
Web Services as a New Approach to

Distributing and Coordinating

Semantics-Based Verification Toolkits 1

Michael Baldamus2 Jesper Bengtson

Department of Information Technology, Uppsala University, Sweden

Gianluigi Ferrari3

Dipartimento di Informatica, Università di Pisa, Italy

Roberto Raggi4 ,5

Trolltech AS, Oslo, Norway

Abstract

Formal verification toolkits are typically of rather special and, if one compares different related
toolkits to each other, complementary functionalities. It has therefore been proposed to integrate
different related toolkits within common environments. The potential for such integration is a direct
consequence of the very fact that formal verification toolkits are semantics-based in the sense that
they are implementations of well-understood mathematical theories. We argue that Web services
can serve as a new platform for addressing the more practical issues in connection with that: For
one, service integration in general is certainly an essential ingredient of the Web service paradigm.
Also, Web services promote distributed and open integration, which fits the decentralisation and
dynamism of formal verification community. Furthermore, directory-like techniques help to tackle
coordination issues in formal methods tool integration.

Keywords: web services, tool integration, formal verification, distribution, coordination

1 Work supported by European Union project PROFUNDIS, Contract No. IST-2001-33100.
2 http://user.it.uu.se/~michaelb
3 http://www.di.unipi.it/~giangi
4 rraggi@trolltech.com
5 Roberto Raggi contributed to this work while he was affiliated with the Dipartimento di

Electronic Notes in Theoretical Computer Science 105 (2004) 11–20

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.024

http://user.it.uu.se/~michaelb
http://www.di.unipi.it/~giangi
mailto:rrraggi@trolltech.com
http://www.elsevier.com/locate/entcs

1 Introduction

In the last couple of years distributed applications over the World-Wide Web,
Web for short, such as e-commerce, file sharing, have attained wide popularity,
spawning an increasing demand for evolutionary paradigms in designing and
controlling them. Uniform mechanisms have been developed for handling com-
puting problems which involve a large number of heterogeneous components
that are physically distributed and (inter)operate autonomously.

These developments have begun to coalesce around a paradigm where the
Web is exploited as a service distributor. A service in this sense is not a
monolithic Web server but rather a component available over the Web that
others might use to develop other services. Conceptually, Web services are
stand-alone components in the Internet. Each Web service has an interface
accessible through standard protocols and, at the same time, describing the
interaction capabilities of the service. Applications over the Web are developed
by combining and integrating Web services. Moreover, no Web service has pre-
existing knowledge of what interactions with other Web services may occur.

We argue here that this paradigm can be fruitfully applied to the problem
of integrating formal verification toolkits. We are motivated by the following
three observations:

• There is a need for and a profit to be gained from integrating related formal
verification tools since despite being related they are often of rather special
and, at the same time, at least partly complementary functionality.

• There is a sound conceptual basis for integration since verification toolkits
are semantics-based in the sense that they are implementations of well-
understood mathematical theories. In principle it is therefore easy to match
(part of) the interfaces of related tools so that they can work together.

• The problem of connecting different syntactic input and output formats
etc. still persists of course. There are, however, also problem with such
integration since the formal verification community is very decentralised,
at the same time, highly dynamic. Moreover, the resources available for
working on portability or even donwnloadability are usually limited.

These observations have been made before and indeed other concepts for veri-
fication toolkit integration have been put forward (e.g. [4]). Web services are,
however, a new approach to the topic

Our approach is distributed, thereby moving the issue to the realm of
coordination. For two fundamental reasons, this way of dealing with the
problem seems to be natural:

Informatica, Università di Pisa, Italy

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–2012

(i) Distribution addresses the reluctance of the formal methods community
to engage in any centralised effort at tool integration. Some tools are
but others are not or only to a limited degree portable or even avail-
able for download, and this situation is not likely to change anytime
soon, for a variety of reasons. Distribution has some intrinsic advantages
over centralised approaches also, such as availability, reconfigurability
and openness.

