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Onset detection is a typical digital signal processing task in acoustic signal analysis, with many applications as in the musical field.
Many techniques have been proposed so far, which are typically reliable in terms of performances but often not suitable to real-time
computing, for example, they require knowledge of the whole piece to perform optimally, or they are too computationally intensive
for most embedded processors. Up to the authors’ knowledge, the real-time implementation problem for musical onset detection
has been scarcely addressed within the literature, which has motivated them to propose a scalable and computationally efficient
algorithmwith good detection capabilities. Comparison with other techniques and porting to a real-time embedded processor are
discussed as well: provided experimental results seem to confirm the effectiveness of the approach.

1. Introduction

Onset detection is a fundamental task in many music DSP
scenarios. Some of these have no critical time constraints,
such as database queries, content retrieval, data mining,
and so forth. Other applications have critical real-time
constraints and ask for implementation on embedded pro-
cessors (from specialized floating-point DSP to generic RISC
architectures) for consumer electronics, performing arts, or
musical equipment. Thus, it can be of interest to scale the
most recent techniques for onset detection to fit into such
platforms.

Early onset detection techniques required low compu-
tational effort [1], but not as much performing as the
more recent techniques. On the other hand, the latest onset
detection approaches yield remarkable performances, but
they are not well-suited for real-time embedded platforms.
For example, a recent contribution from Bruni et al. [2]
makes use of the wavelet transform to construct a complex
scheme for onset detection, making it unpractical for a
real-time implementation. Other methods exist (see, e.g.,
[3, 4]), which make use of neural networks or similar
machine-learning structures to analyze the signal features

or to combine the extracted features to obtain the final
decision. Other papers, such as [5], although making use
of more efficient DSP techniques, may combine information
coming from different onset detection algorithms, requiring
an increase in computational cost and a complex decision
taking mechanism at the end of the signal processing.
Finally, some onset detection methods exist (see, e.g., [6])
which are targeted for the retrieval of soft onsets (i.e., very
slowly occurring transient), which require a very long time
knowledge, and cannot, hence, provide results without a
sensible latency, if run in real-time.

In fact, beside the mere computational efficiency prob-
lem, real-time processing means to have only a small
portion of the signal to process, hence missing long-term
information on the piece. A problem often encountered in
onset detection algorithms is that they necessarily require
a long portion of audio especially when mixed with other
musical information retrieval tasks (see, e.g., [7]). This long-
term knowledge is often needed to gather information on the
dynamics of the piece, but also to apply heuristic rules for
removal of false negatives or for beat and tempo analysis.

For real-time onset detection the latency must be kept
to the minimum allowed by the application under study,
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reducing frames and buffers length to low values, making the
use of certain techniques impracticable.

Last but not least, two other remarkable issues have to be
considered during the algorithm porting to a DSP processor:
the finite-precision arithmetic and the meaninglessness of
fixed thresholds. The former can often be addressed by using
double-precision floating-point arithmetic, the latter may
require the use of slowly-adaptive gains to suitably match the
incoming signal amplitude.

To obtain a good trade-off between the real-time con-
straints and the detection performances, we propose an
algorithm which yields good detection performances in real-
time, also allowing to be scaled down to be implemented
on low-cost processors, still ensuring good performances.
The proposed algorithm is an improved version (and even
more flexible in terms of real-time implementation) of an
approach already appeared in the literature [8, 9], based
on the evaluation of linear prediction error from a filter
bank. This approach has been found to be effective and has
been chosen as a starting point to develop our algorithm
further. The main differences with the original papers, are
in the use of the discrete wavelet transform (DWT) for the
signal subband decomposition, and in the combination of
the subband error signals with the use of a MSP-fashioned
(multiscale product) [10, 11] merge. The peak picking
procedure is different as well and made fast by the use of two
low-order linear filters and a maximum search.

