URL: http://www.elsevier.nl/locate/entcs/volume2.html 15 pages

Concurrent Computing:

from Petri Nets to Graph Grammars®

Andrea Corradini ®

& Dipartimento di Informatica, Universita di Pisa, I-56125 Pisa, Italy
andrea@di.unipi.11

Abstract

Petri nets are widely accepted as a specification formalism for concurrent and dis-
tributed systems. One of the reasons of their success is the fact that they are
equipped with a rich theory, including well-understood concurrent semantics; they
also provide an interesting benchmark for tools and techniques for the description
of concurrent systems.

Graph grammars can be regarded as a proper generalization of Petri nets, where
the current state of a system is described by a graph instead as by a collection of
tokens. In this tutorial paper I will review some basic definitions and constructions
concerning the concurrent semantics of nets, and 1 will show to what extent corre-
sponding notions have been developed for graph grammars. Most of such results
come out from a joint research by the Berlin and Pisa COMPUGRAPH groups.

1 Introduction

The nets which owe their name to Carl Adam Petri [28,29] have been the first
formal tool proposed for the specification of the behaviour of systems which
are naturally endowed with a notion of concurrency. The success of Petri
nets in the last thirty years can be measured by the looking not only at the
uncountably many practical applications of nets, but also at the developments
of the theoretical aspects, which range from a complete analysis of the various
phenomena arising in simple models of nets to the definition of more expressive
(and complex) classes of nets.

Such a success of Petri nets as specification formalism for concurrent or
distributed systems is due (among other things) to the fact that they can de-
scribe in a natural way the evolution of systems whose states have a distributed
nature. In fact, thinking for example to the so-called Place/Transition nets,
a state of the system to be specified is represented by a marking, i.e., a set
of tokens distributed among a set of places. Thus the state is intrinsically

! Research partially supported by the COMPUGRAPH Basic Research Esprit Working
Group n. 7183

© 1995 Elsevier Science B. V. Open access under CC BY NC ND license.


http://creativecommons.org/licenses/by-nc-nd/3.0/

distributed, and this makes easy the explicit representation of phenomena like
mutual exclusion, concurrency, sequential composition and non-determinism.

While for sequential, deterministic systems an input/output semantics is
often satisfactory, for concurrent or reactive systems (which are intrinsically
non-deterministic) such a semantics is usually not sufficient. Indeed, in general
one desires a more complete description of the relationships among the elemen-
tary steps of a computation, possibly including information about causality,
concurrency, or about the points where non-deterministic choices were taken.
Such semantics may for example help the understanding of the operational
behaviour of a net, can be used to analyze the relationships with other nets or
with other systems, or can play an important role in building bigger systems
from the composition of elementary ones. As a matter of fact, Petri nets have
been equipped along the years with rich, formal computation-based semantics,
including both interleaving and truly-concurrent models (see, among others,
[30,29]). In many cases such semantics have been defined via well-established
categorical techniques, often involving adjunctions between suitable categories
[27,25].

Many researchers agree on the claim that graph grammars are more ex-
pressive than Petri nets for the specification of concurrent and distributed
systems. However, in the classical literature of the area, graph grammars
have been considered in most cases as a generalization of string grammars or
of term rewriting systems to the rewriting of more complex structures. As
a consequence, the many results concerning parallelism and concurrency of
the algebraic theory of graph grammars (see [22,23,13]), recast in this more
general framework notions and results of (term) rewriting systems, exploring
properties like confluence, Church-Rosser, orthogonality of redexes, parallel
moves, and so on.

Actually, many different encodings of nets into grammars have been pro-
posed in the literature along the years (see [33] for an overview), and all of
them tightly relate some basic concepts of the two formalisms, like concur-
rency of transitions and parallel independence of productions. In this tutorial
we report mainly about some joint research activities of the Berlin and Pisa
COMPUGRAPH groups that go much further in this direction. Starting from
a very natural encoding of nets into grammars (where a net is regarded sim-
ply as a graph grammar acting on discrete graphs, i.e., labeled sets [5,10]),
we will show how many relevant concepts and constructions concerning the
concurrent semantics of nets can be extended to grammars. These include
graph processes [12,21] that generalize Golz-Reisig processes, event structure
semantics for grammars [5,8,32], and a definition of grammar morphisms, that
is at the basis of the definition of categories of graph grammars [3], a concept
that looks fundamental for relating grammars, and that, quite surprisingly,
has been introduced just recently in literature.



