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Abstract
This paper aims at investigating the action prediction problem from a pure kinematic perspective. Specifically, we address the
problem of recognizing future actions, indeed human intentions, underlying a same initial (and apparently unrelated) motor
act. This study is inspired by neuroscientific findings asserting that motor acts at the very onset are embedding information
about the intention with which are performed, even when different intentions originate from a same class of movements. To
demonstrate this claim in computational and empirical terms, we designed an ad hoc experiment and built a new 3D and 2D
dataset where, in both training and testing, we analyze a same class of grasping movements underlying different intentions.
We investigate how much the intention discriminants generalize across subjects, discovering that each subject tends to affect
the prediction by his/her own bias. Inspired by the domain adaptation problem, we propose to interpret each subject as a
domain, leading to a novel subject adversarial paradigm. The proposed approach favorably copes with our new problem,
boosting the considered baseline features encoding 2D and 3D information and which do not exploit the subject information.

Keywords Action recognition and prediction · Human intentions · Grasping · Kinematic analysis · Adversarial domain
adaptation

1 Introduction

Recognizing human actions is an active area of research
which is faced under different paradigms in computer vision
and pattern recognition. The most straightforward one,
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namely action recognition, typically consists in the classifica-
tion of a fully observed activity1 fromavideo sequence.Early
activity recognition aims at recognizing an action before it
is fully disclosed, i.e., from the onset of that same action.
Action prediction instead refers to the classification of future
actions considering all the events occurring up to a certain
time instant (Chakraborty and Roy-Chowdhury 2014).

In this paper, as a different paradigm, we introduce a
new and more demanding problem, consisting in the antic-
ipation of future, never observed, actions where the only
available input data consists of motion segments of a non-
discriminant and apparently unrelated (with respect to the
future action) motor act. In other words, the problem we
would like to address consists in the prediction of human
intentions, defined as the overarching goal embedded in an
action sequence (see Fig. 1).

Predicting intentions is paramount in many aspects of our
social life, as well as for security tasks. For instance, it would
be desirable to predict the intention of a person in his/her car
stopped at a police checkpoint whether, while opening the

1 If not differently specified, activity and action are here used interchangeably.
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Fig. 1 Four different paradigms. a Action/activity recognition: the full
sequences is exploited for classification (the top sequence shows the
“running” class and the bottom one represents the “high-five” class). b
Early activity recognition: a few initial frames are observed and clas-
sification rely upon such incomplete information (same classes as in
a). c Action prediction: future actions are predicted on the basis of all
past events which are class-specific. For instance, in the top sequence

a standing up activity leads to predict a “kissing”, and, in the bottom,
a conversation between a group of friends anticipates a “high-five”. d
Intention prediction: the same class of motor act (at left in the picture,
grasping) is analyzed to explain why the motor act itself has been dis-
played, predicting its underlying intention (at right in the picture and
from top to bottom, Pouring, Passing, Drinking and Placing)

glove compartment, it is going to pick documents or taking a
gun. Or to detect the intention of a subject standing in front
of a bank counter and grabbing something from the pocket,
whether it will pick his wallet to deposit money or extract
a weapon to attempt a robbery. Further, in social robotics,
the capability to predict intentions would enhance the robot
interaction performance through amore realistic engagement
with humans.

This study is inspired by recent findings from behavioral
neuroscience (Ansuini et al. 2014, 2015; Cavallo et al. 2016;
Koul et al. 2018, 2019; Becchio et al. 2018; Soriano et al.
2018; Zunino et al. 2018) which assert that the execution of a
motor act (e.g., grasping an object) is not solely determined
by bio-mechanical constraints imposed by the object that is
involved in the interaction and by its intrinsic/extrinsic prop-
erties. But, in fact, it also depends on the agent’s intention
which tends to adapt the current motor act to better fulfill the
intention which originated it (e.g., grasp an object to pass to
someone or to use it directly Ansuini et al. 2014, 2015).

The difference with respect to the other paradigms in the
current computer vision research is subtle but clear: in our
case, intentions can be predicted not only using discriminant
previous information extracted from a certain anticipative
data stream related to the action to be performed, but they
can also be inferred from themotion of an anticipative appar-
ently unrelated action. Apparently unrelated means here that
this initial action is not executed for a specific, unique pur-
pose, but it may proceed with different future actions. More

specifically, our challenge lies in predicting future different
intentions originating from the same class of anticipative
motor acts (e.g., grasping an object for different usages).
We will show that this neuroscientific hypothesis is actually
valid and that the prediction of intentions is a manageable,
yet complex problem.

Actually, previous early activity recognition or prediction
pipelines analyze motion patterns which are characteristic of
an unfinished or future action, respectively, and such cues
undoubtedly help to solve the task. For instance, to predict
if two persons are going to give a high-five or shaking their
hands (Vondrick et al. 2016; Lan et al. 2014), it is enough
to detect a high/low wrist height during the first part of their
interaction, respectively.Another important aspect of the cur-
rent literature (e.g., see Kitani et al. 2012;Walker et al. 2014)
is the use of the context to help the classification, namely, the
objects present in the scene and the knowledge about the
actions associated to them. Indeed, in real scenarios, context
might not always be easily recognizable or may not contain
enough information to discriminate among (similar but dif-
ferent) actions, being also misleading if the scenario is too
noisy or cluttered (Stapel et al. 2012). However, while con-
text is surely an important information for recognition, our
test-case deliberately does not consider such clues and does
not exploit such information.

Here, differently, grounding from the assumption that the
same class of motor acts can be performed with different
intents (Kilner 2011),we focus on exclusively analyzing such
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movements to figure out whether they actually embed a spe-
cific intention from the very beginning. Hence, we can face
our problem by capturing the sole motion patterns which
anticipate the intention while purposely excluding contex-
tual information. Further, since the same brain areas are
used in both motor planning and intent understanding (Oztop
et al. 2005), the fascinating possibility of predicting inten-
tions from the kinematics only is envisioned.

To prove our claims, instead of adapting existing bench-
marks,we exploit a dataset specifically designed for intention
prediction. Seventeen subjects execute several graspings of
a bottle placed on a table, in order to either (1) pour some
water into a glass, (2) pass the bottle to a co-experimenter,
(3) drink from it, or (4) place the bottle into a nearby box.
We acquire a dataset recording temporal 3D trajectories of 20
VICON markers outfitted on the subjects’ hand and optical
RGB videos from a lateral viewpoint, so that nothing but the
table, the bottle, the subject’s arm and a wall are visible (see
Fig. 2). VICON and video data starts with the hand in a com-

mon resting position (for either Pouring, Passing, Drinking
or Placing) and ends at exactly when the bottle is grasped.
Hence, anything happening afterwards can be processed by
our system, and no bias is introduced by leaving free the
subject’s hand initial position: we analyze grasping-a-bottle
actions and, from sole these movements, we want to predict
whether the bottle was grasped to pour, to pass, to drink or
to place.

Another aspect which should be considered in the design
of methods coping with action recognition problems and
related variants is the capability of generalization. This
results an even more crucial point for intention prediction as
well. Specifically, since the same class of anticipative motor
acts subsuming different intentions is executed by several
subjects, not onlywe have to figure out intention-specific dis-
criminants from similar motor acts, but such discriminants
should be also transversal (i.e., invariant) across different
subjects. Actually, we realize that a certain bias is also asso-
ciated to the subjects executing the grasping actions, and we

This grasping is finalized to ...

... a Pouring intention

This grasping is finalized to ...

... a Passing intention

This grasping is finalized to ...

... a Drinking intention

This grasping is finalized to ...

... a Placing intention

Fig. 2 The proposed problem of intention prediction. By only inspect-
ing an apparently unrelated grasping-a-bottlemotor act, wewant to infer
whether the latter is finalized to (1) pour some water into a glass, (2)
pass the bottle, (3) drink from it or (4) place the bottle in a box (from top

to bottom). We face this problem in pure kinematic terms: the context
has been totally marginalized out. All sequences are ordered from left
to right, top to bottom
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tried to exploit such information in a novelway to increase the
generalization power of our method. In order to cope with
this additional complexity in an effective way, we propose
an original approach derived from the domain adaptation
research which considers each subject as a domain and adopt
a novel subject-adversarial training pipeline to generalize
better among the subjects. Our proposed approach showed
the best performance in our test case, and also promising
results in classic action recognition frameworks.