The algorithm is divided into two sections, the first one
aimed at the extraction of a proper Transient Detection signal
(from now on, shortly, TD), and the second one providing
a peak picking functionality, in order to obtain exact time
instants of the onsets. The first section can be executed
frame-wise or sample-by-sample, whereas the second one
can be executed periodically, according to the application
requirements and the implementation trade-offs.

Computer simulations (using the publicly available
music database [12]) have been performed for two different
scaled versions of the algorithm, a higher-end implementa-
tion and a lower-end one, showing remarkable performances
for the first one and still acceptable performances for the
second. As final outcome of the scalable algorithm here
developed, a performing implementation has been also car-
ried out on real-time embedded target (the TMS320C6747
floating-point processor powered by Texas Instruments),
confirming the real-time versatility of the approach.

Real-time applications of an onset detection algorithm
may include many different scenarios, not only in the audio
field. Real-time onset detection may be, for instance, applied
to gesture controllers for gaming, live music performances,
or control of media devices such as smartphones. Neverthe-
less, this algorithm has been designed to deal with musical
signals and in this field we can find the most relevant
applications. Offline onset detection algorithms are more
oriented to database-centric information retrieval, whereas
a real-time onset detection system may be used for creating
new sonic interaction design scenarios, innovative live
performance instruments, tempo detectors, beat correction,
and, combined with a pitch detection algorithm, it may
give origin to advanced arrangement systems for electronic
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Figure 1: Overview of the proposed algorithm.
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Figure 2: Block-scheme of the adaptive filtering process (AFP). The
acronym NLMS stands for normalized LMS. The downsampling
factors f j are detailed in (9).

keyboard instruments. And more, due to its inherent real-
time capabilities, we believe that what is proposed can
represent a relevant tool and reference to explore new
applicative contexts.

Here, the outline of the paper is given. In Section 2, the
proposed onset detection algorithm is described in all its
parts, also highlighting the differences with the algorithms
analyzed in [8, 9]. Section 3 is devoted to the ways adopted
to scale the original algorithm version down, whereas 4
discusses performed computer simulations and real-time
capabilities of the proposed technique, for both addressed
implementation schemes. In Section 5, conclusions are
drawn and some future work ideas suggested.

2. The Onset Detection Algorithm

This section describes the high-end version of the algorithm.
Simpler schemes are described in Section 3. The general
scheme, adopted by all the versions of the algorithm, is
depicted in Figure 1. The algorithm consists of two processes
operating in cascade, namely, the adaptive filtering process
(AFP) and the detection process (DP). These two are detailed
in Figures 2 and 3.

The first one aims at the reduction of the original signal
into the TD signal which is a highly subsampled signal
which manifests the occurrence of transients in the original
signal. This part can be processed sample-wise or frame-wise,
depending on the implementation requirements andmust be
executed in real-time. The output can be stored in a buffer for
the DP to take place afterwards. This second processing aims
to reveal onsets in the signal by a peak-picking procedure
over the TD signal.

The linear prediction error filters were first used in [8],
where the filter bank was made of bandpass filters, with
slightly different bandwidths, and all the subband signals
were uniformly decimated. These were fed to the LPEFs
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Figure 4: Flow graph representation of a J-level discrete wavelet
Transform (analysis part).

(linear prediction error filters) and then summed together
to obtain the TD signal. In the proposed implementation, the
AFP consists in a dyadic filter bank [13] based on wavelet
filter coefficients and linear prediction error filters, one per
channel. The output of every channel is then subsampled to
one of the lowest channels sampling frequency and rectified.
Finally the channels are multiplied together to form a single
TD signal. This last operation may be regarded as a form of
MSP product [10, 11].

The DP collects many frames of the TD signal in a
buffer. When the buffer is full, it is smoothed and differ-
entiated by filtering. Finally the difference signal and the
smoothed signal are multiplied together. This operation has
the meaning of weighting the difference signal, containing
sharp peaks, with the amplitude of the original TD signal.
Previous works, such as [8] and later ones, suggested the use
ofmedian filtering to smoothen theTD signal. This technique
proves helpful, but is very time consuming on mathematical
processors because it requires a sorting mechanism, which,
in turn, requires branch instructions and can be hardly
optimized.