>

Fig. 1. A safe Place/Transition Petri net
2 Graph Grammars as generalization of Petri nets

As stated in the introduction, Petri nets are widely accepted as an adequate
formalism for the specification of concurrent/distributed systems. Indeed,
the state of a net, i.e., a set of tokens distributed among a set of places,
has an intrinsically distributed nature. As a consequence, nets can specify
in a natural way phenomena like mutual exclusion, concurrency, sequential
composition and non-determinism. Moreover, they have a pleasant graphical
presentation, which makes their use appealing also for the non technical user.
In this paper we focus on the class of Place/Transition Petri nets and on its
subclass of safe nets, presenting them and their semantics in an informal way
[29].

The sample net of Figure 1 has a set of places S = {A, B,C, D, E} (drawn
as circles) and a set of transitions T = {a,b,c,d, e} (represented as thick
line segments). Places and transitions are related by a causal dependency
relation F', which is represented by arrows (for example, (A, a), (¢, D) € F,
but (d, D) ¢ F). A natural number near such an arrow indicates its weight,
as for (A, a) and (e, A); by default an arrow has weight 1. A marking M for
a net N is a function M : S — N. For example, the initial marking M of
the net in Figure 1 is defined as M(A) =2 and M(X) = 0 for X # A. Such
a marking is represented pictorially by a set of M(X) tokens (black dots) in
each place X € S.

The operational behaviour of a net is described by the so-called “token
game”. A transition is enabled to fire at a given marking if enough tokens
are present in all the places that directly cause the transition. The firing of
an enabled transition removes some tokens from its preconditions and creates
some new tokens in its postconditions, according to the weight function. More
transitions can fire simultaneously if each consumes a disjoint set of tokens.

In the sample net of Figure 1 transition a is the unique enabled in the
initial marking. Its firing deletes the two tokens in A, and generates a new
marking, say My, having one token in B and one in C. In marking M, there
are three enabled transitions: b, ¢, and d. Moreover the (multi)set {b,d} is

3



WAl LALAN L

AOZ PB Ae oA -— —»C' o C
L) 6 .5
1
cO) (b)
@

Fig. 2. (a) A transition of a P/T net. (b) The corresponding graph production.

enabled as well, but neither {b,c} nor {¢, d} are (they would need two tokens
in B and C, respectively). Thus b and d are concurrently enabled, while for
example b and ¢ are in conflict or mutually exclusive: the firing of one of the
two prevents the firing of the other. After the firing of either {b,d} or ¢ we
obtain marking M; having one token in D and on in . Transition e is enabled
in M, and its firing produces the initial marking. Thus the net has a cyclic
behaviour.

Looking at nets from the viewpoint of graph grammars, it is quite natural
to regard them as grammars acting on discrete graphs. For example, the tran-
sition in Figure 2 (a) is represented in a faithful way by the graph production
(i.e., a pair of coinitial graph morphisms, according to the double pushout
approach) of Figure 2 (b) (see also [5,10]): Such a production consumes the
tokens in the preconditions and generates the tokens in the postconditions of
the transition, while the interface graph is always empty.

A marking is clearly represented as a set of nodes (the tokens) labeled by
the place where they are. In such a representation the topological structure
of the net is not represented at all.?

It is easy to check that such a representation satisfies all the properties
one would expect: a production can be applied to a given marking iff the
corresponding transition is enabled; the double pushout construction produces
the same marking as the firing of the transition; two occurrences of productions
are parallel independent in a marking iff the corresponding transitions are
concurrent; and so on. For example, I showed in Figure 3 (a) a firing of the
transition of Figure 2 (a) from the marking containing three tokens in A, two
in B, and one in C, and in Figure 3 (b) the corresponding direct derivation
using the production of Figure 2 (b).

This representation of nets by grammars suggests a point of view that has
proved to be very fruitful (we intend here graph grammars in the algebraic,

20n the contrary, according to some classical encodings of nets into grammars (see [33]
and the references therein), the whole net structure (including transitions and places) is
represented in the graph, and tokens are represented for example by additional nodes with
arcs incident to the corresponding places. In our view such representations have two main
drawbacks. First, they are unnecessarily complex, because transitions are represented twice:
statically as nodes in the graph representing the net, and dynamically as productions of
the grammar simulating the effect of the transition. Second, and more importantly, such
representations hide the strong similarities between nets and grammars, i.e., the fact that
they are rewriting formalisms acting on different structures: sets and graphs, respectively.