1.1 Main Contributions

To sum up, in this paper, we introduce Intention from
Motion (IfM), a new problem of predicting human intentions
(Pouring, Passing, Drinking, Placing), which all originate
from a same, apparently unrelated motor act (grasping-a-
bottle). We tackle this problem using the minimal possible
information, that is, processing the kinematics only of the
onset action, and deliberately not exploiting any contextual
information: these are the necessary conditions to empiri-
cally prove the neuroscientific claim dictated by the problem
above.

To this end, we develop computational methods to be
applied to a dataset of grasping acts specifically designed
to investigate intention prediction in which 17 subjects per-
formed several grasping-a-bottlemovements finalized to four
different subsequent intentions (Pouring, Passing, Drinking,
and Placing)2.

We cast this problem in a classification scenario and
we show that, despite IfM is arguably a challenging task,
intention-specificdiscriminants are actually implicitly embed-
ded in the grasping acts, and can be exploited by computa-
tional methods.

As most original contribution, we propose a method
that explicitly addresses the biases associated to the human
subjects performing the initial grasping action, an issue par-
ticularly affecting the intention prediction problem, even
more severely than other action recognition paradigms. In
particular, we discovered an inherent inter-subject variability
and intra-subject similarity of themotor actswhen performed
by different and same subject(s), respectively, andwedevised
a method aimed at exploiting such information to improve
its generalization ability, which is derived from the domain
adaptation (DA) research (Csurka 2017). This is done by
interpreting each training subject as a source domain and
the unknown testing subject as target domain, being his/her
intention labels never used in training.

The proposed method is named Subject-Adversarial
Domain Adaptation (SADA) and it is formulated as an unsu-
pervised domain adaptation problem (Ganin et al. 2016),

2 Please, visit the official project page https://pavis.iit.it/projects/
human-intention-prediction.

where unannotated testing trials are used to promote both
intention discrimination and subjects’ confusion. As a gen-
eralization of SADA, we also consider the case where the
testing trials are never exploited at all: the adaptation is in this
case performed in a complete blind manner between all the
training subjects only (i.e., the trials of the testing subject are
never processed by the system in any way during training).
This latter method, called Blind-SADA, can be interpreted
as an unsupervised domain generalization

Some parts of this paper have been presented in recent
conference works Zunino et al. (2017b), and Zunino et al.
(2017a), mainly concerning the presentation of the inten-
tion prediction problem together with the processing (Zunino
et al. 2017b) and the fusion of 3D and 2D data (Zunino et al.
2017a), respectively.This version extends bothby thoroughly
investigating the generalization aspect and proposing a new
approach based on DA.

Paper Outline In Sect. 2, we discuss some related works
from the literature. Section 3 introduces our dataset and pro-
vides a human recognition baseline. In Sect. 4, we present
our subject-adversarial approach to solve the intention pre-
diction problem, and experimental results are provided in
Sect. 5. Section 6 reports some insights on 2D and 3D dis-
criminants to classify the intentions. Finally, Sect. 7 draws
the conclusions and sketches the future work.

2 RelatedWork

Early Activity Recognition (EAR) Ryoo (2011) first pro-
posed a variation of bag-of-featuremodel to infer the ongoing
activity by only analysing its beginning. The same prob-
lem was faced in Cao et al. (2013) with sparse coding. Hoai
et al. (2012) designed a max-margin event detectors to early
recognize emotions. Ryoo et al. (2015) proposed a dataset
for early activity recognition from egocentric videos. Some
works have attempted to investigate how much of the whole
action is necessary to perform EAR by either a generative
model (Davis and Tyagi 2006) or metric learning (Schindler
and Gool 2008). Soran et al. (2015) devised a notification
system for daily activities where, for instance, the detection
of an ongoing milk boiling alerts the human user. Xu et al.
(2015) formulates EAR as Internet-queries autocompletion.
EAR is also tackled by Soomro et al. (2016) and byKong and
Fu (2016) by modifying the SVM framework, whereas, Ma
et al. (2016) exploited Long Short Term Memory (LSTM)
model on top of convolutional neural nets (CNN) architec-
tures.

Action Prediction Li et al. (2012) used a random tree to
model all the kinematics up to a certain instant and to predict
the most likely future event (e.g., predicting “grab an object”
if “reach an object” is detected). Huang and Kitani (2014)
proposed a pose-based approach for human interaction pre-
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diction. Lan et al. (2014) developed the so-calledhierarchical
movemes to model human actions at multiple levels of gran-
ularities. Vondrick et al. (2016) and Kong et al. (2017) used
the full past-future actions as data augmentation to train
deep nets which can predict the future from the past. Jain
et al. (2016) combined Recurrent Neural Networks (RNNs)
and spatio-temporal features for action prediction, while
encoder-decoder architectures were proposed in Bütepage
et al. (2017) (multi-part network to process skeletal joints
at multiple time-scales), and in Lu et al. (2017), the latter
proposing an extrapolation model to generate the dynam-
ics. Fermüller et al. (2017) predicted manipulating actions
through LSTM networks fed with either accelerometer or
video data.
Many frameworks exploited topic/probabilistic models to
predict future actions by eithermodelingobject-object/object-
person relationships (Chakraborty andRoy-Chowdhury2014;
Li andFu2014) or detectingwhich areasmust beused/avoided
by vehicles/pedestrians during navigation (Kitani et al. 2012;
Walker et al. 2014).

(Adversarial) Domain Adaptation Domain adaptation
refers to the fundamental problem of domain shift (Daumé
andMarcu 2006) between a source and a target dataset, used
for training and testing, respectively.While the source dataset
is fully annotated, the target dataset is not or can have only a
few annotated samples. Consequently, either unsupervised
and supervised adaptation pipelines have been proposed,
depending on whether the labels in the target domain are
used in training or not. Hand-crafted approaches have been
proposed to learn transformations in order to align source and
target domain through either dictionary learning (Huang et al.
2013; Shekhar et al. 2013), manifold projections (Gopalan
and Li 2011; Gong et al. 2012) and covariance statistics (Sun
et al. 2016; Fernando et al. 2013; Morerio et al. 2018; Volpi
et al. 2018).

Concurrently to the recent deep learning revolution, many
different architectures have been proposed to adapt between
domains: encoders (Chopra et al. 2013), convolutional net-
works with either modified loss (Tzeng et al. 2014; Sun and
Saenko 2016) or Maximum Mean Discrepancy to promote
weights’ sharing (Ghifary et al. 2014). Adversarial training
has been proposed to ad-hoc techniques (e.g., the usage of
soft labels (Tzeng et al. 2015) and gradient reversal layer
Ganin et al. 2016) to perform a joint learning stage to devise
a representation which is effective for the main classifica-
tion tasks (object recognition Tzeng et al. 2015; Ganin et al.
2016 and re-identification Ganin et al. 2016) and, at the
same time, invariant while shifting from the source to target
domain. Regarding unsupervised domain adaptation, gener-
ative adversarial networks are well established: in Liu and
Tuzel (2016), the joint distribution between the two domains
is learned, Taigman et al. (2017) directly learns a transfor-
mation from the source to the target distributions. Instead,

Tzeng et al. (2017) manages to directly transfer an end-to-
end classifier trained on the source domain in a discriminative
manner.