2.1. The Adaptive Filtering Process. The input signal is
assumed to be single-channel. For common applications,
a stereophonic signal may be available. Merging channels
together into a single signal may result in a loss of spatial
information, the worst case occurring when every channel
contains different musical instruments. In this case, it is
suggested to process the channels separately, if there are
enough processing resources.

Once the signal has been gathered from input, in frames
or sample-by-sample, it is fed to a dyadic filter bank [13],
shown in Figure 4, which performs a multiresolution DWT
analysis. The choice of a dyadic bank is motivated by the way
it equally partitions wide-band signal energy into subbands.
It can be shown experimentally that in a uniform filter bank
higher-frequency bands gather fewer energy than lower-
frequency bands, hencemaking senseless the prediction error
over a signal which nearly contains no musical content.

As said, the employed multiband decomposition tech-
nique is the discrete wavelet decomposition, which can be
seen as an octave band filter bank, with its analysis section
(DWT properly) and its synthesis section (IDWT, inverse
DWT) [14]. Moving from the following notation equalities:

Upsampling: (↑ x)[2n] = x[n], (↑ x)[2n + 1] = 0,

Downsampling: (↓ x)[n] = x[2n],

G
(
gn low-pass filter

)
(Gx)[n] =

∑
k

x[k] · g[n− k],

H
(
hn high-pass filter

)
(Hx)[n] =

∑
k

x[k] · h[n− k],

(1)

where g̃[n] = g[−n]∗ is the paraconjugate operator, and
looking at the decomposition part, it can be observed that the
original signal x[n] is processed through filtering and down-
sampling operations resulting in different sequences:

vj[k] =
〈
x[n], h̃′j

[
n− 2 jk

]〉
, j = 1, . . . , J ,

vJ+1[k] =
〈
x[n], g̃′J

[
n− 2Jk

]〉
,

(2)

where g̃′j = (G̃′ ↑) j−1 g̃′, h̃′j = (G̃′ ↑) j−1h̃′. Each of these
sequences is relative to a precise part of spectrum of the
signal and has different length than the others; in more
specific words, it means that their scale and resolution values
are divided by 2 at each decomposition level, consequently
reducing of the same factor the sequence length and the part
of spectrum they represent. This fact is directly related to
the coverage of time/frequency plane existing in continuous
wavelet transform (CWT). The signal can be reassembled
from the coefficients through filtering and up-sampling
operation:

x[n] =
J∑
j=1

∑
k

vj[k]hj

[
n− 2 jk

]
+
∑
k

vJ+1[k]gJ
[
n− 2Jk

]
,

(3)

where gj = (G ↑) j−1 g , hj = (G̃′ ↑) j−1h. However, since this
filter bank is critically sampled, used filters are constrained to
satisfy the following condition to achieve perfect reconstruc-
tion (without delay), here valid in case of simple two-band
filter bank:

x[n]−G ↑↓ G′x[n] = H ↑↓ H′x[n]. (4)

This can be easily extended to J-level decomposition case.
Note that IDWT is not performed in our algorithmic scheme,
but it is here described for the sake of completeness.

DWT has been also chosen for the fast convergence speed
of LMS adaptive filters in the transformed domain [15] and
for the short length of its filters impulse responses, which
makes the dyadic bank filtering feasible with very short FIR
filters. Time-domain FIR filters would instead require very
long impulse responses for the aliasing to be negligible. It
has been shown by our early experiments that the LMS
prediction filters in the transformed domain converge, as
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expected, faster than the ones in the time domain with the
same order.