4



A , & B A@2 1 B A°.B°A %
SO T
c(® cd .A.A.AH

eBeBeC

(@ (b)

Fig. 3. (a) The firing of a P/T net transition. (b) The corresponding double pushout
diagram

double-pushout approach [13], although the same certainly applies to other
approaches):

A P/T Petri net is a rule-based formalism that rewrites labeled sets (the
markings) over a fized set of labels (the places). Graph grammars generalize
P/T Petri nets by replacing labeled sets with labeled graphs, and by allowing
a non-empty interface graph in productions.

A number of recent paper have elaborated this basic idea in various direc-
tions. In [26], Montanari and Rossi have proposed Contextual Nets, an exten-
sion of nets that allows one to have tokens in the interface part of a transitions,
or, in their terminology, where a transition can have context conditions, i.e.,
tokens that have to be present for the enabling but that are not consumed.
They also showed that the notion of net process for such contextual nets is
quite more elaborated than for usual nets, and that actually many kinds of
processes may be defined. In [20], Korfl and Ribeiro generalize the above re-
lationship to colored (or algebraic high-level) nets and to attributed grammars
(in the single pushout approach), respectively. Quite interestingly, they show
that the construction that transforms a colored net into an attributed gram-
mar commutes both with the flattening constructions (that transform colored
net and attributed grammars in P/T nets and usual grammars, respectively),
and with a semantics based on derivation trees.

This is a further confirmation that the correspondence stated above be-
tween nets and grammars is indeed robust. As a matter of fact, a remarkable
amount of work has been done in the last years, aiming at generalizing to
grammars many definitions, constructions, and results already introduced for
nets. In the next sections we will review some of these notions.

2.1 Individuality of tokens and abstractness

There is a subtle mismatch between the transition in part (a) of Figure 2 and
our proposed encoding as production shown in part (b). In fact, in the initial
marking depicted in Figure 3 (a) the three tokens in place A are indistinguish-
able (i.e., in P/T nets tokens do not have an identity): this is formalized in
literature by saying that a marking is a multiset over the set of places S [29],
or, equivalently, that it is an element of the free commutative monoid over
S [24]. As a consequence, there is only one possible firing of the transition ¢

5



from the marking depicted.

On the contrary the three nodes labeled by A in the starting graph of the
double-pushout of Figure 3 (b) do have a distinguished identity, and indeed
there are twelve different injective morphisms from the left hand side of the
production to that starting graph.

Thus nets are “more abstract” than the corresponding grammar, and in
fact there are many grammars that represent the same net. This point arose
quite early when the Berlin and Pisa groups started studying a truly con-
current semantics for graph grammars. In fact, it turned out that since
graph derivations contain more infomation than firing or step sequences (the
corresponding notion for nets), even simple grammars manifest an infinite-
branching non-determinism, a property not desirable for a formalism, like
grammars indeed, acting on finite structures through a finite number of rules.
The problem was addressed in [6,4,7] where we proposed suitable notions
of equivalence on graph derivations, able to equate all derivations which are
equivalent from a concurrency perspective, and thus reducing the non-determinism
of a grammar to a finite degree. Such equivalences were the basis of the event
structure semantics of grammars discussed below.

In [20], Korff and Ribeiro put in evidence that analogous differences of
abstraction level also hold for the high-level versions of nets and grammars.
In fact they show that the derivation tree semantics of a net is isomorphic to
some abstract derivation tree semantics of the grammar encoding it.

3 Computation-based semantics of Petri nets

For sequential systems it is often sufficient to consider an input/output se-
mantics (thus usually the semantic domain consists of a suitable class of func-
tions). For concurrent/distributed systems, in the semantics one often wants
to record more information about the actual computations performed by the
system: e.g., one may want to know which steps of a computation are in-
dependent (concurrent), or which are causally related. For example, such
information is necessary if one wants to compose concurrent systems, keeping
the semantics compositional, or if one wants to allocate a computation on a
distributed architeture.