Novelty Aspects Differently to early activity recognition
(Ryoo 2011; Hoai et al. 2012; Cao et al. 2013; Ryoo et al.
2015;Davis andTyagi 2006; Schindler andGool 2008; Soran
et al. 2015; Xu et al. 2015; Soomro et al. 2016; Ma et al.
2016; Kong and Fu 2016; Cavazza et al. 2017a) and action
prediction (Li et al. 2012; Huang and Kitani 2014; Lan et al.
2014; Vondrick et al. 2016; Jain et al. 2016; Kong et al. 2017;
Bütepage et al. 2017; Lu et al. 2017), we do not observe the
initial action we want to classify nor predict future actions
fromdifferent past activities. Instead,we predictwhich inten-
tion (Pouring, Passing,Drinking, Placing) originates from the
sameclass ofmotor acts (grasping-a-bottle).Our context-free
setting is novel as opposed to a massive usage of contextual
information (Chakraborty and Roy-Chowdhury 2014; Li and
Fu 2014; Kitani et al. 2012; Walker et al. 2014). Also, the
fixed starting position of the hand at the beginning of each
trial is meant to remove any bias in the kinematics.
To the best of our knowledge, this is the first work which
applies domain adaptation to action recognition and its vari-
ants. To this aim,we propose a domain adversarial adaptation
method for intention prediction which learns from multi-
ple source domains (i.e., multiple training subjects) how to
adapt to an unknown target domain (i.e., new, never observed,
testing subject). Ultimately, inspired by adversarial domain
adaptation (Liu and Tuzel 2016; Taigman et al. 2017; Tzeng
et al. 2017, 2015) we take advantage of multiple source
domains in order to better generalize towards a target domain,
even in the challenging case when the latter is not observed
at all.

3 The Dataset

We utilized the dataset collected by the C’MON department,
IIT. The dataset was designed as follows. Seventeen naive
volunteers were seated beside a 110 × 100 cm table resting
on it elbow,wrist and hand inside a fixed tape-marked starting
point. A glass bottle was positioned on the table at a distance
of about 46 cm and participants were asked to grasp it in
order to perform one of the following 4 different intentions.

1. Pouring some water into a small glass (diameter 5 cm;
height 8.5 cm) positioned on the left side of the bottle, at
25 cm from it.

2. Passing the bottle to a co-experimenter seating opposite
the table.

3. Drinking some water from the bottle.
4. Placing the bottle in a cardboard 17 × 17 × 12.5 box

positioned on the same table, 25 cm further.
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Fig. 3 The VICON marker geometry on the subject’s hand

After a training session, the final dataset is composed by
253 trials of pouring, 262 of passing, 300 of drinking and
283 of placing - 1098 in total. For each, both video and 3D
data have been collected. 3D marker trajectories and video
sequences are acquired from themomentwhen the hand starts
from a stable fixed position up to the reaching of the bottle,
and both are precisely trimmed at the instant when the hand
grasps the bottle, removing the following part. Our controlled
setting constitutes an actual worst-case scenario since the
context is fixed (so, not discriminative) for all the trials across
subjects (e.g., table size, location and size of the box, co-
experimenter’s position, etc.). Moreover, fixing the starting
hand location and the bottle position,weput ourself inneutral
conditions, removing possible subjective biases which might
affect the classification performance (e.g., some intentions
might be better distinguished if starting hand position would
have been left free).

3D kinematic dataNear-infrared 100 Hz VICON system
was adopted to track the hand kinematics. Nine cameraswere
placed in the experimental room and each participant’s right
hand was outfitted with 20 lightweight retro-reflective hemi-
spheric markers (see Fig. 3). After data collection, each trial
was individually inspected for correct marker identification
and then run through a low-pass Butterworth filter with a 6
Hz cutoff.

Globally, each trial is acquired by means of a set of
3D absolute coordinates describing the trajectory covered
by every single marker during execution phase. During the
VICON’s calibration stage, the floor plane is set to be the
plane of the table and the origin of the reference system
is defined over a fixed corner of the table, making it uni-
form across participant. The x, y, z marker coordinates only
consider the reach-to-grasp act, the following movement is
totally discarded. Indeed, the acquisition of each trial is auto-
matically ruled by a thresholding of the wrist velocity v(t) at
time t, acquired by the corresponding marker. Being ε = 20
mm/s, at the first instant t0 when v(t0) > ε, the acquisition
starts and it is stopped at time t f , when the wrist velocity
v(t f ) < ε.

2D Video Sequences Motor acts were also filmed from
a lateral viewpoint using a fixed digital video camera (Sony
Handycam 3-D) placed at about 120 cm from hand start posi-
tion. The view angle is directed perpendicularly to the agent’s
midline, in order to ensure that the hand and the bottle were

fully visible from the beginning up to the end of the move-
ment. It is worth noting that the video camera was positioned
in a way that neither the box (Placing), nor the glass (Pour-
ing), nor the co-experimenter (Passing) were visible. Adobe
Premiere Pro CS6 was used to edit the video in .mp4 format
with disabled audio, 25 fps and 1280× 800 pixel resolution.
In order to format video sequences in an identical way to 3D
data, each video clip was cut off at the exact moment when
the bottle is grasped, discarding everything happening after-
wards. To better understand how demanding the task is, note
that the actual acquired video sequences encoding the grasp-
ing last for about one fourth of the future action we want to
predict (see Fig. 2). Consequently all the sequences are about
20-30 frames long.

As evaluation procedure, we adopted the one-subject-out
testing procedure, that is, we compute seventeen accuracies,
training our system on all the subjects except the one we
are testing and then we average all the accuracies to get
the final classification performance. This testing procedure
is more challenging than the usual cross-validation whose
classification scores are always higher (see the Supplemen-
tary Material). We deem the adopted procedure is the correct
one to devise a system, effectively able to better generalize
and predict intentions in real world scenarios.

Another consideration is worth to be finally raised. When
compared to other existing action recognition datasets, the
controlled experimental conditions with which our dataset
was built might seem a limitation. For instance, MPII-CAD
(Rohrbach et al. 2012) and Salad 50 (Stein and McKenna
2013) cover more articulated (cooking) actions, while UCF-
101 (Soomro et al. 2012) and HDMB51 (Kuehne et al. 2011)
collect YouTube videos, thus guaranteeing a broad variabil-
ity of backgrounds and context. Conversely, we deliberately
designed our case study in order to properly answer the
question whether the kinematics of a same ongoing action
is enough informative to disclose the intention which will
cause the following action. Indeed, the uncontrolled and
real-world scenarios of the YouTube videos (such as in UCF-
101 and HDMB51) may incidentally enrich the context with
some cues that actually facilitate the prediction. Moreover,
different future actions frequently begin with a quite differ-
ent onset, e.g., two persons approach each other before a
“kissing” action occurs, or people rise their hands before a
“high-five” action is carried out (Lan et al. 2014). Addition-
ally, in some cases (MPII-CAD and Salad 50, for instance),
the prediction is facilitated by the detection of which object
(out of many others) is grasped (e.g., a knife to predict “cut-
ting”).

In our case instead, wewant to predictwhy the same object
(bottle) is grasped, therefore complicating the applicability
of existing prediction pipelines to our problem (Sect. 5.4). In
such scenario, existing state-of-the-art techniques, although
effective to some extent, are not so well performing.
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3.1 Human Performance in IfM

Predicting intention from motion is not a trivial task for
human observers. Studies investigating the ability of human
observers to discriminate intention from motion using two-
choice decision tasks report accuracies in the range of
49–68% (Cavallo et al. 2016; Koul et al. 2019). For review,
see Becchio et al. (2018).

As a preliminary analysis to check how human beings can
predict intentions, we tested the human capabilities on Pour-
ing versus Placing and Pouring versus Drinking throughout
the following experimental apparatus. We asked each of 18
participants to watch 400 videos of reach-to-grasp move-
ments and predict whether it was finalized either to pour
some water or pass the bottle. We balanced the videos from
each class (50 for Pouring and 50 for Placing, with 4 rep-
etitions of each video). The experiment starts showing the
complete execution setup of the reach-to-grasp and its con-
clusion (Pouring or Placing) in a wide zoom where the glass
or the box, respectively, were visible. Then, we narrow the
field of view, discarding everything except the arm, the table
and the bottle, and we show only the reach-to-grasp move-
ment, exactly as the videos processed by the algorithms.After
8 demo trials in which the future intention was revealed,
we randomly shuffled the 400 videos and tested all the par-
ticipants, registering their guess. Averaging all the human
accuracies in the Pouring versus Placing test, we get 68% of
accuracy. Afterward, we move to the second test (Pouring
versus Drinking) and we repeated the same procedure for a
different set of 18 participants. In Pouring versus Drinking,
accuracy decreases to 58% (−10%).