The choice of the wavelet impulse response is not
obvious, given the number of possibilities. In our case,
the Coiflets functions [15] have been selected due to their
properties, and also compared to other wavelet families such
as the Daubechies’ [15]. Biorthogonal wavelets have the
advantage over orthogonal wavelets of being linear phase
or nearly linear phase. This property is desired, that is why
the Coiflets have been chosen. This allows for a close to
perfect synchronization of the subband signals. The choice
of Coiflets over other biorthogonal wavelets is their higher
number of vanishing points for a given order which increases
convergence properties [16]. As previously stated, the DWT
filter bank adds different delays to each subsignal because
of its asymmetric tree structure. Furthermore, if the wavelet
filters are not symmetric, that is, not linear phase (or nearly
linear phase), there is a spread of the group delay over
frequency. To avoid this, we have chosen Coiflets which are
known for their nearly linear phase property, that is,

φ(ω) = kω + o
(
ωN
)

for ω −→ 0. (5)

Under this condition, the group delay can be approximated
to the one of a linear phase filter, that is, (N − 1)/2 samples,
where N is the length of the FIR impulse response [15].
Once the filter delay is known, a simple synchronization
mechanism can be designed to align all the subsignals by
simply applying different delays for every channel. Since
the delay increases while descending the decomposition tree
and the sampling frequency decreases, the upper subsignals
must be compensated with higher delays, according to the
following:

d
(
j
) = 2J+1− j

J+1− j∑
i=1

N

2i
, (6)

where d( j) is the delay to be added to channel j. By adding
such a delay to each channel, after the DWT filter bank,
synchronization is granted in case the subchannels are all
resampled to the same sampling frequency, as it is done at
the end of the AFP process.

Instead of Coiflets, other wavelet families, with differ-
ent properties, can be used. Although, in principle, the
aforementioned mechanism works only for linear phase
or nearly linear phase filters, it is shown by experimental
results that the subsignals after a DWT filter bank with, for
example, Daubechies’ wavelets, which are minimum phase,
can achieve a close to perfect synchronization because of the
low group delay spread over frequency. With Daubechies’
wavelets, the trade off schemes discussed in Section 3 can be
more easily achieved as the filter order is proportional to a
factor 2 instead of 6 as with Coiflets.

Once the signal has been filtered and decimated, the
output of every channel is fed into LPEFs. The DWT-domain
LPEF adaptation algorithm can be drawn from analogy with
time-domain LMS-like algorithms. When computational
power is not an issue, a common NLMS technique [16] can

be applied to the DWT-domain case with a varying step size
μj[k] according to the following:

μj[k] = μ′∣∣∣u j[k]
∣∣∣2 + c

, (7)

where 0 < μ′ < 2, u j[k] = (vj[k − 1], vj[k − 2] · · · vj[k −
Lo]), Lo is the order of the LPEF, c is a small constant to
avoid division by zero, and | · | stands for vector norm. The
vector norm has the meaning of the estimate of the signal
energy, which varies in time, making the step size varying as
well. The NLMS technique is preferred to the Widrow-Hoff
LMS algorithm for its suitability to signals with large energy
variations, such as music. Such a variability occurs also in the
DWT domain [15, 17], motivating the adoption of a stepsize
normalization strategy within the adaptive filtering weight
updating rule, which for jth channel filter coefficient vector
L j can be written as:

yj[k] = LTj [k] · u j[k],

ej[k] = vj[k]− y j[k],

L j[k + 1] = L j[k] + μj[k] · ej[k] · u j[k].