There are many computation-based semantics for Petri nets. They differ
for the amount of information one wants to record in the semantics, and for
the way it is recorded. For example, as nets are intrinsically nondeterministic
devices (because of the mutual exclusion phenomenon), the non-determinism
can be described in two quite different ways: (1) by collecting all the possible
net computations in a set, and (2) by collecting all the possible computations
in a branching structure (e.g., a tree), which also records at which points of
the computations certain choices have been made.

Orthogonally, the concurrency aspects of a net can be represented us-
ing a true concurrency approach, where the fact that two events are “not
causally related” is represented directly in the semantics using a partially
ordered structure; or an interleaving approach, where computations of the

6



Non-determinism \ Concurrency Interleaving True concurrency
(Set of) Firing (Set of ) Deterministic

Set-based

Sequences processes
Branching Tree of firing Non-deterministic
structure sequences processes

Event structures

Table 1 Some possible semantic domains for nets

system are sequences of events, and the independence of two events in a com-
putation must be represented by two different sequences where the two events
appear in different orders; thus concurrency is reduced to non-determinism.

In Table 1 I indicate some possible semantic domains for nets, for the four
possible ways of representing non-determinism and concurrency.

For the net of Figure 1, I depicted in Figure 4 two most informative seman-
tics. Part (a) shows a non-deterministic process. A non-deterministic process
of a net N is an acyclic net (also called occurrence net) without backward
conflicts (i.e., each place has at most one ingoing arc), together with a net
homomorphism to the original net; in Figure 4 the net homomorphism is in-
dicated by labeling places and transitions of the occurrence net with places
and transitions of the net of Figure 1. It is not difficult to construct a non-
deterministic process of a given net by “unfolding” it, and by duplicating
places when needed to avoid backward conflicts. A non-deterministic process
enjoys the property that if we put one token on every “minimal” place (i.e.,
in the running example on the topmost places labelled by A), then in the
resulting marked net every firing sequence individuates uniquely a firing se-
quence of the original net (through the net homomorphism), and the causal
dependencies among transitions are preserved.

Figure 4 (b) shows an event structure for the net of Figure 1. A (prime)
event structure € is a triple € = (K, <, #) where: E is a set of events; < is a
partial order relation on £, the causal dependency relation, which satisfies the
axiom of finite causes, i.e., no event can have infinitely many causes; and #
is a binary, symmetric, irreflexive relation on F, the conflict relation, which is
hereditary, i.e., if e#eq and e; < eg, then e#es.

In the event structure of Figure 4 (b) the causal dependency relation is
represented by its Hasse diagram with directed arcs, and the conflict relation
is drawn as undirected arcs labelled by a “#”: only conflicts which cannot
be inherited are shown. The event structure is easily obtained from the non-
deterministic process by deleting all places, letting ¢ < ¢’ if a postcondition of
t is a precondition of #', letting t#t’ if ¢ and ' have a common precondition
(i.e., if they are in conflict), and closing relation < under transitivity and
symmetry and # under inheritance.

4 Computation-based semantics for Graph Grammars

A natural question is: How far can the computation-based semantics of nets
just sketched be generalized to graph grammars?

7



B@C 4#_

b >C§Ad \ b c d
DO OpQ OE X\
e\— e—/ e e

y
p

BO cO OB OC
@ (b)

Fig. 4. (a) A non-deterministic process of the net of Figure 1. (b) The corresponding
event structure.

The algebraic theory of graph grammars comprises many results concerning
parallelism and concurrency (see [22,23,13]). Most of those results recast, in
the more general framework of graph rewriting, related notions and results of
(term) rewriting systems, exploring properties of confluence, Church-Rosser,
orthogonality of redexes, parallel moves, and so on. Thus they are mainly
concerned with the study of properties of derivations and of their syntactic
manipulations. Such aspects of a graph grammar are surely of great interest.
However, in the perspective of presenting graph grammars as a more adequate
formalism than nets for the specification of concurrent/distributed systems,
also truly-concurrent semantics like those sketched in the previous section for
Petri nets would be interesting.

The development of such semantics if the main topic of a research activity
carried on by the Berlin and Pisa COMPUGRAPH gropus in the last years. As
a matter of fact, the constructions and results about nets cannot be generalized
straightforwardly to graph grammars, because they extend Petri nets with
some non-trivial features, the most relevant of which is the ability to specify
items, in the interface of productions, that have to be present but are not
consumed. It turns out that this context-dependent aspect of graph rewriting
is even more difficult to be treated formally than the generalization from sets
to graphs of the rewritten structures.