Thus, although there are cases where the human brain can
read in a grasping act some motion pattern which anticipates
its intention, we can anticipate that computer vision meth-
ods will prove to be more valuable outperforming human
predictive ability (Table 1).

4 Subject-Adversarial Adaptation for
Intention Prediction

The capacity of generalization is indeed a requested ability
of any (action) recognition method. This is evenmore impor-
tant in our case since the actual intention is never observed
and such discriminants should be spot from very similar

Table 1 Human recognition performance

Human performance (%)

Pouring versus placing 68

Pouring versus drinking 58

grasping actions. Indeed, in IfM, a better generalization
can be implicitly achieved by identifying intention-specific
subject-invariant discriminants which are embedded in the
kinematics of a generic grasping motor act. To cope with
this problem, in this Section we propose a new approach
able to explicitly promote subject-independence for predict-
ing intentions. This allows to actually improve cross-subject
generalization and, consequently, prediction performance.

Specifically, in Sect. 4.1, we will present a novel approach
to action recognition which is able to exploit these biases to
improve the generalization capacity of the method, resulting
in an ultimate superior performance for intention prediction.
In Sect. 4.2 we will provide the details for reproducibility
purposes.

4.1 Subject-Adversarial Domain Adaptation

To reduce the bias generated by the different agents, we resort
to the idea to explicitly consider such information in devis-
ing a training method able to “confuse” the subjects such
as to increase the generalization ability of the classification
model. To this end, we propose a novel approach to action
recognition which is based on a well established unsuper-
vised domain adaptation technique (Ganin and Lempitsky
2015). The main goal of unsupervised domain adaptation
techniques is to perform well not only on samples drawn
from the training data distribution (source), but also on sam-
ples drawn from other distributions (target), whose labels are
not known at training time.

Leveraging on the subjects’ related biases discussed
above, we pursue the original perspective of combining
action recognition (and variants) with domain adaptation.
By identifying each subject as different domain, we subse-
quently propose to performadaptation in amulti-domain case
where we exploit multiple (source) subjects in order to adapt
ourmodels to performwell on a new, unknown (target) agent.

We adopt adversarial domain adaptation for action recog-
nition by learning a shared feature representation between
subjects which can be effective for intention disambiguation.
We want to learn a representation which, at the same time,
leads to a top-scoring intention classifier and to a random
chance scoring discriminator of the subjects (Ganin et al.
2016). This can be obtained employing adversarial training
by means of the min-max formulation described in the fol-
lowing.

We consider each grasping a bottle movement in our
dataset D as a triplet [x, s, y], where x is an arbitrary fea-
ture vector encoding it, s is the subject’s label, and y is the
intention’s label (see Fig. 4).

We look for a feature representation f(x|Wf ), depending
on some parameters Wf , which is trained to be intention-
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Fig. 4 The adopted Subject-Adversarial Neural Network (SANN)
(Color figure online)

discriminative and subject-invariant. This is achieved through
the following optimization problem

min
Wf ,Wi

∑

[x,s,y]∈D
�i (y, g(f(x|Wf ),Wi )) (1)

max
Ws

min
Wf

∑

[x,s,y]∈D
�s(s, h(f(x|Wf ),Ws)). (2)

on top of the feature representation f . Precisely, Eq. (1) pro-
motes an accurate prediction of intentions: the loss function
�i is minimized as to penalize discrepancies between the
actual intention label y and the high-level embedding gwhich
is trained to be discriminative for the sake of the intention
prediction task. In (2), we still consider a similar setup in
which we train a high-level encoding h by mean of a loss
function �s which consider the subjects’ identity s. This sec-
ond loss function is minimized with respect to the weights
W f which defines the feature encoding f , being at the same
time maximized at the classifier level—that is, the weights
Ws . Thewhole idea is to deploy an adversarial game inwhich
we want to train at our best an effective feature encoding f
which is effective in predicting intentions, without suffering
of the retrieved subjects’ related biases. Concretely this is
achieved by a multi-task network (intention prediction and
subject confusion), where the two heads of the architecture
are intentions and subjects classifier, respectively. We try to
get rid of the subjects’ biases by achieving a random chance
classifier for subject identities: this will implement the idea
of having feature representations which are totally invariant
across different subjects. At the same time however, we pre-
tend the very same feature representation to be discriminative
enough to allow a reliable prediction of intentions (and there-
fore we train the intention prediction branch to be as effective
as possible).

As far as we know, our work is the very first attempt of
applying (adversarial) domain adaptation to action recogni-
tion problems (including the variants presented in Fig. 1).
In this work, we demonstrate that this class of methods is
indeed suitable for intention prediction by considering the
following two settings.

Subject-Adversarial Domain Adaptation (SADA) The
SADA approach is derived from the unsupervised domain
adaptation pipeline (Ganin and Lempitsky 2015) where the
un-annotated target data (here, the testing subject) is used to
modify the feature representation,while the learning phase of
the classifier for the main task is done on the source domains
only (here, the training subjects’ actions). In practice, the
source domain data is used to learn the classifier to discrim-
inate actions (intentions in our case) in a supervised way,
whereas the target domain data is still used in training, but
in an unsupervised way, since action labels are unknown (we
only use the information that the test subject’s identity is dif-
ferent from that of any other training subjects). In our case,
the actions of the test subject are our target domain while the
actions of all the other subjects constitute the source domain:
we aim at training the system by improving the action classi-
fication performance while minimizing the capability of the
system to identify the subject who executed that action.

Blind-SADABlind-SADA can be seen as a generaliza-
tion of the classical domain adaptation setting that, overall,
relies on the fact that the target domain is fixed and specified.
In fact, even in the unsupervised case, un-annotated target
data are exploited during learning to adapt with the source.
Here, differently, we posit that the availability of multiple
source domains (i.e., training subjects) can provide enough
information as to learn an adaptation which is enough pow-
erful to be blindly applied to an arbitrary target domain (i.e.,
testing subjects), without exploiting target data in any way
during the learning stage (domain generalization). We also
explored this setting since in a general video-surveillance
framework, a system should be able to perform well on a
variety of unknown, never seen, testing subjects, still ensur-
ing a high generalization in predicting humans’ intention. In
this situation, it is desirable to investigate whether subjects’
confusion (2) applied on a fixed number of subjects is still
generalizable to other, unseen ones. In our experiments, we
do this by optimizingEqs. (1) and (2) byonly using the data of
16 subjects, without using the data of the test subject left out
neither for subjects’ confusion (differently from SADA), nor
for tuning the parameter of the intention prediction branch
(1) (see Fig. 4).

4.2 Implementation Details

Technically, SADA and its Blind variant are implemented by
the architecture inspired by Ganin et al. (2016) and named
Subject-AdversarialNeuralNetwork (SANN),which is com-
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posed by 3 modules. A first, low-level, network module
learns the feature representation f(x|Wf )—blue in Fig. 4.
After that, two separate intention—(green in Fig. 4) and
subject-related modules (yellow in Fig. 4) are responsible for
the intention-discrimination and subjects-confusion, respec-
tively. As previously explained (Sect. 4.1), the bluemodule is
responsible for achieving a representation which, at the same
time optimizes the green module (intentions) and fool the
yellow one (subjects). Therefore, our adversarial approach
stands from the fact that the yellowmodule seeks for a perfect
subjects’ discrimination built on top of a feature representa-
tionwhich is learnt to be subject-invariant in the bluemodule.

SANN is trained accordingly to the one-subject-out pro-
tocol. It is important to note that, for all-class comparison
considered, we train one SANN per subject left out for test-
ing, using the remaining subjects asmultiple source domains.
Performance of each network are evaluated on the subject left
out and results are averaged across.

More specifically, in SADA, the subject confusion mod-
ule is fed with the unlabeled (as for the intention) data of the
testing subjects to adapt the feature f(x|Wf ) to the specific
agent. Differently, Blind-SADA never exploits the trials of
the testing subject in training and performs adaptation by
totally ignoring the target domain (both identities and inten-
tion labels).

