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a b s t r a c t

Robot-mediated neuro-rehabilitation has been proved to be an effective therapeutic approach for upper
limb motor recovery after stroke, though its actual potential when compared to other conventional
approaches has still to be fully demonstrated. Most of the proposed solutions use a planar workspace.
One key aspect for influencing motor recovery mechanisms, such as neuroplasticity and the level of
motivation and involvement of the patient in the exercise, is the design of patient-tailored protocols
and on-line adaptation of the assistance provided by the robotic agent to the patient performance. Also,
when abilities for performing activities of daily living shall be targeted, exercises in 3D workspace are
highly preferable. This paperwants to provide a complete overview on bio-cooperative systems on neuro-
rehabilitation, with a special focus on 3D multimodal adaptive interfaces, by partly in-depth reviewing
the literature and partly proposing an illustrative case of how to build such a bio-cooperative based on
the authors’ current research. It consists of an operational robotic platform for 3D upper limb robot-aided
rehabilitation, directly derived from the MAAT system previously developed by the same research group.
The system features on-line adaptation of therapy characteristics to specific patient needs and to the
measured level of performance, by including the patient in the control loop. The system is composed of a
7-DoF robot arm, an adaptive interaction control system, a motorized arm-weight support system and a
module for on-line evaluation of patient performance. Such module records patient biomechanical data
through an unobtrusive, wearable sensory system, evaluates patient biomechanical state and updates
robot control parameters for modifying level of assistance and task complexity in the 3D workspace.
In addition, a multimodal interface provides information needed to control the motorized arm-weight
support by means of a dedicated cable–pulley system.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rehabilitation robotics is one of the most active research fields
in the neuro-rehabilitation panorama. There are several research
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groups actively working in this field, for the development of
new robotic devices, as well as for the application of already
existing robots to new challenging scenarios of robot-aided re-
habilitation. It has been extensively demonstrated that robotic
devices for upper limb treatmentmay enhancemotor recovery and
neuro-plasticity due to their ability to supply highly-intensive, re-
peatable, accurate and patient-tailored movement therapy, while
guaranteeingpatient safety andunloading therapistworkloadwith
respect to traditional methods [1–11]. Additionally, robotic tech-
nologies offer the huge advantage of providing the clinicians with
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quantitative and objective measurements about patient’s recovery
through the sensors embedded into the robots [12,13].

Despite these encouraging findings, however, most of the
robotic machines for upper-limb rehabilitation rely on an ‘‘if-
then’’ functioningmode, which permits to execute only predefined
unidirectional action on human subjects, from the robot to the
patient, without actively including the patient in the control
loop and participating in the therapy definition [14,15]. Such
an approach tends to force the patient to follow predetermined
trajectories that usually do not take into account subject features,
spontaneous intentions and voluntary efforts [16,17].

Bio-cooperative systems represent the new generation of
robotic platforms that promote a bidirectional interaction between
the robot and the patient based on multimodal interfaces also
arousing interest in the European Commission, who has financed
European projects on this topic, such as MIMICS [14] and Echord-
MAAT (2009–2013) [15] in the FP7 and AIDE (2015–2018) in
Horizon 2020 programme.

Information coming from different sources allows the users to
close the loop by providing a continuous feedback on their global
status, i.e. their condition, described through user properties,
actions, intentions and environmental factors and provided by
biomechanical, physiological and psychological measures. The
inclusion of physiological and psychological measurements of the
patient’s state into the control loop, in addition to biomechanical
measurements, makes the system ‘‘Bio-Cooperative’’ [14].

Such an approach, trying to adapt dynamically and in real-
time robotic assistance to patient’s needs, based on continuous
multimodal measures of the user’s state, is expected to foster
patient engagement in robotic therapy more than in previously
reported studies in the field [18–23].

The multi-sensory information describing the patient’s condi-
tion can also be employed to quantitatively assess patient recovery
during the therapy.

Moreover, bio-cooperative systems have recently been ex-
panded to include non-invasive Brain Computer Interfaces (BCIs)
based on electroencephalography (EEG) and non-cortical inter-
faces (Electrooculography (EOG) Electromyography (EMG) and
eye-tracking) for detecting user movement intentions, and virtual
reality environment as well as haptic perception for augmenting
sensory feedback for the patient [23].

Robotic technologies for stroke rehabilitation have focused for
a long time on simple motor tasks (also called analytical tasks)
such as reaching actions, typically restricted to planar workspace,
i.e., vertical planes and lateral planes [20], taking into account
motor learning principles and biomechanics. In addition, focusing
more on separate joints (e.g. proximal or else distal joints alone),
rather than distal and proximal together, may have contributed
to limit transfer of motor gains to Activities of Daily Living (ADL)
[23–25]. Only recently attention has progressed towards more
functional tasks, thus developing robotic training oriented to func-
tional upper limb tasks, such as reaching to pick up a drink [26–28].
There is strong evidence that real therapy is effective in improving
independence of people with sensory-motor impairment in ADL
[6,9,10,25,29–32].