In the next subsections we comment on two recently developed computation-
based semantics for grammars, namely processes and event strutures.

8



4.1 Processes for Graph Grammars

A first contribution in the development of a theory of non-sequential processes
or graph grammars is [12] where we considered just deterministic processes and
safe grammars, i.e., grammars where each reachable graph has no non-trivial
automorphisms. One of our main goals was to be as close as possible to the
corresponding theory for nets: in particular, a graph processes must be a graph
grammar as well, exactly like net processes are nets as well, and possibly with
some kind of morphism to the original grammar.

We succeded in giving such a definition by slightly changing the classical
definition of grammar, introducing the so-called typed graph grammars: These
are standard grammars where all the involved graphs have a morphism to a
fixed type graph, which plays the role of the set of places in a net (in other
words, all involved graphs belong to the comma category of objects over the
type graph). In practice, the type graph can be regarded also as a more
structured presentation of the color alphabets for nodes and arcs that are
usually part of the definition of labeled graphs.

A (determistic) graph process for a given grammar G is a strongly safe
grammar (i.e., a safe grammar satisfying suitable aciclicity requirements, sim-
ilar to those for occurrence nets), equipped with a mapping to G, which is
composed of a graph morphism between the type graphs and of a function re-
lating the productions that satisfy suitable commutativity requirements. Such
deterministic processes enjoy some interesting properties. First, they can be
constructed with a simple colimit construction: Given a graph derivation of
grammar G, i.e., a sequence of double-pushout diagrams, the corresponding
process is obtained simply by taking as type graph the colimit object in cat-
egory Graph of all the diagram, and as productions all the occurrences of
productions of G that appear in the derivation; such productions have mor-
phisms to the type graph given by the colimit injections.

Second, all the derivations that are shift-equivalent (i.e., that differ only for
the order in which independent direct derivations are performed [23]) have iso-
morphic corresponding processes. This suggest that such graph processes are
a good candidate as representatives of shift-equivalence classes of derivations,
and may be even more adequate than the classical canonical derivations, be-
cause they have an almost immediate representation of the causalities among
production applications.

Other proposals for processes for graph grammars have been elaborated
in the recent years. For example, Korff proposes in [19] (and elaborates on
this with Ribeiro in [21]) a notion of non-deterministic process (called con-
current derivation) for grammars in the single-pushout approach, showing an
application to Actor Systems. Also concurrent derivations are obtained as
colimits of derivation diagrams, and they can be considered as grammars; in
particular, their core graph corresponds exactly to our type graphs. Although
the similarities of the two approaches are evident, up to now it is not yet clear
if they are completely equivalent.

Also Dirk Janssens is recently working on some notion of processes for

9



the Extended Structure Morphisms systems, which are an evolution of Ac-
tor Grammars and are based on the NLC approach to graph rewriting (see
his contribution in this volume). His approach is quite different from ours,
because ESM systems automatically generate a graphical structure that can
be considered as a process. In fact, the application of a rule monotonically
augments the graph describing the current state, and therefore at each stage
of a computation the current graph includes some representation of the whole
history of the derivation.

4.2 Fvent Structures for Graph Grammars

An event structure semantics has been defined for the subclass of safe graph
grammars in [5], and for consuming grammars in general in [8] (i.e., those
where each production deletes something). An important point is that the
construction of the event structure of a grammar we proposed is quite simple,
as it does not go through the definition and construction of a non-deterministic
process, as shown for nets in Section 3. The construction, at least in the more
general case, is based on the equivalence on graph derivations introduced in [4],
and on the corresponding construction of the category of abstract derivations
of a grammar. In fact, we were able to show that the comma category of the
objects under the initial graph in the such a category of abstract derivations
is a preorder, and that the induced partial order is a prime algebraic domain;
thus a prime event structure can be extracted from it, thanks to general results
[27].

A closely related paper is [32], where Georg Schied for the first time showed
how to construct a prime event structure from an arbitrary, consuming graph
grammar. His approach substantially differs from ours for two main reasons,
although the results are similar. First, he uses a different technique to get to
the event structure, constructing as an intermediate step a trace language and
then applying general results from [1]. Second, he uses a more set-theoretical
definition of graph rewriting, where the result of a direct derivation is deter-
mined in a unique way (not up to isomorphisms as in our case).