We accommodate the publicly available code3 of Ganin
et al. (2016) to deal with a different number of subjects to
perform adaptation. Indeed, Ganin et al. (2016) considers a
simplified setting of one target domain only, whereas, differ-
ently, we consider multiple domains. The optimization of (1)
and (2) is carried out by using a joint back-propagation In
particular, we compute the updates on the parametersWs and
Wi separately on the two branches. Then, we used the gradi-
ent reversal layer (Ganin et al. 2016) to change the sign of the
derivative of the subject loss �s with respect to Wf (after a
re-scaling by a parameter λ). The derivative of �i with respect
to Wf is instead back-propagated with the correct sign (see
Fig. 4). A multi-layer perceptron (MLP) network with one
hidden layer of dimension 200 was designed as the shared
feature representation f(x|Wf ). For the intention prediction
module,we trained a four-way softmax function using a cross
entropy loss for �i . Similarly, for the subject confusion mod-
ule, a 17- or 16-way cross-entropy loss is used for �s in SADA
and Blind-SADA, respectively.

We cross-validate λ by selecting the value which maxi-
mally fool the subjects’ classifier in the subject confusion
module.

3 http://graal.ift.ulaval.ca/dann/.

5 Experiments

This Section reports an extensive experimental analysis of
our work. We first setup and illustrate the baseline against
which we will compare our proposed SADA approach.
Specifically, Sect. 5.1 shortly presents the baseline methods
applied to either 3D VICONmarkers or 2D video sequences
and show the related results. In Sect. 5.2, we discuss the
obtained performances with special focus on the challenges
related to generalize intention prediction across different sub-
jects. Then, we illustrate in Sect. 5.3 the results obtained by
our proposed approaches SADA and Blind-SADA, and we
discuss them, also in comparison with baseline scores and
with respect to the existing compliant prediction pipelines
in the literature (Sect. 5.4). Finally, as a collateral experi-
ment, in Sect. 5.5 the proposed subject-adversarial adaptation
approaches are evaluated with respect to similar setups for
action recognition.

5.1 Baseline 3D and 2DMethods

Several 3D and 2D action recognition techniques are pro-
posed in the literature, and a complete review of them is out
of scope of this paper, also because the majority of these
methods does not fully fit with our scenario.

State-of-the-art approaches for processing 3D skeletal
joints either consider deep learning applied to encode and
classify raw data or hand-crafted kernel representations—
which codify human motion—followed by classification
(Moeslund et al. 2006). As shown in Cavazza et al (2017b),
kernel methods are undoubtedly the most performing meth-
ods taking into consideration that we are not on a big data
regime. Also, deep neural networks have so far been applied
to the classification of coarse actions (such as running or clap-
ping), but not yet to the prediction of fine motor acts (such as
grasping-to-pour versus grasping-to-pass). Therefore, in this
paper we have only considered kernel methods and within
this family of methods, we exploited a covariance-based
representations following the state-of-the-art approach of
Cavazza et al. (2016) in which a kernel matrix (computed out
of un-normalized x, y, z coordinates) is combined with the
usual covariance operator to devise a powerful representation
which is further elaborated for max-margin classification.

Within the available approaches to handle video data
(Moeslund et al. 2006), we have considered optical-flow
based dense trajectory features (Wang et al. 2013). Alterna-
tively, we take advantage of the well established capability
of deep neural networks to produce frame-based represen-
tations: to do so, we extract fc7 features out of fine-tuned
AlexNet fed with optical flow (OF) images, after a classical
spatial resize to 227 × 227. We computed OF images with
three channels constituted by the horizontal and vertical com-
ponents, and the magnitude of the optical flow field, after a
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Table 2 Selected feature encodings of 2D and 3D data for IfM

ker-COV [3D] (%) DT-HOF-VLAD [2D] (%) AlexNet-OF-VLAD [2D] (%) Human performance

Pouring versus placing 91.87 86.18 94.18 68%

Pouring versus drinking 91.58 81.48 77.95 58%

Pouring versus passing 81.69 74.44 74.20 –

Passing versus drinking 87.64 71.53 66.05 –

Passing versus placing 75.46 75.15 94.68 –

Drinking versus placing 91.24 79.23 96.18 –

All-class 73.72 58.23 65.64 –

We consider all the possible pairwise comparisons between intentions and the all-class one. For the sake of the comparison, we also report the
results of human performance

preliminary normalization in the range [0, 255]. In order to
pool dense trajectory/CNN features into a unique representa-
tion to encode each video, we used a VLAD encoding (Jégou
et al. 2010), square-root normalized, followedby a linear sup-
port vector machine (SVM), with the cost parameterC = 10.

Theperformanceof the aforementioned features is reported
in Table 2. Note that such approaches were selected out of an
extensive pool of 3D and 2D descriptors on the basis of the
performance. Readers can refer to the Supplementary Mate-
rial for additional details.

5.2 Discussion

The baseline methods are able to provide a relatively solid
classification performance. This certifies the fact that grasp-
ing gestures already codify motion pattern relative and
specific to the actual intention which originates the grasping
itself. Although human performance is verified on a subset of
videos, computational methods seem to outperform human
observers. Therefore, the actual execution of the grasping
is modified accordingly to the intention which needs to be
fulfilled. Such variations are actually captured by means of
the 3D and 2D encodings that we tried, ultimately certify-
ing that, as a computer vision problem, predicting intention
from motion is a feasible problem. Even when the context is
uninformative and the unique source of information is pro-
vided by the kinematics. The accuracy results provided in
Table 2 are averaged across all the 17 subjects available in
the dataset. A preliminary quantitative analysis to assess the
bias among the subjects can be estimated by calculating the
standard deviation (std) related to the average all-class per-
formance of the 3 best baseline methods: std values result
13.40%, 14.14% and 16.12%, for ker-COV, DT-HOF-VLAD
and AlexNet-OF-VLAD features, respectively.

As one can note, the standard deviation values are pretty
high, meaning that accuracies are largely variable among the
subjects. In other words, the generalization (subject indepen-
dence) reached by the models on the new testing subject is
not so high, which gives margin for improvement.

To further verify such claim, inspired by Zunino et al.
(2017c), we performed another experiment in order to mea-
sure the bias provided by each subject. In Zunino et al.
(2017c), leveraging quantitative evidence of the high vari-
ances associated to the same action performed by differ-
ent subjects, action recognition is formulated as a 2-stage
pipeline where, 1) the subject is identified and 2), its actions
are recognized. Interestingly, for the task of subjects’ identifi-
cation, the same features exploited for discriminating actions
are used, further denoting a clear evidence of the subject-
related bias.

Inspired by this idea, in our case we used the baseline
features (Table 2) to train a multi-class SVM to identify the
17 subjects in the proposed dataset. To do so, we adopted
a one-intention-out testing protocol where every trial refer-
ring to one single intention was left out for testing, while
all the remaining trials were used for training. In Table 3, we
report the subjects’ identification performance obtained after
averaging across each intention left out. We register an out-
standing performance of both ker-COV and DT-HOF-VLAD
for subjects’ identification, suggesting that intention predic-
tion has a much stronger subject related bias with respect
to classical action recognition problem. Differently, the per-
formance of AlexNet-OF-VLAD is lower: presumably, after
fine-tuning the network, a good intention prediction perfor-
mance is achieved by implicitly bridging the subject-related
biases.

The results in Table 3 are also corroborated by the
t-distributed Stochastic Neighbor Embedding (t-SNE) tech-
nique (Van der Maaten and Hinton 2008), the most used
state-of-the-art data visualization method. We applied it to
ker-COV, DT-HOF-VLAD and AlexNet-OF-VLAD features,
obtaining the plots in Fig. 5. Let us stress that t-SNE is a
fully unsupervised method which does not exploit neither
actions’ nor intentions’ labels. Nevertheless, ker-COV and
DT-HOF-VLAD representations are perfectly able to cluster
in 17 groups, each one corresponding to a single subject.
The information of the subject who performed the grasping
is clearly present in such representations and this can be seen
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Table 3 Subjects’ identification
performance

ker-COV [3D] DT-HOF-VLAD [2D] (%) AlexNet-OF-VLAD [2D] (%)

97.25% 100 53.34

Fig. 5 Bi-dimensional embedding of ker-COV, DT-HOF-VLAD and AlexNet-OF-VLAD using t-distributed Stochastic Neighbor Embedding (Color
figure online)

as a bias that needs to be removed when training an intention
predictor (see Fig. 5a, b). On the other hand, we are also able
to explain why AlexNet-OF-VLAD features are not suitable
in classifying the subject (see Fig. 5c). In fact, the t-SNE plot
(in Fig. 5d) shows how, apparently, the fine-tuning process
has achieved a nice separation of Placing intention (in cyan)
versus the others by mixing all the subjects.