(8)

Since the DWT bank outputs have different sampling
frequencies, the LPEF error signals ej[k] will have different
sampling frequency as well. The LPEFs error signals ej[k]
are suitable for heavy downsampling, hence they can all
be subsampled, before rectification takes place as shown
in Figure 2, to reach the sampling frequency of one of
the highest-decimated channels. Smoothing before down-
sampling, can be avoided in most practical case, as ej[k]
signals contain only peaks, which can be seen as a very low
frequency content, on a very low noise floor. In the case
the channels are decimated to the sampling frequency of the
highest-decimated channel, that is, (J + 1)th channel, the
downsampling factor for the jth channel is:

f j = 2J+1− j . (9)

In case the sampling frequency for the channels is chosen
to be higher than that of channel (J + 1), (9) can be easily
generalized accordingly. The subsampled signals e′j[l] can
now be multiplied sample-by-sample together in a MSP-like
way, according to the following formula:

TD[l] =
∏

e′j[l] (10)

obtaining a sharp TD signal. To avoid multiplying by zero
or near-zero, the least energetic channels are discarded. The
resulting TD signal is then stored in a buffer for the peak
extraction by the DP.

2.2. The Detection Process. The DP works on a number of TD

frames stored in a buffer. The size of this buffer must be as
long as possible while allowing for real-time performances.
For many applications, the real-time constraint may be the
temporal masking phenomenon, which lasts approximately
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20ms [18]. Also, musical instruments involving user feed-
back or any kind of device with haptic interfaces may require
slightly lower delays. The major time constraint of the whole
system is the DP buffer length. Only when the buffer is full,
the DP can take place. The DP consists in a linear processing,
and a maximum search, which is the only heuristic peak
extraction decision used by the proposed algorithm.

The goal consists in obtaining a signal that clearly shows
remarkable peaks where strong transients in the TD signal
rise, so to allow the use of a single threshold, which is
the simplest decision scheme possible. A complex heuristic
scheme would otherwise badly affect the algorithm efficiency
on mathematic processors. Two thresholds would be needed
for good detection capabilities: one on the steepness of the
transient (slow transients are unlikely to be note onsets), and
one on the energy of the signal (transients under a low energy
threshold are unlikely to be onsets). The sole differentiation
operation is not robust enough to eliminate noise peaks or
bursts, hence the signal must be weighted with a sort of
estimate of the energy of the signal near the localization of
these peaks. The most efficient way to do this, though not
much accurate, is the weighting of the difference signal with
a lowpass version of the TD signal. Hence the first stage of
the DP is made of a very low cut-off frequency lowpass filter
and a differentiator filter both applied to the incoming TD

signal. The former can have a low order if designed as an
IIR filter, while the latter consists in a single delay tap and
a subtraction. The output signals from these two filters are
multiplied together:

TP[l] = T′D[l] · T′′D [k], (11)

where T′D[l] is the differentiated version of TD[l] and T′′D [l]
is the low pass filtered version of TD[l]. The heuristic process
finds the maximum of the function and compares it with a
threshold: if the maximum is higher, an onset has been found
and the DP flags the discovery and sends its timestamp to
other tasks for further processing,

onset-flag =MAX(TP) > δ. (12)

This last stage is very simple, and most DSPs have hand-
optimized assembly functions for vector maximum value
search. There is no need to look for near onsets or keep
record of recently discovered onsets since it is assumed that
the length of the TD buffer used by the DP is approximately
as long as the audible temporal masking threshold. Any
other onset with a lower energy than the found one will be
discarded.

3. Scaling Down of the Algorithm

A detailed description of the general detection framework
has been thus provided in the previous section, with details
given for a high-end version of the algorithm. Scaled-
down versions may be necessary when low-power DSPs
or RISC processors are used. In Section 4, we discuss the
implementation of two versions of the algorithm, namely
Scheme1 and Scheme2, the former being a high-end version
targeted for maximum detection performances, the latter

Table 1: Processing schemes details.

Scheme1 Scheme2

Filter bank levels 8 6

Wavelet filters coif4 (order = 24) coif2 (order = 12)

LPEF Adapt. Algo NLMS Sign-Error LMS

LPEFs order Lj = 10 + 2( j − 1) Lj = 10

Computational cost
3Wo+

+(4L8 + 2L7 +
L6 · · · )

3/4Wo + 2Lo

MFLOPS 13.8 1.3

being a scaled-down version aiming to a good detection
with lower computational cost. These two are detailed in
Table 1. Practical implementation of the algorithm may
make a compromise between Scheme1 and Scheme2. We
provide here some useful options to scale down the high-
end algorithm provided in Section 2, which brings to reduced
computational cost, indicating separately for each option the
decrease in computational cost and detection performances.