Besides giving such relevant references to papers concerning event struc-
tures for graph grammars, [ would like to raise here the following question:

How far are event structures adequate as a concurent semantics for graph
grammars?

More precisely, since graph grammars act on graphs and not on sets, as
nets do, is a set of events sufficient (together with the corresponding causal
and conflict relations) for describing the concurrent behaviour of a grammar,
as it 1s for a net? An event structure semantics abstracts completely from the
structure of states, as it only shows the causal and conflict relations among
the transitions of a system. Thus, since both nets and grammars have a set of
transitions, it comes of no surprise that, under a certain degree of abstraction,
they have a similar semantics. Other kinds of concurrent semantics keep
instead the information concerning the state, like the processes recalled in
Section 4.1, and thus greatly differ for nets and grammars. This is evident for

10



example in the definitions of processes in [12,21].

5 From objects to categories

The previous section showed that as far as concurrent semantics construc-
tions and results are concerned, the gap between nets and grammars is being
filled up quickly. However, with respect to Petri nets and to other formalisms
aimed at describing concurrent and distributed systems (like Event Struc-
tures, Asynchronous Transition Systems and others [27,1,24,31]) the classical
theory graph grammars still lack a formal categorical, in-the-large treatment.
In the works just referred to, the above mentioned formalisms are equipped
with a categorical semantics where the leading idea is to define suitable cat-
egories of “systems”, and to relate them with pairs of adjoint functors. Such
semantics (that we call “in-the-large” because the emphasis is on properties
of a whole class of systems, as opposed to the “in-the-small” semantics, which
study properties of a single system) are useful to understand the relationships
between different formalisms, or also to relate different aspects of the same
formalism.

As paradigmatical examples of the use of categories in the semantics of nets
[ cite [35] and [24]. In [35] Winskel shows that the event structure semantics
of safe nets can be given through a chain of adjunctions starting from the
category Safe of safe nets, thorugh category Occ of occurrence nets (this
result has been generalized to arbitrary P/T nets in [31]). In other words, this
implies that the construction of the non-deterministic process and of the event
structure of a net of Section 3 can be made functorial, i.e., consistent with
a reasonable notion of net morphism. Also, in [24] Meseguer and Montanari
show that there is an adjunction between the category of P/T nets Petri
and the category of their computational models CatPetri. Intuitively, the
free model of a net is a small category, equipped with a suitable algebraic
structure, where each arrow is a computation of the net.

A natural question arises at this point:

What’s the point in using category theory to relate systems (e.g., nets) with
their semantics (e.g., event structures or categories of computations)? Is
it not sufficient to give the explicit construction of the semantics for each
given system?

There are (at least) three good reasons for using categories:

1. When defining a category of systems one is forced to provide a notion of
morphism, checking that the axioms of categories are satisfied. Often this
procedure gives important insights about the structure of systems. For exam-
ple, the notion of isomorphism is derived by that of morphism, and relates
system which are “conceptually” the same: all the categorical constructions
will handle isomorphic systems in a uniform way.

Moreover, one can check for the existence of some categorical constructions
(like products and coproducts, or limits and colimits in general) which should
correspond to suitable operations on systems. Performed in a category, such

11



operations are in general not deterministic (limits and colimits are unique
only up to isomorphisms), but this apparent drawback turns out in many sit-
uations to be a real simplification. Indeed, thinking for example to operations
which glue together (parts of) systems, all the (syntactical) problems related
with naming (like a-conversion in logical systems, the “renaming apart” of
variables in logic programming, the choice of new names when building the
disjoint union of systems) simply disappear in the categorical framework: such
operations often correspond to colimit constructions (see also [17]).

2. Once a category of systems and one of “denotations” (semantics) are
defined, there are in general many ways (if any) to map the first ones to the
others and viceversa. The categorical framework forces you to define these
mappings in a consistent way on morphisms as well (because they have to be
functors).