In summary, we have empirically proved the existence
and the impact of subject-related biases for intention predic-
tion, being this trend more critical than in action recognition
(Zunino et al. 2017c). Therefore, achieving intention predic-
tion in a generalizable manner across subjects is a difficult
task, being nevertheless paramount for deploying an actual
recognition system. In the following section, we will dis-
cuss the results obtained by SADA approach which properly
tackle this problem of generalizing across subjects and show
that reducing this bias is beneficial for the sake of predicting
intentions.

5.3 SADA and Blind-SADA Performances

In Table 4, we report the results corresponding to SADA
and Blind-SADA, as compared with a baseline methods of
Table 2. The SANN architecture, takes as input the selected
features (x in Fig. 4) ker-COV, DT-HOF-VLAD or AlexNet-
OF-VLAD as in Table 2.

As a baseline approach to compare our subject-adversarial
domain adaptation, we run an experiment where the yellow
branchof Fig. 4 (subject confusion) is not present andweonly
consider the blue (feature representation) and green branches
(intention prediction). Technically, one can frame the base-
line as training a multi-layered perceptron (MLP) applied
to intention prediction and fed with all the selected features
from Table 2. As a common pre-processing step on data,
we run PCA on the ker-COV, DT-HOT-VLAD and AlexNet-
OF-VLAD, retaining the 99.5% of explained variance: this
step is only required to speed up the computation and we
did not register a major effect on performance. The achieved
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Table 4 Subject adaptation
results on IfM

Baseline Blind-SADA SADA

ker-COV [3D] 71.57 73.13 (λ = 0.6) 80.48 (λ = 0.1)

DT-HOF-VLAD [2D] 56.01 57.15 (λ = 1.5) 70.42 (λ = 0.2)

AlexNet-OF-VLAD [2D] 65.64 66.59 (λ = 1) 67.95 (λ = 0.1)

In brackets the best setting of λ

Best accuracy values are highlighted in bold

Fig. 6 Bi-dimensional embedding using t-Distributed Stochastic Neighbor Embedding for the ker-COV features transformed with Blind-SADA
(Color figure online)

all-class performance is comparable with the one of obtained
with SVM classification in Table 2.

Instead, in Table 4, we note a large improvement using
SADA in the main intention prediction task: +8.91% for
ker-COV, +14.41% for DT-HOF-VLAD, and +2.31% for
AlexNet-OF-VLAD. The largest improvements are obtained
considering DT-HOF-VLAD for video data and the 3D-based
ker-COV encoding. These two neatly increased scores sup-
port the t-SNE plot in Fig. 5a, b, showing almost perfect
compact clusters per subject with ker-COV or DT-HOF-
VLAD features. This framework proved to be able to remove
the predominant subject bias information from the data sam-
ples and to get better performance in themulti-class intention
prediction task.

The CNN features deserve a separate discussion since the
improvement with domain adversarial training is not huge
although still present. We guess that the fine tuning pro-
cess operated for CNN feature extraction already reduces the
impact of the subject-related biases to some extent. In other
words, CNN fine tuning already performs a sort of domain
adaptation and subject confusion (as visible in t-SNE plots
in Fig. 5 and 5), hence our framework is less effective in this
case.

The results of Blind-SADA are reported in the second col-
umn of Table 4. The improvementwith respect to the baseline
approach is smaller than SADA, but still significant:+1.56%
for ker-COV, +1.14% for DT-HOF-VLAD, and +0.95% for
AlexNet-OF-VLAD. Hence, we can still assert that training
the net with the proposed SANN framework is effective for

intention prediction. Thismeans that, also relaxing the classic
domain adaptation framework, subject confusion is also ben-
eficial when the target domain is not utilized during training,
since a hidden representations could still be learnt to dis-
criminate better between the intentions, reducing the noisy
knowledge (i.e., the bias) coming from the subject identities.

To get a deeper insight on how the features are transformed
by means of Blind-SADA training process, we plot in Fig. 6
the hidden representation of ker-COV when one subject tri-
als are left fully out (in this case, subject 1). If we compare
the t-SNE representations in Fig. 5 with those in Fig. 6a, b,
we can note that the new ker-COV hidden representations
are no more grouped in compact clusters associated to sub-
jects. In Fig. 6a, the subjects are totally mixed whereas the
samples are rearranged better for the main intention predic-
tion task, as visible in Fig. 6b. This suggests that the training
process has still learned feature discriminants for the inten-
tions, at the expense ofmaking indistinguishable the subjects,
which was exactly our goal. Actually, if we try now to per-
form the subjects’ identification experiment over the hidden
representation plotted in Fig. 6a, b, the average accuracy
drops from 97.25% (Table 3) to 6.88% coherently obtaining
an almost random chance performance in subject identifica-
tion.

5.4 Evaluation of Existing Prediction Pipelines

We posit our prediction problem as a classification one,
according to the evidence that the onset of an apparently
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Table 5 Subject adaptation on MSR-Action3D and HDM-05 action
recognition benchmarks using COV features

Baseline Blind-SADA SADA

MSR-Action3D 80.41 81.73 (λ = 0.1) 84.84 (λ = 0.6)

HDM-05 94.68 95.41 (λ = 0.2) 95.93 (λ = 0.4)

In brackets, the value of λ adopted
Best accuracy values are highlighted in bold

unrelated action is sufficient to quite reliably guess the future
intention. Indeed, this is true when we accurately analyze 3D
data, and we actually noted that in general the 3D encoding
shows a superior performance with respect to the 2D case,
even when deep features are utilized. Besides, it is important
to highlight that also humans can predict intentions to a cer-
tain extent (Cavallo et al. 2016), and they still do not use 3D
data. However, it is difficult in these cases to decouple the
contribution given from the kinematics from that given by
the context. Nevertheless, recent literature proposed action
prediction pipelines and we would like to test also these
approaches – when hypotheses fit our dataset conditions –
with the aim of gaining in performance and bridging the gap
with the 3D case.

Despite the broad literature in early activity recognition
and action prediction, most of approaches are not directly
applicable to the IfMproblem. Indeed, (Lan et al. 2014) relies
on a fine decomposition of the activity into coarse, mid-level
and fine actions classes: of course, this is not applicable to
our simple grasping movements. In Vondrick et al. (2016),
a CNN is trained by jointly considering the present and the
future frames of a given scene, while, in our case, only the
(present) graspings are exploitable as data. Despite Koppula
and Saxena (2016) deals with grasping motor acts as we do,
it only predicts which object is grasped, not why, as we aim
at. Finally, Hoai et al. (2012) and Li et al. (2012) need mas-
sive annotations of the emotion disclosure and actionlets,
respectively, while, in this sense, our problem is totally unsu-
pervised.

Among the few works directly applicable to our prob-
lem, we evaluate the temporal tessellation and dynamic
bag-of-word histograms proposed in Ryoo (2011). Using
this algorithm, the all-class classification accuracy results
45.12%,which suffers a gap of− 10.89%and− 20.52%with
respect to the baselines DT-HOF-VLAD and AlexNet-OF-
VLAD, respectively. Note that the previous performances do
not take into account the proposed subject-adversarial adap-
tation method which gives a further boost, increasing the gap
of about 4 percentage points. Thus, globally, despite all the
aforementioned prediction pipelines are really powerful in
their experimental conditions, the same methods seem little
effective in our setting in which subject-adversarial methods
are more successful.

5.5 SADA on Action Recognition Datasets

Grounding on the experimental findings discovered in IfM,
we aim now to assess SADA framework in public action
recognition datasets to see if we can gain in accuracy per-
formance. The necessary condition in which we can apply
the proposed pipeline is having access to action and subjects
labels at the same time for each trial. For this purpose, we
considered the public MSR-Action3D (Li et al. 2010) and
HDM-05 (Müller et al. 2007), using the off-the-shelf covari-
ance feature (COV) representation utilized in Zunino et al.
(2017c), and demonstrated to be the most effective represen-
tation for IfM.