Typical ADL tasks involving upper limb, such as eating, drinking,
dressing, and grooming, are normally performed in the 3D space.
Furthermore, execution of arm movements within a reasonable
workspace during ADL tasks may allow patients to improve
functional abilities. In this context robotic devices become assistive
robots since they provide help to patients performing daily life
activities in 3D space.

In this paper an overviewon bio-cooperative systemswithmul-
timodal adaptive interfaces for 3Dupper-limbneuro-rehabilitation
is presented, and an illustrative case of how to build such systems
is provided, based on the authors’ current research. It is directly de-
rived from the Echord/MAAT system previously developed by the
same research group [15,33–35]. It features on-line adaptation of
therapy characteristics to specific patient needs and to the mea-
sured level of performance, by including the patient in the con-
trol loop. The system is conceived to also enable functional tasks
of daily living.

The paper is structured as follows. In Section 2 a review of
the bio-cooperative systems is reported, by proposing a general
schemeof the systemand then in-depth analyzing each subsystem.
Section 3 presents the platform developed by the authors as a case
study of bio-cooperative system for 3D upper limb robotic treat-
ment with special focus on: (i) the adaptive robot control based
on real-time monitoring of biomechanical user performance; (ii) a
mechatronic module purposely conceived for providing adaptive
support to the patient’s arm during motor exercises. Discussion
and conclusions are finally reported in Sections 4 and 5, respec-
tively.

2. Overview on bio-cooperative control strategies for promot-
ing patient engagement in therapy

A general scheme showing the functioning of a bio-cooperative
system is proposed in this section (Fig. 1). It aims at providing a
clear picture of all the possible bio-cooperative systems currently
available in the literature, which can be obtained from the scheme
in Fig. 1 by just eliminating some modules. In particular, with
respect to the scheme already presented in [14], it is conceived
to also include non-invasive cortical and non-cortical interfaces
and context and environmental factors that are soliciting interest
in the recent years. Each module will be widely discussed in the
following.

As shown in Fig. 1, a central role is given to the patient who
is closed in the control loop thanks to a multimodal interface
that collects and processes data coming from different sources.
The multimodal interface mainly consists of: biomechanical,
physiological and psychological measurements for extracting a
complete picture of the patient’s state during therapy; non-
invasive cortical (i.e. EEG) and non-cortical interfaces (EMG, EOG,
eye tracking, etc.) for identifying the user’s motion intention.

Data fusion and processing algorithms are developed working
on the multimodal signals recorded by the acquisition system.
Information about patient status and intention are used to update
the sensory feedback to the patient (including visual, e.g. virtual
reality, audio, and haptic feedback) and the bio-cooperative
control in a patient-tailored manner, always guaranteeing safety
in human–robot interaction.

2.1. Bio-cooperative control system

One possible categorization of current control algorithms for
rehabilitation machines is the following:

• Assistive controller. This is the most widely developed control
paradigm [16]. Assistive controllers help participants move
their weakened limbs in desired patterns during grasping,
or reaching, a strategy similar to ‘‘active assist’’ exercises
performed by rehabilitation therapists.

• Challenge-based control. The term ‘‘challenge-based’’ refers to
controllers that are in some ways the opposite of assistive
controllers because they make movement tasks more difficult
or challenging. Examples include controllers that provide
resistance to the participant’s limbmovements during exercise,
require specific patterns of force generation, or increase the size
of movement errors (‘‘error amplification’’ strategies) [21].

• Haptic simulation. It refers to the practice of ADL movements
in a virtual environment. Haptic simulation offers flexibility,
convenience, and safety as advantages compared to practice in
a physical environment [26,27].
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Fig. 1. Computational schema of the proposed bio-cooperative system for upper limb robotic rehabilitation.
• Non-contact coaching. There are someworks on robotic devices
that do not enter into physical contact with the participant,
but playing the role of non-contact coaches that decide and
direct the therapy program and motivate participants. For such
devices, it has been hypothesized that physically embodying
the automated coaching mechanism has special merit for
motivating participants [36].

Bio-cooperative control can be regarded as a combination of
assistive control and haptic simulation.

Assistive, or assist-as-needed control provides the patient with
the minimal robotic assistance for completing the task execution,
thus enabling user consistent effort and active involvement
[37–39].

Assistive control strategies can be grouped into four conceptual
categories: impedance-based, counterbalance-based, EMG-based
and performance-based adaptive assistance. The impedance-based
controllers are simple position controllers based on a proportional
action [16,40–42]. The desired reference trajectory is generated by
a minimum jerk trajectory [43,44] or, in some cases, an averaged
pre-recorded path from healthy subjects. Actually, several stud-
ies have shown that giving the patient the possibility to choose
its own trajectory can result in muscle tone reduction and im-
provements in ADL [18,45,46]. Algorithms based on radial basis
function (RBF) approach have also been developed for estimat-
ing the patient’s arm model and update it throughout the training
[47–50]. Bayesian learning techniques are another attempt to es-
tablish the needed amount of assistance for completing rehabili-
tation tasks [51], as well as works carried out by Pérez-Rodriguez
et al. [38,52], in which the learned model of patient skills is ex-
ploited to predict deviations from a reference path by applying
corrective forces before they occur. Machine learning techniques,
such as POMDP (Partially ObservedMarkov Decision Process), SVM
(Support VectorMachines), KNN (K-Nearest Neighbor) and RBF are
nowadays employed for adaptively classifying, choosing and set-
ting difficulty of movement task depending on patient impairment
level [34,39,53,54].