(ii) Distributed tool integration seems to be best-viewed from coordination
standpoint, since we are aiming at what we call deep integration: There
shall be automatic means for assigning sub-tasks belonging to any ver-
ification run to those node that are most appropriate for solving them.
That in turn requires both a platform and a language that allow users to
direct what should be done where, at different levels of abstraction. This
requirement can be regarded as almost synonymous with coordination.

Shallow integration would just mean that users could choose between
different tools for tackling any verification problem as a whole.

Our immediate focus is on toolkits for verifying mobile processes (eg.
[9,10,16]) in the sense of the π-calculus [13] and related higher-level toolk-
its for verifying security protocols (e.g. [2,14]).

One main idea of the work presented here is to make semantic-based verifi-
cation toolkits available as Web services, using standards such as XML, WSDL
and SOAP. Another main idea is to establish directories for publishing such
Web services. On this basis, then, we will be able to play out the fact that
verification tools are semantics-based, as that characteristic should allow us
to provide powerful automated matching facilities for services.

Verification web services plus automated verification web service directories
thus provide a platform within our concept for distributed, deeply integrated
and therefore coordinated verification. On top of it, there is a verification
scripting facility so that users are able to specify how the sub-tasks within
any verification run are to be carried out. Beyond the current prototype,
we envisage that an important role in that will eventually be played by the
trading functionality embedded in semantics-based directories. Specifically,
there should be different levels of abstraction in proof scripting, namely goal-
oriented, algorithm-oriented, tool-oriented and node-oriented levels.

The rest of this paper presents the prototype of an environment which inte-
grates and coordinates different verification tools via the Web as a service dis-
tributor. The development of the verification environment has been performed
inside the Profundis project (see URL http://www.it.uu.se/profundis)
within the Global Computing Initiative of the European Union. For this
reason we called it the Profundis WEB, PWeb for short.

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–20 13

2 Preliminaries

2.1 Web Services

A Web service consists of an interface describing operations accessible by
message exchange over the Internet protocol stack. The description of a Web
service must cover all details needed to interact with it: the message formats,
the transport protocols, and son on. Hence, Web services are a programming
technology for distributed systems based on Internet standards. However,
Web services are not just another object-based paradigm for distributed sys-
tems. Indeed, they promote a service-oriented programming style which is
different from the standard user-to-program style [12,17]. The service ori-
ented programming metaphor is usually characterised in terms of publishing,
finding and binding cycle.

To publish-find-bind in an interoperable way Web services rely on a stack
of network protocols. The building block of this protocol is the Simple Ob-
ject Access Protocol (SOAP) [3]. SOAP is an XML-based messaging protocol
defining standard mechanism for remote procedure calls. The Web Service
Description Language (WSDL) [6] defines the interface and details service in-
teractions. The Universal Description Discovery and Integration (UDDI) pro-
tocol supports publication and discovery facilities [18]. Finally, the Business
Process Execution Language for Web Services (BPEL4WS) [8] is exploited to
produce a Web service by composing other Web services

2.2 Verification Toolkits

Over the years several semantic-based verification toolkits have been designed
and experimented to formally address some issues raised by software devel-
opment. The Concurrency Workbench [7], for example, was developed at the
University of Edinburgh and performs analysis on the Calculus for Commu-
nicating Systems (CCS). The Mobility Workbench (MWB) [16], developed at
the university of Uppsala, does similar analysis but on the π-calculus. The
History-Dependent Automata Laboratory (HAL) [9] supports verification of
logical formulae expressing properties of the behaviour of π-calculus agents.

Most of the semantic-based verification environments have been developed
independently of each other and there is no guarantee that they can interoper-
ate so that the verification of certain properties is the result of a collaboration
among the toolkits.

In the verification community the standard approach to deal with the
integration issue is to provide a coordination infrastructure based on common
format. The FC2 formal [1] is an illustrative example of this approach. The

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–2014

FC2 format provides a language to represent automata. An automaton is
represented in the FC2 format by means of a set of tables that keep the
information about state names, arc labels, and transition relations between
states. FC2 allows interoperability among verification toolkits.