The subband decomposition scheme seen in Figure 2
presents several degrees of freedom for the developer:

(i) the DWT FIR filter length can be shortened with
smoothly degrading performances. As with FIR fil-
ters, the operations required are O[N], and the lower
sampling frequency channels have lesser impact on
the operations per sample; the computational cost
has a linear decrease with the filter order decrease.
The detection performances are slightly affected, for
example, by halving the filter order, the loss is of
a maximum of 4% F-measure points (the detection
performances are evaluated through the F-measure
index, see (14) in Section 4 for further details),

(ii) the number of analysis levels may be reduced with
respect to Scheme1. This may largely contribute to a
decrease in detection performances while the increase
in processing speed is low, as the lower channels
have lower sampling frequencies, hence they do not
impact heavily on the operations required,

(iii) the filter bank may be applied to a decimated version
of the signal, assuming that the musical content at
higher frequencies is negligible, compared to lower
frequencies. This of course may greatly speed up
the processing, without a fair decrease in detection
performances. Experimental tests show that a 2×
decimation on the input signal allows to save at least
1/4 of the processing needed for the DWT bank (the
theoretic saving of 1/2 is not achieved because of the
processing overhead and the need for a high-order
IIR antialiasing filter), while detection performances
decrease is unnoticeable.
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LPEFs can be scaled down as well:

(i) the order of the filter can be reduced. Experimental
tests show that when increasing the filter order over
a suggested value of 10, the increase in detection
performances is very low (close to 1%). However for
the higher-end implementation we decided to use
higher order LPEFs, with the order proportional to
the band index so that wider bandwidth subsignals
have a higher-order LPEF. Since NLMS filters require
O[N 2] operations per sample, a slight decrease of the
order allow for high computational savings,

(ii) the updating rule, which is the most expensive part
of the LMS algorithm, can be changed to an LMS-
like technique which allow for a lower computational
complexity at the expenses of the convergence speed.
In our experiments, the Sign-Error LMS [19] proved
accurate enough to guarantee good convergence
speed and accuracy. The Sign-Error LMS algorithm
differs from the NLMS algorithm only for the
coefficients update rule, which varies according to the
following:

L j[k + 1] = L j[k] + μj[k] · sign
(
ej[k]

)
u j[k]. (13)

This may be a good solution on RISC processors where a
multiplication is substituted by other instructions such as
bit manipulations (depending on the processor instruction
set and data format). On a total 4 · Lo operations needed
by the NLMS per sample, this solution allows to avoid
Lo multiplications. Regarding the detection performances
decrease, the Sign-Error LMS can cause a loss of 3% to 4%F-
measure points.

Note that other modifications on adaptive filtering oper-
ations might be applied for scaling purposes: for instance the
vector norm in (7) could be replaced by a 1st-order low-pass
filtering. We can observe that, for our implementation target,
the presence of optimized DSP librarymakes the vector norm
not computationally demanding (especially if performed on
a low number of samples, like in our case study), leading us
to prefer investigating the Sign-Error LMS scaling approach
and leave the other to future developments.

Furthermore, if a mixed DSP-RISC platform is availa-
ble—this is often the case for consumer electronics, musical
equipment, and multimedia devices—the parallelism of the
platformmay be exploited so that the DP can take place onto
the RISC core, while the DSP core processes the signal. It
is required, hence, that the DP completes only once every
time the TD buffer is full. This provides headroom for more
processing on the DSP core.