In bio-cooperative control, multimodal information from the
patient is used to adapt the level of robot assistance to
the patient specific status [45,55]. In [56] biomechanical and
psychophysiological measurements are used for including human
in the loop. In 2010 Guerrero et al. presented a human-centered
approach method resorting to psychophysiological feedback [57]
to customize therapy on patient requirements and state, without
compromising its health and augmenting stress level.

EMG-based control can be adopted for subjects who are able
to generate muscle activation instead of force or movement. A
threshold approach is proposed in [58–61], while a continuous
EMG control method is presented in [32], where the assistive force
is proportional to the measured electromyography signal.

Recently, a research group from University of Tübingen has
developed a conceptual framework in which bio-signals from
brain and body are merged together in order to control robotic
devices [62,63]. In [64,65] a novel Brain/Neural-Computer In-
teraction (BNCI) system that integrates EEG and EOG has been
developed. Such physiological non-invasive signals are employed
as a trigger for initiating and stopping movement therapy intend-
ing to provide an online modification/adaptation of robot-aided
rehabilitation exercises by continuously monitoring patient’s
intention.

Finally, BCI-gaze-driven control proposes a method aimed
to integrate in a multimodal platform, eye-tracking information
and BCI technologies for control robotic devices to deliver
rehabilitation [66].

However, past clinical studieswith InMotion robot grounded on
performance-based control [18], showed that adapting therapy to
specific patient’s motor characteristics led to better improvements
with respect to conventional therapy, although they are very
small. Moreover, it has recently been showed that upper-limb 3D
training provided by an exoskeleton with a patient-cooperative
control can enhance motor function improvement more than
conventional therapy [46]. Therefore, it is expected that the more
the knowledge about the patient’s condition is complete the more
the bio-cooperative control can meet user’s needs during robotic
therapy.

The proposed bio-cooperative control in Section 3 aims to
provide an example of adaptive control strategy tailored on
patients’ status. Biomechanical and physiological measures (based
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on EMG) are used to describe the patient’s status; however, the
approach can be easily extended to include a greater number of
measurements of patient condition.

2.2. Acquisition block

The acquisition block collects all the signals that can be
extracted from the patient during the robotic treatment, thus
allowing the analysis of user needs throughout the therapy
sessions.

2.2.1. Biomechanical measurements
Biomechanical data, such as position, velocity, acceleration and

force, have beenwidely employed to establish robust and adaptive
robotic control laws [18,67–69]. They can be obtained through
sensors embedded into the robot, or else sensors on the subject
(e.g. wearable sensors magneto-inertial sensors), or else sensors in
the environment (e.g. RGB cameras and optoelectronic systems).

Across the last ten years, the bio-cooperative approach in
rehabilitation robotics has been defined as a human-centered
scenario where psychophysiological measurements are jointly
extracted with the biomechanical ones provided by the robotic
device and used to develop adaptive control strategies [14].

2.2.2. Psychophysiological measurements
Psychophysiological measurements can be extracted from a

number of biological signals (see Fig. 1), e.g. EMG, EEG, EOG, heart
and respiration rate, skin conductance and temperature, blood
pressure.

2.2.3. Context and environmental factors
In addition, the capability of automatically detecting people

and understanding their behaviors is a crux in functionality of
intelligent virtual reality systems.

Analyzing the rehabilitation scene at different levels of
abstraction requires a discrete number of processing steps starting
from patient and robot behaviors. For instance, RGB cameras
and gaze detection systems can be employed to select specific
actions or monitor user interaction with the robot and the
environment. Human specific behaviors and intentions are often
triggered by gaze focalization. Gaze estimation acquires a crucial
importance into detection of contextual factors. In the various
object localization and eye-tracking tools available nowadays
[70,71], Microsoft Kinect sensor represents an affordable as well as
economic solution. Visual (RGB) and depth data provided by Kinect
camera can be exploited in order to perform a visual tracking of
active objects on rehabilitation scenario within the 3-D workspace
where the objects can be reached and located [66].

2.3. Data fusion and processing

Once data coming from different sources have been collected,
data fusion and processing procedures are necessary [72] to depict
the patient’s global state and update accordingly the sensory
feedback (including the virtual reality as well as audio and haptic
feedback) and the bio-cooperative control.