3. There are in general many pairs of functors relating two categories. Nev-
ertheless, often (but by no mean always) given two “related” categories (of
systems, denotations or whatever) there happen to be an “obvious” functor in
one direction (e.g., an inclusion or a “forgetful” functor). Keeping such functor
fixed, one can look for functors in the opposite direction forming an adjunc-
tion: if such a functor exists it is unique (up to a natural transformation)
by general categorical results. The fact that two functors form an adjunc-
tion is often regarded as a good argument in favour of the “correctness” and
“naturalness” of the relationship established between two categories.

The chains of adjunctions mentioned above are just prototypical examples
of a general technique in the categorical semantics of concurrency. Other
adjuctions relating categories of systems can be found in [1,25,31].

5.1  Grammar morphisms

Trying to define a categorical semantics for grammars like that for nets just
sketched, a necessary precondition is clearly the definiton of a reasonable no-
tion of grammar homomorphism. Such a concept does not appear in the pre-
vious literature of the area: A proposals only appeared recently in [3], where
we borrowed the idea of grammar morphism from the theory of nets, through
a non-trivial elaboration of the formal definitions that has been possible by
making yet more precise the relationship between the two formalisms.

In particular, the idea was to regard the definitions of nets and of their
morphisms as suitable diagrams in the category Set, and to consider exactly
the same diagrams, but in the category Graph, as the corresponding defini-
tions for grammars. This procedure required the use of typed graph grammars
(see Section 4.1) instead of classical grammars. I do not describe here the tech-
nical details of the definition of grammar morphisms, but only summarize the
on-going work in the categorical semantics for grammars.

The main contribution in this field is [3], where we introduce grammar
morphisms and propose a semantics for graph grammars borrowing the gen-
eral outline from [24]. We define three categories: GraGra, having typed
graph grammars as objects and grammar morphisms as arrows; GraT$S, with

12



(typed) graph transition systems as objects; and GraCat, having small cat-
egories of (typed) graph derivations as objects. The main result is that there
exist left adjoint functors TS : GraGra — GraTS and ¢ : GraGra —
GraCat to the forgetful functors U : GraTS — GraGraand V : GraCat —
GraGra, respectively.

Grammar morphisms as defined in [3] are also used in [9], where the ex-
pressive power of morphisms with respect to structuring and refinement of
grammars is explored.

As future developments of there ideas we are trying to make the construec-
tion of the event structure functorial, as it is for nets. This both in the direc-
tion of extending the adjunction with categories of derivations (thus building
on top of [3]) and also through a completely different approach that mimics
for grammars Winskel’s chain of adjunctions from Safe to ES.

6 Conclusions

I recalled some interesting concurrent semantics for Petri nets, arguing that
similar semantics are also interesting for graph grammars, which are more ex-
pressive than nets for the specification of concurrent and distributed systems.
[ summarized some recent and on-going work that propose for grammars suit-
able generalizations of relevant definitions, constructions and results of the
Petri net theory, including a definition of graph processes, an event structure
semantics, the definition of grammar morphisms, and the development of a
categorical semantics based on chains of adjunctions.

More importantly, I stressed that Place/Transitions Petri nets and Graph
Grammars can be regarded in most situations as the same diagrammatical
structures, but in different categories: Set and Graph, respectively. This
is a powerful “meta-result” that should be possible to exploit for the cross-
fertilization of the two fields. In fact, for any concept about nets one can try
to generalize it to graph grammars simply by isolating the notions based on
sets, and by replacing them with the corresponding notions based on graphs.
Such a procedure is by no way automatic: the same set-based notion can
have many different generalizations to graphs, and the choice of the right one
is in general not trivial. However, the categorical framework often narrows
the possible choices, making the work easier. Just to mention a possible
application of this idea, it would be interesting to explore how the theory of
net invariants translates to graph grammars.

Generalizing even further, one may think to nets and grammars as two in-
stantiations of a more abstract theory of concurrent semantics where Set and
Graph are replaced by an arbitrary category C satisfying suitable require-
ments (in the same spirit of High-Level Replacement Systems [14]). However,
it is not clear if some relevant constructions can be described in such an ab-
stract framework, neither if there exist other interesting instantiations besides
nets and grammars.

13



References

[1] M.A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University
of Sussex, 1988. Report no. 1/88.

[2] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central Models
and Their Properties, number 254 in LNCS. Springer-Verlag, 1987.

[3] A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and J. Padberg. Typed graph
grammars and their adjunction with categories of derivations. Submitted for
publication, 1995.