A different approach is exploited by the Electronic Tool Integration Plat-
form (ETI) initiative [4]. ETI is a web-based infrastructure for the interactive
experimentation of verification toolkits. The coordination middleware (HLL)
provides the ”glue” to integrate the different verification toolkits.

The PWeb proposes itself as an experiment to address the integration
issue by exploiting Web services. The PWeb prototype implementation has
been conceived to support reasoning about the behaviour of systems specified
in some dialect of the π-calculus. The PWeb integrates and coordinate the
facilities of some verification toolkits provided as Web services. The MWB
and HAL are two of the services of the PWeb. Hereafter, we briefly list the
main features of the other services of the PWeb.

TRUST

The TRUST toolkit [15,14] relies on an exact symbolic reduction method,
combined with several techniques aiming at reducing the number of interleav-
ing that have to be considered. Authentication and secrecy properties are
specified in a very natural way, and whenever an error is found an intruder
attacking the protocol is given.

MIHDA

The MIHDA toolkit [10] performs state minimisation of History-Dependent
(HD) automata HD automata are made out of states and labeled transitions;
their peculiarity resides in the fact that states and transitions are equipped
with names which are no longer dealt with as syntactic components of labels,
but become explicit part of the operational model. This allows one to model
explicitly name creation/deallocation, and name extrusion: these are the dis-
tinguished mechanisms of name passing calculi. MIHDA has been exploited
to perform finite state verification of π-calculus specifications.

STA

STA (Symbolic Trace Analyzer) [2] implements symbolic execution of cryp-
tographic protocols. A successful attack is reported in the form of an execution
trace that violates the specified property.

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–20 15

3 The PWeb Directory Service

The PWeb implementation has been conceived to support reasoning about
the behaviour of systems specified in some dialect of the π-calculus. It sup-
ports the dynamic integration of several verification techniques (e.g. standard
bisimulation checking and symbolic techniques for cryptographic protocols).
The PWeb has been designed by targeting also the goal of extending available
verification environments (Mobility Workbench [16], HAL [9]) with new facil-
ities provided as Web services. This has given us the opportunity to verify
the effective power of the Web service approach to deal with the reuse and
integration of “exiting” modules.

The core of the PWeb is a directory service. A PWeb directory service is
a component that maps the description of the Web services into the corre-
sponding network addresses. Moreover, it supports the binding of services.

The PWeb directory maintains references to the toolkits it works with.
Every toolkit has an end-point in the directory service through the WSDL
specification. As expected, the WSDL specification describes the interaction
capabilities of the toolkit; namely which methods are available and the types
of their inputs and outputs. In other words, the WSDL specification de-
scribes what a service can do, how to invoke it and the supported XML types
(more precisely the XML Schema definitions XSD). For instance, the WSDL-
specification of MIHDA provides the description of the reduce service. The
description of the reduce service refers to the XML description of the HD-
automaton describing the behaviour of a π-calculus agent. The invocation of
this service on a given HD-automata performs the state minimisation of the
HD-automata. The WSDL-description of the MIHDA toolkit is displayed in
Figure 1.

Notice that there is nothing preventing several directory services to connect
to the same toolkits, or to include references to other directory services. Hence,
the PWeb is basically a peer-to-peer system.

The PWeb directory service has two main facilities. The publish facility is
invoked to make available a toolkit as Web service. The query facility, instead,
is used to discover which are the services available. The query provides the
service discovery mechanism: it yields the list of services that match the
parameter (i.e. the XSD type describing the kind of services we are interested
in).