Since we cast intention from motion problem as a classi-
fication task, it is fair to test the same method in a general
action recognition pipeline which involves several subjects
who perform different gesture classes. Please, note that the
main focus of this Section is not to present state-of-the-art
results on action recognition benchmarks, which are 97.4%
and 99.0% for MSR-Action 3D (Cavazza et al. 2019) and
HDM-05 (Xie et al. 2018), respectively. Rather, in consid-
ering such action recognition benchmarks, we simply aim
at transferring the setup used in the intention prediction
paradigm without any peculiar customization, with the idea
of showing that our proposed subject-adaptation approach
can be effective even using off-the-shelf representations.

As done for IfM, we carried out the one-subject-out test-
ing procedure where each subject is left out for testing, and
we fed COV features into the baseline, SADA and Blind-
SADA architectures. As previously done, λ is chosen by
cross-validation by selecting the value which best achieves
subject confusion. The results in Table 5 show a trend similar
to the figures shown in Table 4: performance improves pass-
ing from the baseline to the Blind-SADA, finally registering
the largest improvement of +4.43% in MSR-Action3D and
+1.25% inHDM-05 using the SADA framework. Therefore,
on these datasets we retrieve the same findings of IfM, cer-
tifying that the same approach can also be beneficial for the
classic action recognition problem.

6 Mining Discriminants for Intentions

Leveraging the classification performance obtained with the
proposed subject-adversarial training methods (Sect. 5), we
can state that the IfM is a complex, yet manageable problem.
In fact,we found that it is possible to predict the intentionwith
which amotor act is performed, even in absence of contextual
cues. In spite of that, we may still wonder why such results
were achievable, possibly finding some spatio-temporal cues
in the graspingmovement that aremore informative than oth-
ers. To this end, we exploited three different approaches. In
Sect. 6.1, we provide some “visual interpretation” to ground
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Fig. 7 Mining discriminants for intentions in video sequences. We
show exemplar frames from correctly classified videos taken from a
specific subject in IfM dataset, one for each intention. The method Bar-
gal et al. (2018) always localizes the spatial-temporal discriminant cues

around the hand and the arm of the subject. For this specific subject the
saliency maps for the Drinking intention are highlighting mostly the
elbow parts while mainly focusing on the wrist for the other ones

the evidences used to predict the intentions at the frame-
level. In Sects. 6.2 and 6.3, we perform a similar analysis
at the feature-level and at the level of raw 3D joints data,
respectively.

6.1 Mining Discriminants for Intentions in Video
Sequences

Nowadays, there is an increasing interest from the com-
puter vision community in trying to “understand” what a
deep learning model has learnt and which parts of the input
data are more useful to support the prediction. All these
approaches are mainly devised for image recognition and
very few try to do the same for video understanding task.
The recent work Bargal et al. (2018) is well suited for our
purpose since it presents a top-down saliency approach able
to localize spatial-temporal segments within a video that cor-
respond with a specific action. Given a CNN+LSTM model
trained for video action recognition, a standard forward pass
is performed to activate the neurons. By means of an ad-hoc
backward pass, one can then compute and propagate winning
neuron probabilities normalized over space and time, follow-
ing the excitatory connections inside the architecture down to
the video frames. This process yields action-discriminative

saliency maps, highlighting the most discriminative patches
in the relevant frames within an input video. As to repli-
cate the CNN+LSTM setup, we used VGG16 to extract fc7
features from each video. In turn, these features are recur-
sively given in input to a single layered LSTM (256 hidden
units), which is jointly trained with the CNN for predicting
the correct intention. We still considered the one-subject-out
protocol, training one of such architectures per subject who
was left out for testing. This procedure results in a 58% aver-
age test accuracy in the all-class comparison.

In Fig. 7, we report some visualizations of saliency maps
overlapped on video frames corresponding to 4 correctly
classified graspings actions (performed by Subject 10) for
the 4 different intentions. We can notice that the highlighted
parts (in red) belong to the subject’s hand and armmainly, and
similar patterns occur when varying the subject. Please refer
to the Supplementary Material for analogous saliency visu-
alization of other subjects. Following the insights of Bargal
et al. (2018), we have also computed the sum of the spatial
saliency maps for each frame and we found that its distri-
bution is almost homogeneous in time, meaning that there
are not meaningful peaks (in time) which trivially helps to
disambiguate intentions. This result is coherentwith our snip-
pet analysis (reported in the Supplementary Material): there
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Fig. 8 Mining discriminants for intentions in video sequences. Using
the method of Bargal et al. (2018) we visualize an integral saliency per
intention, averaged over all the subjects and trials. Drinking and Placing

intentions appear on average more discriminative in the elbow move-
ment while for Pouring and Passing the saliency map is focused on the
wrist movement

exists no specific temporal instant of the grasping action
which is trivially more useful than others when predicting
intentions.

Finally, we carried out an integral analysis of saliency
across subjects and trials. To this end, we compute the visual
saliency for all the trials and subjects specific to each inten-
tion by selecting five equispaced frames from each trial and
averaged all the corresponding saliencymaps. Taking a closer
look at the saliency maps overlapped to a sample video
frames in Fig. 8, it is worth noting that, since in the exper-
imental setup all the context is uninformative, the approach
of Bargal et al. (2018) is focusing on the unique parts that
are moving (hand, arm), and it is hard to extract general
patterns specific to a single intention. However, at a finer
level, some observations can be made. For example, it can
be noted that the gestures finalized to Drinking and Placing
appear to be more discriminative in the elbow movement on
average. Instead, for Pouring and Passing the saliency maps
seemmainly focusing on the wrist movement. Grounding on
all these considerations, we have another confirmation of the
difficulty of the task of predicting intention frommotion, and
how the grasping acts are actually visually similar even if the
underlying intention is different. As compared to subject-

specific saliency maps (Fig. 7), the integral map (Fig. 8)
appears a bit more spread, suggesting that there exist subtle
differences in how different subjects execute the grasping,
even when finalized to the same intention. The presence of
such extremely subtle differences can explain why SADA
(and blind-SADA) is capable of boosting intention predic-
tion by adapting across subjects.

6.2 Mining Discriminants for Intentions at the
Feature Level

To mine intention-related discriminant in the grasping motor
acts, we also pursued an analysis at the feature-level from 3D
data.

To this aim, we run a statistical analysis out of the hidden
representations learnt with SADA on top of ker-COV fea-
tures. More precisely, we took the 200-dimensional vectorial
representations obtained using our proposed method and we
fixed one particular intention at a time. Then, we computed
the correlation ρ (across all trials in the dataset) between
each component of the feature representations and a binary
vector, indexed over the trials, whose entries are 1 if and only
if that given trial belong to the fixed specific intention (and
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Fig. 9 Mining discriminants for intentions in high-level feature encodings from 3D data.We computed correlations values ρ for feature components
and corresponding labels for intentions

we repeated the same procedure for all intentions). In this
way, we can produce a global statistics over the IfM dataset
and measure howmuch each component of the SADA repre-
sentations is actually discriminative in favor of which single
intention. Considering the well known statistical properties
of correlation, we remind that values close to 1 or -1 indicate
a strong positive or negative linear dependency for the given
component in favor of a single intention.

The results of this approach are reported in Fig. 9. As one
can see, there are some sharp peaks in the values of ρ and
we highlighted some of them using specific colors. The com-
ponent highlighted in red (a) seems to be mildly correlated
with Passing and Drinking, with opposite signs. Similarly,
the component in purple (d) shows a mild positive correla-
tion with Pouring/Placing and a strong negative correlation
with both Drinking and Passing. The component in pink (c)
has a positive correlation with Drinking, Pouring and Pass-
ing, exhibiting a remarkably strong negative correlation with
Placing (actually, we registered here the maximal negative
correlation among all the feature components). Finally, the
component in green (b) results in a strong dependency with
all the intentions, showing a high positive correlations with
Drinking/Placing and strong negative correlations with Pour-
ing/Passing.