Kinematic anddynamic outcomes are collected to define the pa-
tient’s biomechanical performance through a discrete number of
both kinematic and dynamic indicators. Psychophysiological state
is a crux to detect the user’s cognitive load and physiological re-
sponse to the rehabilitation treatment. Furthermore, physiologi-
cal and context and environmental measures can be used to detect
user intention through typical techniques of non-invasive cortical
and non-cortical human–machine interfaces, especially in the case
of patients with severe impairments.
2.3.1. Biomechanical state
Patients’ biomechanical state can be estimated through kine-

matic and dynamic indicators [12,33]. They can provide kinematic
measures of movement duration, accuracy and smoothness, or
else dynamic measures of forces and work expended during ther-
apy [12].

Bio-cooperative controller receives biomechanical feedback
able to adapt robot gains and stiffness to specific patient’s
conditions [33].

2.3.2. Psychophysiological state
The user’s psychophysiological state is estimated by continu-

ously identifying patient cognitive load during the task execution.
In rehabilitation robotics the first examples of online detection

of patient mental state can be found in [72–75]. They employed
physiological measurements, such as heart rate, respiration rate,
skin conductance and blood pressure [75,76], to depict the
psychological state of the patient as cognitive load during the
therapy. A linear adaptive classifier was developed to estimate in
real time patient ‘‘high cognitive load’’ or ‘‘low cognitive load’’ [72].

Recently in [34] an overview of different classification methods
to estimate patients physiological state, based onmachine learning
models and algorithms [77] has been proposed. Extracting features
can help robot to learn the way to automatically update its
behavior depending on specific user requirements.

2.3.3. User intention
Detection of user’s intentionmay represent a further contribute

to the bio-cooperative control loop in order to actively engage the
patient into the therapy.

Non-cortical interfaces exploit either biomechanical parame-
ters, such as force, velocity, position, time thresholds for trigger-
ing therapy, or electromyography (EMG) and eye-tracking signals
[18,32,63–66]. Robot assistance is provided when the signal
detecting patientmotion intention overcomes a predefined thresh-
old of the trigger-cue. Preliminary tests conducted on healthy sub-
jects with the ARMIn III [78] exoskeleton have shown the technical
feasibility of this approach and its potential clinical relevance, al-
though data fusion algorithms needs to be improved [79].

On the other hand, non-invasive cortical interfaces, such as
BCI [80], may infer the user’s intent through neural data acquired
from the brain i.e. EEG, exploiting them as input control for robotic
assistive devices [81–83].

EEG-based BCIs [65,66,84] are often employed directly with
motor imagery; in such a case the EEG signal can act as a trigger
for initiating and stopping movement therapy. However, once the
movement is triggered, the resulting movement may be always
the same, invariant of the amount of effort the patients put in
to imagine the movement. To overcome this drawback, a Linear
Discriminant Analysis (LDA) algorithm for classifying specific EEG
signals as ‘‘move’’ or ‘‘rest’’ has been carried out in [65]. Differently
from previous study this binary classification has not been used as
the output to the robot controller, but the LDA’s extracted posterior
probabilities, have been directly exploited as the continuous-
valued outputs to control the robotic device.

The coupled use of BCI with EOG, EMG and eye-tracking signals
is also fostered for strengthening system capability to detect
patients’ intentions.

2.4. Augmented sensory feedback: visual and haptic

Providing the patient with sensory feedback during the
robotic treatment contributes to further enhance engagement
and motivation by returning the patient with a perception of
the executed task. It may be visual, audio, haptic and their
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Fig. 2. Overview of the overall MAAT system with the integrated module for arm-weight support.
combination [85,86]. It has been showed that using virtual reality
(VR) and computer games techniques in post stroke upper limb
rehabilitation may enhance neuroplasticity [87–90]. VR offers
the advantage of keeping the patient immersed into the task to
execute. Acoustic feedback can also be coupled with VR resulting
in a more challenging patient sensorimotor engagement thus
operating as ‘‘augmented feedback’’ [91].

Further manners to enhance patient sensorial state are
represented by merging together with VR, haptic and vibrotactile
feedback. In particular, haptic is a kinesthetic or tactile feedback
that the user ‘‘feels’’ while performing the exercise [92]. It provides
the user with the perception of the task and help her/him to
accomplish it in amore efficientway. Haptic feedback also includes
vibrotactile cues provided onto the skin to guide the user’s arm into
the desired target configuration shown on a graphical interface or
virtual environment [93].

3. The proposed bio-cooperative robotic platform

In this section a bio-cooperative system developed by the
authors for 3D upper limb rehabilitation is presented. It was
partly developed within the Echord/MAAT project [15,33–35,94],
and is composed of a 7-DoF robot arm (Kuka LWR-III [95]), a
motorized arm-weight support system, an adaptive interaction
control system, and a module for on-line evaluation of patient
performance in order to adaptively and dynamically change robot
behavior (see Fig. 2). It represents an illustrative case of bio-
cooperative system originating from the general scheme in Fig. 1,
also coping with the very delicate requirement of introducing
an adaptive arm-weight support for 3D rehabilitation with end-
effector machine. So, the motorized arm-weight support can be
regarded as the main innovative element of our bio-cooperative
system [33], aimed to overcome patients’ difficulty to self-
sustaining their own arm during the motor exercises.