The service discovery mechanisms is exploited by the trader engine. The
trader engine manipulates pool of services distributed over several PWeb di-
rectory services. It can be used to obtain a Web service of a certain type
and to bind it inside the application. The trader engine gives to the PWeb

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–2016

<?xml version="1.0" encoding="UTF-8"?>
<definitions

name="Mihda"
targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/schemas">
<import namespace=’’http://http://jordie.di.unipi.it:8080/pweb/schemas’’

location=’’http://jordie.di.unipi.it:8080/pweb/hds_over_pi.xsd’’/>
<types>

<xsd:schema
targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd"> </xsd:schema>

</types>
<message name="ReduceRequest">

<part name="contents" type="xsd1:hds_over_pi"/>
</message>
<message name="ReduceResponse">

<part name="return" type="xsd1:hds_over_pi"/>
</message>
<portType name="MihdaPortType">

<operation name="Reduce">
<documentation>Minimize the automata</documentation>
<input message="tns:ReduceRequest"/>
<output message="tns:ReduceResponse"/>

</operation>
</portType>
<binding name="MihdaBinding" type="tns:MihdaPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="Reduce">

<soap:operation soapAction="connect:Mihda:MihdaPortType#Reduce"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>
<service name="Mihda">

<port binding="tns:MihdaBinding" name="MihdaPort">
<soap:address location="http://jordie.di.unipi.it:8080/pweb/mihda"/>

</port>
</service>

</definitions>

Fig. 1. The MIHDA WSDL-specification

directory service the ability of finding and binding at run-time web services
without “hard-coding” the name of the web service inside the application code.
In other words, the trader engine provides the resource discovery mechanism
for PWeb directory services.

The following code describes the implementation of a simple trader for the
PWeb directory.
import Trader

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–20 17

offers = Trader.query("reducer")

mihda = offers[0] # choose the first

offers = Trader.query("model-checking")

hal = find_neighbor(offers) # choose the service only among neighbors

offers = Trader.query("bisimulation-checking")

mwb = offers[0] # choose the first

The trader engine allows one to hide network details in the service co-
ordination code. A further benefit is given by the possibility of replicating
the services and maintaining a standard access modality to the Web services
under coordination. For instance, the code
offers = Trader.query("security checker")

can be used to obtain an orchestration code that, at run-time, is able to
find, bind and finally invoke any service registered as “security checker”. In
the PWeb prototype implementation both TRUST and STA are registered as
security checkers.

The PWeb directory service is built using Zope [19]. Zope is a (open source)
framework for building web applications and is designed to allow administra-
tors to build complex and easily maintainable web servers with a minimum
amount of work. Dynamic content is supported through the use of databases
which in turn can be updated through web interfaces. Zope is also highly
configurable and fully object oriented. New objects can be added and inher-
ited from if the need arises allowing for existing features to be tailored to the
users need. There is also a robust security system which allows administrators
to manage user privileges. One of the main advantages of Zope is that it is
portable. It runs on a variety of machines infrastructures including Windows
2000/NT/XP, Linux, Solaris and Max OS X.

As a final remark we want to point out that the trader engine provides
facilities which are similar to the CORBA trader. The CORBA trader is used
to query object infrastructures for specific applications and components.

The current prototype implementation of the PWeb directory service can
be exercised on-line at the URL http://jordie.di.unipi.it:8080/pweb.

3.1 Querying XML Types

The PWeb directory service includes a database of XML types which keeps
track of the relationships among the XSD types which can be exploited as
arguments of messages. Whenever a new XSD type is added to the PWeb
directory service (e.g as a result of a service registration), it is compared with
the existing XSD types and its relationships with the other registered types

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–2018

are stored in the database. Whenever an application performs a query, the
trader engine will provide a list of types which are compatible with the type
of the query. In the prototype implementation, this is obtained by a simple
script code written in Python.

We are currently investigating more expressive and powerful mechanisms
for querying XML types. In particular, we started some experiments in us-
ing programming languages specifically designed to manipulate and querying
XML data [11,5].

4 Lessons Learned

We started our experiment with the goal of understanding whether the Web
service metaphor could be effectively exploited to integrate in a distributed
and coordinated fashion semantics-based verification toolkits. In this respect,
the prototype implementation of the PWeb significant example.