This suggests the fact that there is a relevant statistical vari-
ability of some feature components which are well aligned
with the actual intentions’ label to be predicted. Therefore,

within the learned classificationmodel, there are components
which are more effective than others in encoding the kine-
matics of the grasping in order to allow the prediction of
the underlying intention. Despite this feature-based analysis
is less interpretable with respect the previous one based on
frames, it suggests that intentions’ discriminants are actually
embedded and can be extracted from the whole kinematics
of the onset movement.

6.3 Mining Discriminants for Intentions in 3D Data

In this Section we aim at analyzing interpretable kinematic
descriptors, which precisely encode the 3D raw joints coor-
dinates, for the sake of mining discriminants for intentions.

We considered the raw 3D data acquired from VICON
system and we performed the average over a window whose
length is 10% of the actual graspings’ duration, quantizing
it into 10 disjoint time segments, that is, 0-10%, 10%-20%,
and so on. For each time segment, we computed low-level
kinematic descriptors, to either encode absolute and relative
geometrical configurations of the hand, as well as kinematic
cues. Precisely, among relative geometrical descriptors, we
computed the orientation of the palm (estimated through the
direction of its normal), the grip aperture (distance between
the markers on top of index and thumb), and the hand aper-
ture (distance between the markers on top of index and baby
finger). Absolute geometrical configuration were estimated
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by accounting the (x, y, z) coordinate of the centroid of each
finger. Finally, we computed hand velocity and acceleration
as kinematic descriptors. Such descriptors are well rooted in
the the psychological literature Cavallo et al. (2016) for the
sake of a kinematic analysis. Choosing such descriptors, we
aim at providing “human interpretable” indicators to explain
our computational findings, being well aware that these are
not theoretically principled proofs, but mainly data-driven
evidence that intentions can be predicted by the anticipating
action. Afterwards, for each time window and descriptor, we
computed mean and standard deviation across all trials in the
IfM 3D dataset which belong to a fixed intention. Hence, we
can approximate the geometrical area of influence of each
intention with a 3D ellipsoid, using the mean as center and
standard deviation as length for the semi-axes. The overlap
between intentions is evaluated through the intersection over
union (IoU) of the volumes of the ellipsoids. The IoU met-
ric spans the range [0,1] in which the extremal cases 0 and
1 correspond to the maximal disambiguation and confusion
between intentions, respectively. As evidence of a reliable
prediction of intentions from motion, we expect to register
low values from suchmetric. In fact, this will correspond to a
favorable geometrical configuration in which intentions are
very different from each others (up to a statistical approxima-
tion of the second order). The aforementioned geometrical
configuration will translate into more reliable discriminants
for intentions, which can be exploited in a subsequent clas-
sification stage, not considered here.

The results of our analysis are summarized in Fig. 10.
When either accounting for relative, absolute geometry or
kinematic low-level descriptors, we have often estimated an
IoU metric that is often below the 0.5 threshold, being there-

fore statistically relevant. Even when considering the very
initial time segment in which we quantized the graspings’
duration, we could find statistical evidences for the pres-
ence of kinematic patterns which anticipate intentions. At
the same time, as long as the grasping execution approaches
its end, descriptors are less overlapped, denoting in principle
an easier task for disambiguating intentions. In particular,
when both considering absolute geometrical and kinematic
descriptors, we can appreciate a sharp reduction of the over-
lap between intentions in the second half of the duration.
Moreover, when comparing all three classes of low-level
descriptors adopted, we have found that relative geometry
descriptors (blue plot, left) provide a slightly worse separa-
tion results if compared to absolute geometry (green plot,
center) and kinematic (red plot, right) descriptors, mainly
during the early stage of the grasping. On the one hand,
this can be explained as the effect of the initial fixed rest-
ing position of the hand, which is constant across intentions.
However, such starting position is almost immediately var-
ied in favor of a hand’s configuration which is specific for
the overarching intent: this explains why later time segments
show a reduced overlap between intentions. On the other
hand, relative descriptors are independent from the frame of
reference and thus inherently invariant to roto-translations
of the arm, showing thus less variability across intentions
(i.e., more statistical overlap, especially in the early stages
of motion). Another consideration comes from the analysis
of finger positions. Among the descriptors which codify the
absolute geometry of the hand, the thumb and the index are
slightly better than the other fingers in reducing the overlap
between fingers, registering an IoU less than 0.1 in the last
temporal segment. Therefore, we can assert that there is evi-

Fig. 10 We reported intersection over union (IoU) values to com-
pare the degree of separability of intention-specific ellipsoids, built
by accounting first and second order statistics of the raw 3D joints

coordinates, as well as interpretable kinematic features inspired by Cav-
allo et al. (2016). Lower IoU values correspond to a better separability
between intentions
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dence that the position of the hand is prepared in advance
and accommodated in a way that, according to our analysis,
is specific for each intention. A similar level of performance
is achieved by hand velocity and acceleration, furthermore
proving that intentions can be predicted from the kinematics
only.

6.4 Discussion

If we combine the findings obtained from the different types
of analyses reported in Sects. 6.1, 6.2 and 6.3, we can
observe complementary aspects. At the level of video data
(Figs. 7 and 8), when attempting to locate in space and time
the actual discriminants for the intention to be predicted,
there does not seem to emerge any evident visual explana-
tion. This is also reasonable if we consider that predicting
intentions from motion only is an arguably challenging task,
which becomes even harder when considering the additional
request of finding a specific spatio-temporal segment that
explains the prediction in a standalone manner. However,
our classification performance shows that anticipating human
intentions is actually feasible and, therefore, such discrim-
inants do exist, but reliably extracting them is not trivial.
This is a problem that can be tackled by looking at feature
encodings (Fig. 9), i.e., considering the intention-specificpat-
terns discovered inside the feature representations obtained
through subject-adversarial training. In fact, we can argue
that intention-related discriminants are available inside the
grasping motor act, and they become evident when the com-
plete kinematics is encoded.We showed that by using simple
features to encode relative/absolute positions and dynami-
cal states of the hand during the execution of the grasping,
it is possible to appreciate that later instants convey more
geometric separability among intentions (Fig. 10), but the
whole kinematics does matter, even from the very onset
of the movement. Ultimately, this enriches the apparently
unrelated motor act with patterns which can be exploited to
predict intentions by computational methods, being never-
theless fairly difficult to be visualized.

7 Conclusions and FutureWork

In this paper, we introduce Intention from Motion, a novel
problem consisting in predicting the goal i.e., intention) that
originates from an human action by using the kinematics
only, in a context-free setting. We have presented a new
dataset and found that by only inspecting grasping-a-bottle
actions, we can predict whether they fulfill a Pouring, Pass-
ing, Drinking or Placing intention.

As the result of a broad baseline analysis, we proved that
our novel problem is feasible and intention discriminants
are embedded in the anticipative and apparently unrelated

grasping motor act. We also demonstrated that, as to ensure
those discriminants to be generalizable across subjects, a
domain adaptation technique is proposed and proficiently
applied to our intention prediction scenario and to standard
action recognition settings as well. When interpreting each
subject as a domain, Subject-Adversarial Domain Adapta-
tion (SADA) remarkably boosts the prediction capability for
intentions.

As an extension, we proposed Blind-SADA to show that
exploiting subjects’ identities only in training to perform
adaptation leads to goodgeneralization on anunknownagent.
Despite less data are exploited by Blind-SADA, its perfor-
mance is not too far degraded from the one of SADA, and
both improve upon the baseline. This certifies the effective-
ness of our idea of learning frommultiple subjects as to adapt
on both specific and general target domains/subjects. Finally,
we have provided some insights on which intentions differ-
entiators can be extracted from video sequences and/or 3D
joints coordinates.

Future directionswill consider the extension of this frame-
works towards applications in robotics (e.g., human–robot
interaction) and video-surveillance in which more compli-
cated actions, different objects and composite contexts will
be considered. Also, it will be interesting to scale the predic-
tion of intentions in a full-body setup, investigating the usage
of more portable devices for skeletal joints acquisition, such
as depth sensors.
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