[4] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. Abstract graph
derivations in the double-pushout approach. In [8//, pages 86-103, 1994.

[6] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. An event
structure semantics for safe graph grammars. In Programming Concepts,

Methods and Calculi - PROCOMET °94, IFIP Transactions A-56, 1994.

[6] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. Note on standard
representation of graphs and graph derivations. In [3//, pages 104-118, 1994.

[7] A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and F. Rossi. Algebraic
approach to graph transformation II: Models of computation in the double
pushout approach. Submitted for publication, 1995.

[8] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. An event
structure semantics for consumptive graph grammars with parallel productions.
Submitted for publication, 1995.

[9] A. Corradini and R. Heckel. A compositional approach to structuring and
refinement of typed graph grammars. In [11], 1995.

. Corradini and U. Montanari. Specification of concurrent systems: from Petri

10] A. C dini and U. Mont i. Specificati f t syst f Petri
nets to graph grammars. In Kleuver, editor, Proceedings of the Workshop on
Quality of Communication Basd Systems, 1994. To appear.

[11] A. Corradini and U. Montanari, editors. Proceedings SEGRAGRA 95 Workshop
on Graph Rewriting and Computation, volume 2 of FElectronic Notes in
Theoretical Computer Science. Elsevier Sciences, 1995.

URL: http://www.elsevier.nl/locate/entces/volume2.html.

[12] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 1995. To appear.

[13] H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars.
In [15], pages 3—14, 1987.

[14] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systems. Mathematical Structures in
Computer Science, 1:361-404, 1991.

[15] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Proceedings of
the 3rd International Workshop on Graph-Grammars and Their Application to
Computer Science, number 291 in LNCS. Springer-Verlag, 1987.

[16] G. Engels and G. Rozenberg, editors.  Preliminary Proceedings of the
Fifth International Workshop on Graph Grammars and their Application to
Computer Science, 1994.

[17] J.A. Goguen. A categorical manifesto. Math. Struc. Comput. Sci., 1, 1991.
[18] D. Janssens. Process Languages for ESM Systems. In [11], 1995.
14



[19] M. Korff. True concurrency semantics for single pushout graph transformations
with appications to actor systems. In Proceedings IS-CORFE 94 Workshop, pages
244-258. Vrije Universiteit Press, 1994.

[20] M. Korff and L. Ribeiro. An attributed graph transformation approach to the
behaviour of algebraic high-level nets. In [16], pages 113-122, 1994.

[21] M. Korff and L. Ribeiro. Concurrent derivations as single pushout graph
grammar processes. In [11], 1995.

[22] H.-J. Kreowski.  Manipulation von Graphmanipulationen. ~ PhD thesis,
Technische Universitiat Berlin, 1977.

[23] H.-J. Kreowski. Is parallelism already concurrency? part 1: Derivations in graph
grammars. In [15], pages 343-360, 1987.

[24] J. Meseguer and U. Montanari. Petri nets are monoids. Info. and Co., 88:105-
155, 1990.

[25] J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Petri nets.
In Proceedings CONCUR 9, number 630 in LNCS, pages 286-301. Springer
Verlag, 1992.

[26] M. Montanari and F. Rossi. Contextual nets. Technical Report TR 4-93,
Dipartimento di Informatica, University of Pisa, 1993.

[27] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and
domains, part 1. Theoret. Comput. Sci., 13:85-108, 1981.

[28] C.A. Petri. Kommunikation mit Automaten. Schriften des Institutes fiir
Instrumentelle Matematik, Bonn, 1962.

[29] W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985.

[30] G. Rozenberg. Behaviour of elementary net systems. In [2/, pages 60-94, 1987.

[31] V. Sassone, M. Nielsen, and G. Winskel. Relationships between models of
concurrency. In Proceedings REX 93, 1993.

[32] G. Schied. On relating rewriting systems and graph grammars to event
structures. In [34], pages 326-340, 1994.

[33] H.-J. Schneider. Graph grammars as a tool to define the behaviour of process
systems: From Petri nets to Linda. In [16], 1994.

[34] H.-J. Schneider and H. Ehrig, editors. Proceedings of the Dagstuhl Seminar
9301 on Graph Transformations in Computer Science, number 776 in LNCS.
Springer Verlag, 1994.

[35] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, number 255 in LNCS, pages 325-392. Springer
Verlag, 1987.

15



