms] 0.05

Minimum delay δmin [ms] 3

Simulation time [ms] 61000

https://doi.org/10.1371/journal.pcbi.1007404.t004
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incorporating simultaneously both non-instantaneous synaptic transmission and heteroge-

neous propagation delays.

(PDF)
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Appendix

Dimensional reduction of the firing rate dynamics

Here we detail how to obtain the dimensional reduction of the firing rate dynamics
described in the Theoretical results section.

By combining Eqs. (7) and (8), the total firing rate can be then rewritten as

ν =

∫ ∞
−∞

νy(y, t) dy

= Φ(µy, ν)

∫ ∞
−∞

ρy(y, t) dy+∑
n6=0

fn(µy, ν)

∫ ∞
−∞

an(y, t) dy +O(σI)

≡ Φ0(ν) +
∑
n 6=0

a0n f0n(ν) +O(σI) ,

(S1)

where the 0-th order terms of the Taylor expansions are defined as Φ0(ν) ≡ Φ(µy, ν)
and f0n(ν) ≡ fn(µy, ν), together with the introduction of the new integral expansion
coefficients a0n(t) ≡

∫∞
−∞ an(y, t) dy. The next step to find a self-consistent

approximated spectral expansion of Eq. (3) is to work out the dynamics of these a0n(t).
This can be done by integrating both sides of Eq. (5) and constraining the additional
diffusion term in Lxy to be as small as the fluctuation size of y: σ2(y) = O(σ2

I ). The
dynamics of the integral expansion coefficients reduces to

ȧ0n =

∫ ∞
−∞

λn(y) an(y, t) dy+∑
q

∫ ∞
−∞
〈ψn|∂y(

y − µI
τs

aqφq)〉 dy +O(σ2
I )

= λ0n a0n −
µy − µI
τs

∑
q

〈∂yψn|φq〉|y=µy
a0q +O(σI) ,

where we integrated by parts the second integral and set λ0n ≡ λn(µy). Note that, after
this simplification the neglected terms are O(σI) due to the part of the Taylor’s
expansion we are not taking into account, and whose contribution is larger than the
aforementioned terms related to σ2(y). This equation for a0n can be further recast as
follows, by taking into account Eq. (9):

ȧ0n = λ0n a0n + µ̇y
∑
q

〈∂yψn|φq〉|y=µy
a0q +O(σI) . (S2)
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Cascade of synaptic filters and delay distributions

Biological networks of neurons incorporate simultaneously both non-instantaneous
synaptic transmission and heterogeneous propagation delays. In this paper, we studied
and compared these two transmission mechanisms one at a time. However, Eq. (12) can
be extended to include both synaptic filters and delay distributions. Indeed, the spike
rate ν̃(t) each neuron receives at time t is given by the convolution of ν(t) and the
distribution ρd(δ) of delays δ as shown in Sec. “Equivalence of non-instantaneous
synaptic transmission and distribution of axonal delays”. This affects the instantaneous
mean current µy and leads to generalize the firing rate equation as follows:

~̇a0 = (Λ0 + W0 µ̇y) ~a0 + ~w0 µ̇y

µ̇y = (µI(ν̃)− µy) /τs
˙̃ν = (ν − ν̃) /τd

ν = Φ0 + ~f0 · ~a0

. (S3)

Similarly to what shown in the Theoretical results section, this dynamics is equivalent to
the one of a network with instantaneous synaptic transmission – Eq. (14) – with a
distribution of delays ρd(δ) implementing a second-order low-pass filter:

ρd(δ) = β(δ|τs, τd) ≡ (e−δ/τd − e−δ/τs)/(τd − τs) , (S4)

which for τd = τs reduces to

ρd(δ) = α(δ|τd) ≡ δe−δ/τd/τd2 . (S5)

Therefore, the combination of synaptic filtering and propagation delay distribution
can be effectively described as a cascade of two first-order filters, leading to firing rate
dynamics as for a network with only distribution of delays, further generalizing the
descriptive power of the perturbative approach proposed in this paper. As shown in Fig.
11, this picture is confirmed by simulations of E-I LIF neuron networks. Indeed, the
power spectra P (ω) from different network types display a remarkable agreement. As
expected, the P (ω)s of ν(t) are shaped differently if different combinations of
transmission components are incorporated, even if the total time scale is preserved
(τs + τd = 16 ms). Indeed, when only one component is considered (Fig. 11A), ρd(δ) is
exponential (Eq. (15)) whereas, for the combined case, delay distribution have a
unimodal shape with rise and decay as prescribed by Eq. (S4) (Fig. 11B) or by Eq. (S5)
when τd = τs (Fig. 11C).

We remark that synaptic filters and equivalent delay distributions are
interchangeable (Fig. 11B-C). For instance, slow synaptic filters with τs = 12 ms and
narrow delay distributions with τd = 4 ms give rise to the same power spectra as those
measured in networks with reversed features of the transmission components (τs = 4 ms
and τd = 12 ms). Furthermore, if a rising-and-decaying post-synaptic current (α-PSC, a
second-order low-pass filter as in [6] with rise time τr = τs) is incorporated without
delay distribution, the resulting P (ω) appears to overlap with the power spectral
density of a network with ρd(δ) = α(δ|τd), or equivalently, with a cascade of filters
(τs = τd = 8 ms, Fig. 11C). The network setting including α-PSC is not described by
the approximated dynamics we derived in Eq. (12). However, the observed overlap
between spectra is a strong evidence of the capability of our perturbative approach to
describe also Markovian neurons with dimension larger than two. Indeed, α-PSC can be
described simply by adding a first-order differential equation to Eq. (1) [6].
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