4. Experimental Tests

Two schemes of the algorithm were implemented: Scheme1,
allowing for maximum performances, and Scheme2, aimed
at the lowest computational effort. Both have been imple-
mented using Matlab, to give upper and lower bounds of

the onset detection performances and on a Texas Instruments
TMS320C6000 DSP, for a proof-of-concept design. Some
profiling results will be given in Section 4.3.

4.1. The TI Target Platform. In order to practically evaluate
the efficiency of the proposed method, a porting of the
algorithm has been performed, from the original Matlab
code to a DSP evaluation board. The board used for this
purpose is an OMAPL137, which combines a RISC core
with the floating-point C6747 processor. Only the floating-
point core was used for the experiments, although further
work will include embedding part of the algorithm on the
RISC core. The C6747 core runs at 300MHz, and has two
separate data paths, as shown in Figure 5, each one including
four different instruction units (M, S, L, D units, each one
responsible for one of the following: multiply, arithmetic,
logical/branch, and load instructions) which can efficiently
execute in parallel if the code has been optimized. This
allows, at best, to employ eight operations per clock cycle,
two of which areMAC instructions used to implement digital
filters.

The operating system used for the current implementa-
tion is the DSP/BIOS 5.41 from Texas Instruments, which
provides user-level APIs, low-level drivers, and other com-
mon features such as tasks, semaphores, queues, and so forth.
The operating system allows the C6747 core itself to manage
onboard peripherals, so that the RISC core is not strictly
required and thus the prototyping of a DSP-only application
is made faster.

4.2. The Two Proposed Schemes and Computational Cost. The
implementation schemes proposed hereby are summarized
in Table 1. The theoretical cost inMFLOPS (Million FLoating
point OPerations per Second) of the two schemes is reported
as well. The LPEF order in Scheme1 depends on the channel
index j, so that the channels at higher sampling frequencies
have higher order LPEFs and the lowest channel has order
10. All the LPEFs in Scheme2 have a fixed order of 10. This
lower bound is considered safe after experimental evaluation.
In Scheme1, the LPEFs output error subsignals are resampled
at the sampling frequency of channel 7, namely 689Hz,
while for Scheme2 they are subsampled to the lowest channel
sampling frequency, which is approximatively 1378Hz. The
heavy subsampling performed after the LPEFs allows to
neglect the computational cost of the rest of the algorithm.
From Table 1, it can be noted that there is an order of
magnitude between the two proposed schemes in terms
of computational cost. This difference between the two,
however, is reduced in a practical implementation due to
overheads, and additional procedures for managing buffers,
data, and so forth. Some relevant aspects about Table 1 are
here detailed: lowest and highest levels discarded in Scheme1;
4 decimation factor preceding the bank in Scheme2; j is
the channel index (higher frequencies channels have lower
index j); Wo is the wavelet filter order, Lo is the LPEF
order; filter bank polyphase implementation has been used
for each approximation-details filter pair separately; FLOPS
are calculated at sampling frequency equal to 44.1 kHz.
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Figure 5: The TMS320C6747 DSP Megamodule architecture, featuring separate program and data buses, two separate data paths, with L, S,
M, D instruction units. Adapted from [20]. Courtesy: Texas Instruments Incorporated. All rights reserved.

Table 2: Computer simulation results against the Leveau database.

PNP Complex mixtures Others Total

Proposed Scheme1 86.6% 90.6% 81.2% 85.5%

Proposed Scheme2 71.6% 73.7% 71.1% 72.3%

Linear prediction [8] 83.1% 86.4% 72.8% 78.9%

Improved linear prediction [9] 87.6% 87.1% 74.9% 82.0%

Complex domain [21] 71.9% 81.2% 63.1% 70.1%

Perceptual spectral flux [22] 46.1% 46.4% 46.7% 46.6%

Table 3: Detection results against the four drum tracks for both the
computer simulations and the C6747 runs.