The multimodal interface is composed of the following sources
of information, providing a picture of the patient’s condition:
robot sensors for hand pose and force, magneto-inertial sensors
for reconstructing the user’s joint motion, EMG electrodes for
recording muscular activity. The module for on-line evaluation of
patient performance records patient biomechanical data through
an unobtrusive, wearable sensory system, evaluates patient
biomechanical state and updates robot control parameters for
modifying the level of assistance and task complexity in the 3D
workspace.

Moreover, for further promoting patient motivation and
engagement, a virtual reality is developed in which the selected
task is reproduced and updated according to the patient’s
biomechanical data.

The system is conceived as an end-effector machine that,
interacting with the patient only at the end-effector, can provide
assistance in analytical tasks, such as point-to-point in 2D and 3D
space, as well as in functional tasks of daily living (ADLs). However,
because of the interaction limited to just one point, an additional
mechatronic arm-weight support has been developed. It has the
fundamental purpose of providing an adaptive level of support,
by compensating the gravity force depending on the subject arm
configuration in the space.

3.1. Patient-tailored adaptive robot control system

The main goal of the controller is to assist the patient (who
is connected to the end-effector of the robot) when he/she is
not able to accomplish the task autonomously, with a level of
assistance that is tuned on the patient global state. The robot is
highly compliant when patient is able to follow the planned path,
while adaptively change its behavior when he/she moves away
from reference trajectory. To this purpose an impedance control
in the Cartesian space has been implemented. Task duration and
robot stiffness are the control parameters updated according to the
patient biomechanical state, as explained in Section 3.2.

The robot control law is expressed as follows [15,33].

−→τ cmd = JT
−→q  

K
−→x p −

−→x

+

−→
FT


+ D (d)

+
−→
f dyn


−→q ,

−̇→q ,
−̈→q


JT is the transposed Jacobian matrix, K is the Cartesian stiffness
matrix, −→x p and −→x are the desired and actual Cartesian position
vectors, D(d) is the damping term,

−→
FT is an additional superposed

Cartesian force, −→q is the joint vector,
−→
f dyn is the dynamic model.

Furthermore, in order to foster patient involvement and favoring
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voluntary efforts, a dead band around the reference trajectory is
created [18,21] where no assistance is provided. For 2D and 3D
point-to-point movements a minimum-jerk trajectory is planned
as reference trajectory; on the other hand, for ADL tasks, pre-
recorded trajectories from healthy subjects are used.

3.2. Module for biomechanical and physiological assessment of
patient performance

Patients biomechanical measures are recorded by means of
robot position and force sensors, and an accelerometer positioned
on the patient’s arm. Physiological measures are provided by
EMG electrodes; a data fusion and processing algorithm allows
evaluating the patient status through kinematic, dynamic and
EMG indicators. Afterwards, control parameters are updated by
means of purposely developed modulation functions, exploiting
the computed indicators.

Kinematic indicators take into account patient behavior in the
Cartesian and in the joint space. Encoders embedded into the robot
are used to compute patient trajectories in the Cartesian space;
on the other hand, an inverse kinematics algorithm (presented in
detail in [96]) based on the patient augmented Jacobian has been
developed for reconstructing the patient’s joint motion. It resorts
to the measures provided by the robot position sensors and the
accelerometer located on the subject’s arm.

The computed kinematic indicators are the following:

• Aiming angle (α) [12], i.e. the angle between the target direction
and the direction of travel from the starting point up to peak
speed. It allows evaluating motion direction and accuracy.

• Mean Arrest Period Ratio (MAPR) [97,98], defined as the
proportion of task duration where movement speed exceeds
the 10% of peak speed. It is used to quantifymotion smoothness.

• Inter-joint coordination (qcorr i,j ): it expresses the correlation
index between two upper limb joint angles qi and qj [33].

The dynamic indicators are extracted from information about
the interaction force provided by the robot torque sensors. The
computed indicators are the following [12]:

– Useful-Mean-Force (UMF)which represents the amount ofmean
force exerted along the target direction;

– Useful-Peak-Force (UPF) that expresses the peak force along the
target direction;

– Total-Work (TW) which is the total work expended during
motion;

– Useful-Work (UW) that expresses amount of total expended
work along target direction.

Finally, EMG indicators are extracted from electromyography
signals coming from two couple of antagonist muscles (pec-
toral–deltoid and biceps–triceps muscles) in order to assess mus-
cular force, power and fatigue expended during robotic therapy.

In detail they are expressed as:

• Root Mean Square (RMS), i.e. the quadratic mean of signal
amplitude [99];

• Power Spectrum (PS), that is power spectral signal density [100];
• Co-Contraction Index (CCI), i.e. a quantitative measure of

the simultaneous activation of antagonist muscles across a
joint [101];

• Median Frequency (MF), i.e. themedian of frequency distribution
of the signal [100,101].