Our approach adopts a service orchestration model whose main advantage
resides in reducing the impact of network dependencies and of dynamic ad-
dition/removal of Web services by the well-identified notions of directory of
services and trader engine. To the best of our knowledge, this is the first
verification environment that specifically addresses the problem of exploiting
Web services.

The service orchestration mechanisms presented in this paper, however,
have some disadvantages. In particular, they do not exploit the full expressive
power of SOAP to handle types and signatures. For instance, the so called
“version consistency” problem (namely the client program can work with one
version of the service and not with others) can be solved by types and signa-
tures.

Acknowledgement

We would like to thank two anonymous referees for their many remarks and
suggestions.

References

[1] A. Ressouche A. Bouali, V. Roy, and R. De Simone. The fc2tools set. In CAV, volume 1102
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[2] M. Boreale and M. Buscemi. STA, a Tool for the Analysis of Cryptographic Protocols (Online
version). Dipartimento di Sistemi ed Informatica, Università di Firenze, and Dipartimento di
Informatica, Università di Pisa,, http://www.dsi.unifi.it/ boreale/tool.html, 2002.

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–20 19

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, M. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. WRC Note,
http://www.w3.org/TR/2000/NOTE-SOAP-2000058/, 2000.

[4] Volker Braun, Jurgen Kreileder, Tiziana Margaria, and Bernhard Steffen. The eti online service
in action. In TACAS, volume 1579 of Lecture Notes in Computer Science, pages 439–443.
Springer-Verlag, 1999.

[5] Luca Cardelli and Giorgio Ghelli. Tql: A query language for semistructured data based on the
ambient logic. To appear in Mathematical Structures in Computer Science, 2003.

[6] R. Chinnici, M. Gudgina, J. Moreau, and S. Weerawarana. Web service description language
(wsdl), version 1.2. Technical report, 2002.

[7] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Workbench:
A Semantics-Based Tool for the Verification of Concurrent Systems. ACM Transactions on
Programming Languages and Systems, 15(1):36–72, January 1993.

[8] T. Andrews et al. Business process execution language for web services (bpel4ws), version 1.1.
Technical report, 2003.

[9] G. Ferrari, S. Gnesi, Ugo Montanari, and Marco Pistore. A model checking verification
environment for mobile processes. To appear in ACM TOSEM, 2003.

[10] Gianluigi Ferrari, Ugo Montanari, Roberto Raggi, and Emilio Tuosto. From co-algebraic
specification to implementation: the mihda toolkit. In First International Workshop on
Methods for Components and Objects (FMCO), Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 2003.

[11] Haruo Hosoya and Benjamin C. Pierce. Xduce: A typed xml processing language. ACM
Transactions on Internet Technology 3(2), pages 117–148, 2003.

[12] Stal M. Web services: Beyond component-based computing. Communications of ACM,
55(10):71–76, 2002.

[13] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I+II. Information
and Computation, 100:1–77, 1992.

[14] V. Vanackere. The TRUST protocol analyser. Lab. Informatique de Marseille,
http://www.cmi.univ-mrs.fr/ vvanacke/trust.html, 2002.

[15] V. Vanackere. The trust protocol analyser, automatic and efficient verification of cryptographic
protocols. In Verification Workshop - Verify02, 2002.

[16] Björn Victor and Faron Moller. The Mobility Workbench — a tool for the π-calculus. In David
Dill, editor, CAV’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer
Science, pages 428–440. Springer-Verlag, 1994.

[17] Vogels W. Web services are not distributed objects. IEEE Internet Computing, 7(6):59–66,
2003.

[18] W3C. UDDI Technical White Paper. Technical report, 2000.

[19] Zope, http://www.zope.org.

M. Baldamus et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 11–2020

http://www.zope.org

	Introduction
	Preliminaries
	Web Services
	Verification Toolkits

	The PWeb Directory Service
	Querying XML Types

	Lessons Learned
	References