Performance indicators are normalized with respect to their
maximum and adjusted in order to increase with motor recovery.
Hence, they are used for a twofold purpose: (a) to assess patient
behavior during therapy and evaluate his/her level of recovery;
(b) to tailor the therapy on the patient’s state by updating control
parameters t (i.e. task duration) and K (i.e. robot stiffness).

The aforementioned performance indicators are adjusted
through properly defined weighted-sum modulation functions,
expressed as follows by Eqs. (1)–(2).

Ct =

J
j=1

wjPI j (1)

CK =

I
i=1

wiPI i (2)

PI j is the jth performance indicator (j = 0, 1, 2, .., J) used for the
adaptation of the time allotted for task execution; PI i is the ith
performance indicator (i = 0, 1, 2, .., I) used for the adaptation
of robot stiffness and wi,j is the weight chosen for the selected
indicators.

The different weights are chosen with a trial-and-error ap-
proach. For instance the aiming angle is employed only in CK , since
it quantifies accuracy and direction of the fulfilled movement; on
the other hand, MAPR is used only in Ct , as it accounts for move-
ment smoothness (describing the percentage of stops during task
execution). All the other indicators are employed in both functions.

The modulation functions continuously vary between 0 and 1;
a threshold strategy is employed to convert them into discrete
performance levels related to predefined value of t and K . To this
purpose, based on a trial-and-error approach, three performance
levels are selected (1, 2 and 3) corresponding to three intervals
of CK and Ct [33] (i.e. [0, 0.5), [0.5, 0.70) and [0.70,1)). The robot
control automatically associates them topredefined values of robot
stiffness and task duration. Preliminary results of the proposed
control can be found in [102].

3.3. Design and development of amechatronic module for armweight
support

Patients who undergo robotic therapy with end-effector
machine may require an arm-weight support to compensate
for gravity and fulfill the motion exercises. Patient difficulty
to self-sustain arm during robotic treatment is mainly due to
neuromuscular damages caused by stroke [103] which produces
upper limb muscular weakness, making really challenging for the
patient to execute the required tasks.

Providing subjects with arm weight-support has been shown
to reduce the abnormal coupling of shoulder abductors and elbow
flexors often observed in stroke survivors who are affected by
severe motor impairments [10,104–108].

Robotic devices which supply arm weight-support, have been
demonstrated to facilitate arm movements during reaching tasks
by reducing the required level of muscle activity, particularly
for muscles involved in arm-sustenance against the effect of
gravity [109,110].

These studies, as well as the collaboration with the clinicians
have encouraged the development of a novel mechatronic module
for online adaptation of arm-weight support. It is an extension of
the bio-cooperative system developed within the Echord/MAAT
project, and plays a key role in the application of the system to
clinical trials on post stroke patients.

The new platform is shown in Fig. 3. It integrates the bio-
cooperative system developed in Echord/MAAT project with
the arm-weight support, and is specifically studied to enable
multimodal measures during the execution of functional tasks of
daily living with the assistance of the end-effector machine.

The arm weight support has to sustain patient’s arm during
3D task execution by adapting the level of support to the limb
configuration. To this purpose, arm weight (i.e. the load), arm
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Fig. 3. Mechatronic module for arm weight support: (1) pulleys; (2) steel wire;
(3) steel bar; (4) actuation system; (5) aluminum drum; (6) 7-DoF Kuka LWR; (7)
forearm-belt support.

moment of inertia, approximate task velocity and required range
of motion (ROM) were estimated.

In particular the following values were taken: load equal
to 5 kg [111], arm moment of inertia is taken equal to
0.0245 kg m2 [111], arm velocity is set as 0.5 m/s [33], arm
ROM along z-axis is 0.5 m [33]; a safety factor 2 is used for
overestimating these values.

As transmission system, a cable–pulley system is chosen driven
by a DC motor secured on one extremity of the cable. A specific
orthosis for arm/forearm support is fixed at the other cable
extremity.

The cable–pulley system in Fig. 3 is composed of: (1) two
pulleys (BNL acetal 25 mm pulley, 18 mm pitch diameter, 102 mm
external diameter, 9 mm bore) with ball bearings and bore
reduction bush; (2) 4 mm steel wire rope black nylon coated
to 5 mm, with winding radius equal to 70 mm; (3) steel bar
equipped with holes to allow choosing pulley’s location, fastened
on room ceiling; (4) an actuation system composed of: EC-max 40
brushless Maxon Motor, planetary gearhead Maxon GP 42-C 74:1,
Maxon HEDL-5540 encoder and Maxon EPOS2 50/5 control unit;
(5) aluminumdrum, for enveloping steel rope, (diameter: 140mm)
is built-in with motor shaft; (6) 7-DoF Kuka LWR; (7) forearm-belt
support, which enables to set correct fitting depending on patient’s
requirements.

The selected actuation group is able to provide the maximum
continuous torque (load acceleration torque and continuous
torque for maintaining arm) for sustaining the upper limb, which
has been estimated as 4.1 N m. Moreover, the actuation group and
the cable–pulley system can be adjusted according to the patient
anthropomorphic characteristics and sitting position.

In order to provide the patient with online adaptive arm
support during the 3D tasks and ADLs, a position control is being
developed that can command the motor to reel in or else unroll
the cable according to the patient’s limb configuration. This is
obtained by the already validated inverse kinematics algorithm
in [96] which relies on sensor information provided by the robot
and the accelerometer on the limb. The controlled rotational
movement of the motor shaft coupled with drum is expected to
induce translational movements to the cable capable of lifting and
lowering the patient arm as required by the task.

4. Discussion

In this paper an overview on bio-cooperative robotic systems in
the rehabilitation scenario has been provided; moreover, the case
study of a bio-cooperative system for upper-limb motor therapy
developed by the authors has been presented.

The key-issue of the bio-cooperative systems is to close
the patient in the control loop in two ways: (a) by feeding
back to the robot multimodal information about the patient’s
global status (through biomechanical, physiological, psychological
information); (b) by returning to the patient the perception of the
task being executed (through visual, auditory or haptic feedback).
Hence, a multimodal human–robot interface includes all the
modules responsible for acquisition, processing and feedback of
such a huge number of signals.

The interest in bio-cooperative systems is growing in the recent
years [33,45,73]. Although some clinical trials have been shown
small potential benefits in terms of patient recovery [41,42,46,
112] a number of open issues regarding the use of bio-cooperative
systems in rehabilitation robotics are still open. For instance the
use of multimodal interfaces requires to gather different signals
from several sources, thus notably increasing system complexity.
This may cause a not negligible computational burden as well
as the use of obtrusive equipment for the users. Obtrusiveness
is a very delicate issue that can contribute to cause user’s stress
or unsatisfaction during the therapy. To this purpose, there is
the attempt to realize bio-cooperative systems with unobtrusive
equipment [33].

Bio-cooperative control goes beyond the ‘‘if-then’’ functioning
mode based on a predefined trajectory and pave the way to the
development of robot-aided therapies delivering functional tasks
of daily living.

Robot control often resorts to the assist-as-needed approach
in order to assist the patient to accomplish the required tasks by
providing a patient-tailored assistance [18,21].

Several studies have shown that giving the patients the pos-
sibility to choose their own trajectory can result in muscle tone
reduction and functional improvements in activities of daily liv-
ing [18,45,46]. However, further clinical trials are required for
demonstrating and assessing the real effectiveness of the assist-
as-needed approach over traditional robotic therapy. On the other
hand, EMG-based control has been widely adopted to extend
therapy to ADLs [58,59,76,80]. However, it gives a significant
movement freedom, with the consequent drawback that it may
enhance pathological movements related to stroke conditions
rather than allow regaining motor and functional skills. Notwith-
standing, EMG-based control seems to improve muscle coordina-
tion as well as reduce spasticity in stroke patients [113,114].

The inclusion of psychophysiological measurements into the
control strategy (as done in the bio-cooperative control) has
been shown to improve patient engagement and provide further
information on the patient’s state (i.e. the cognitive load caused
by the task execution). However, studies in [63–66] have pointed
out that psychophysiological outcomes alone are not reliable as a
primary data source for state estimation; they need to be coupled
with task performance.

Furthermore, it still remains to verify the real effectiveness of
including psychophysiological measurements in bio-cooperative
approach compared to the added intrinsic complexity of the
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system. In fact augmenting critically complexity of device and
environmental settings may constitute a not-negligible issue.

In addition to biomechanical and psychophysiological mea-
sures, more recent bio-cooperative systems also propose to use
non-invasive, non-cortical and cortical interfaces to further en-
hance patient involvement in the robotic therapy by detecting user
movement intention. The main advantage of detecting user inten-
tion is to extend the use of the robotic machines also to severe im-
paired patients who are often not able to directly move the robot.
Several techniques are proposed to this purpose, based on Brain
Machine Interface (BMI) and eye-tracking in virtual reality [85–89].

Due to large amount of information, originating from differ-
ent sources, data fusion issues may arise; for this reason complex
computing algorithms need to be implemented. Machine learn-
ing techniques have tried to overcome these significant prob-
lems, developing particular data fusion and processing algorithms
[34,35,54]; they may help exploit biosignals in order to es-
tablish reliable real-time adaptive control system. Hybrid BNCI
[115,116], fusing biosignals from different sources, aims to gain
better performance in robotic system’s control.

In [64] it is shown that the coupled use of EEG and EOG can
improve control performance of a hand exoskeleton. On the other
hand, coupling EMG with ECG [117], due to EMG susceptibility to
fatigue, suggests to ameliorate control systemperformance. Future
research is essential to show whether these novel approaches can
indeed improve control of assistive devices in daily life contexts.
Despite these encouraging findings, low-cost, non-invasive and
easy installable BCI should be developed to enable their adoption in
the clinical practice. Therefore, in order tomove the BCI status from
‘‘promising’’ to ‘‘effective tool’’, several issues need to be coped
with:

• The best way to integrate BCIs with actual rehabilitation
methods, to establish a powerful and accurate rehabilitative
scenario.

• Heterogeneity in post-damage expression that inevitably
complicates the decoding of brain signals responsible for
neuroplasticity recovery; thismay lead to complicate extraction
of suitable control inputs.

• So far no BCI systems exist which are able to provide a
high accuracy level in robotic control. This aspect becomes
crucial since control systems need accurate signals in order to
accomplish robotic tasks; otherwise brain signals are not easy to
detect clearly. In addition, at present is not clear how accurate
a BCI system should be for providing a robust robotic control.
These points represent the third fundamental issue to be solved.

• Another limitation related to BCI use in robotic upper limb
rehabilitation, is the difficulty to real-time detect motion
intention and correspondingly adapt the therapy [64,118]:
patients’ intentions are currently used only to initiate and stop
the movement therapy.

Notwithstanding these issues, BCI technique may be used in
rehabilitation robotics to provide multimodal movement-related
physiological data, which can be exploited to generate reliable and
robust ‘‘biomarkers’’ of motor and functional recovery in patients
with neural damages [83].

Finally, providing the patient with sensory feedback during
task execution is expected to enhance patient motivation. To this
regard, virtual reality environment often coupled with acoustic
and/or haptic feedback have demonstrated their meaningful
impact on assistive and rehabilitation robotics [88] as multimodal
enhanced feedback. Their positive effects result in:

• the reduction of the workload during motor task learning;
• facilitating learning of spatial and temporal aspects of the

movements, thanks to visual and auditory feedback.
However, it is worth noticing that, despite these promising
findings, the augmented feedback still present limitations. For in-
stance, many devices that are required to operate a VR system,
with sensory feedback, or to track user behavior, generally requires
obtrusive hardware that are a source of distraction and inconve-
nience [119]. Real-time synchronization of signals dedicated to re-
construct VR may be delayed due to the large number of required
devices. This lead to a bad real-time environmental reconstruction,
thus increasing the task difficulty.

Future challenges regarding augmented feedback suggest to
examine whether visual, auditory, and haptic feedback can induce
similar effects on patients, whereby measuring brain activation in
different feedback conditions [120].

For sure, task complexity, feedback design, feedback variables
andmodalities can bemanipulated in order to optimally challenge
the learner, thus contributing to speedup motor learning [121].

The paper also reports a bio-cooperative system developed by
the authors as a case study. It exploits patient biomechanical and
physiological (EMG) performance to update an adaptive robot con-
trol system. A specific module for arm-weight support is designed
to provide the patient with adaptive support against gravity. The
module is designed according to clinicians requirements in order
to extend therapy to stroke patients and its validation is actually
reformed.

Further experiments on healthy subjects are being carried out
to test the reliability of the complete platformbeforemoving to the
clinical validation on post-stroke subjects.

As evident from the reported analysis of the literature and from
our experience, the bio-cooperative systems offer the real chal-
lenge to depict a complete picture of the user and use this picture
to real-time shape the therapy on the user’s features. This is pos-
sible thanks to the multimodal information about physiological,
biomechanical as well as psychological measurements, the novel
machine learning techniques for data processing, the non-invasive
interfaces for user detection intention, the sensory feedback to the
patient.

Notwithstanding their potential, the validation of bio-
cooperative systems in the clinical settings is still very limited
(except for a fewpreliminary studies [33–35,45,46,56,57]) and rep-
resents the real keystone to assess the efficiency of bio-cooperative
approach in rehabilitation robotics.

5. Conclusions

This paper has provided an overview of the bio-cooperative
systems for upper-limb robot-aided rehabilitation and has pre-
sented a case study of bio-cooperative system developed by the
authors for the delivery of 3D motion tasks and ADLs. The pro-
vided definition of bio-cooperative system is extended to include
non-invasive human–machine interfaces for detection of human
intention, context and environmental factors, and augmented sen-
sory feedback for the patient (in addition to the multimodal signal
acquisition for the patient state). The main expected advantage is
to close the control loop on the patient and enhance his/her ac-
tive role in the rehabilitation treatment, also in case of severe neu-
rological damages. The technologies and techniques developed in
this context have been presented and largely discussed as well as
their pros and cons. The proposed bio-cooperative system partly
developed within the ECHORD/MAAT project wants to represent
an example of bio-cooperative system relying on an end-effector
machine. It allows providing assistance in the 3D space with a
patient-tailored approach but it also requires a module for guar-
anteeing arm-weight support. The overall system has been briefly
presented, including the novel approach to overcome patients’ dif-
ficulty to self-sustaining their own arm, based on a mechatronic
arm-weight support. The adaptive control of the arm-weight sup-
port is currently being developed and an extensive validation of
the complete system in the clinical setting is envisaged.
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