Drums excerpts

Proposed Scheme1 92.9%

Proposed Scheme2 77.1%

C6747 Implementation Scheme1 90.5%

C6747 Implementation Scheme2 74.6%

4.3. Computer Evaluation. Computer simulations have been
performed on a publicly available music database [12] to
allow direct comparison of the proposed schemes to previous
works. The public database contains 17 files, for a total of
744 hand-labelled onsets. Unfortunately, the Leveau database
does not contain any NPP (nonpitched percussive) solo
tracks (e.g., drums). We added 4 drums and percussions
tracks for a total of 214 onsets to evaluate the performances
of the proposed methods with NPP sounds. These results

are reported in Table 3. In our experiments, automatically
detected onsets are compared with hand-labeled reference
onsets and they are considered correct if the distance between
the detected and the reference onset is less than 50ms. This
slight margin allows for hand-labeling inaccuracy.

To evaluate the algorithm a metric based on CD (correct
detections), FP (false positives), and FN (false negatives) is
used, resulting in the following final parameter:

F-measure = 2 · Precision · Recall
Precision + Recall

, (14)

where

Precision = CD/(CD + FP),

Recall = CD
CD + FN

.
(15)

Test results are provided in Table 2 for the Leveau database
and in Table 3 for the NPP tracks. The former results are
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Figure 6: Comparison of the the onsets detected by the algorithm
run on Matlab and on the C6747 platform for a portion of audio
from Leveau’s database against ground-truth labelled onsets.

divided in pitched non-percussive (PNP) tracks, complex
mixtures, and others. These results are compared to the F-
measure of several other techniques provided in [9] based
on the same music database. Comparison of these results
shows that the Scheme1 algorithm outperforms previous
schemes, while Scheme2, together with a lower computa-
tional complexity, obtains results comparable or superior to
other techniques taken here as reference. Tests have been
performed also with the DWT filter bank based on the
Daubechies’ wavelets instead of the Coiflets. The Daubechies’
wavelet filters used are of the type db32 for Scheme1 and db8
for Scheme2. Results are very close to the ones obtained with
the Coiflets: 85.2% for Scheme1 and 72.4% for Scheme2 with
Daubechies’ wavelets.

4.4. Target Implementation Details and Results. Section 4.3
proves the good capabilities of the proposed schemes, and
shows a graceful degradation of performances between the
higher-end Scheme1 and the lower-end Scheme2. In this
section, we provide experimental results on the detection
capabilities and execution speed of the algorithms together
with the computational cost reduction obtained by scaling
Scheme1 down to Scheme2. It must be noted that com-
puter simulation results stand as a higher bound reached
by the proposed algorithm, whereas the embedded target
detection results give merit to the algorithm implementation
showing results which are close to the computer simulations
although slightly lower (approximately 1.9% less in average
for both Scheme1 and Scheme2), due to practical issues,
such as the single-precision arithmetic (whereas the Matlab
implementation makes use of double-precision arithmetic).
These results are provided after a first implementation of the
algorithms into a TMS320C6000 DSP and may improve in
the future. Figure 6 shows a portion of a track from Leveau’s
database with labelled onsets, Matlab-detected onsets and the
onset timestamps coming from the board.

The rationale behind the porting of the algorithm to
an embedded device is to validate its design and principles,
to assist the tuning of the algorithm parameters, and to
gather an insight on problematics related to real-time.

Table 4: Detection results of the C6747-based implementation for
Scheme1 and Scheme2 against the Leveau database.

PNP Complex mixtures Others Total

Scheme1 85.3% 88.7% 77.5% 83.2%

Scheme2 69.8% 75.2% 70.3% 70.8%

Table 5: Profiling for Scheme1 on the C6747 processor. Execution
times and CPU load data are averaged over multiple observations.

Frame length 128 256 512

Execution time (AFP)—no opt 0.8ms 1.42ms 2.7ms

Execution time (AFP)—opt 0.26ms 0.44ms 0.99ms

Execution time (DP)—no opt 0.04ms 0.06ms 0.16ms

Execution time (DP)—opt 0.02ms 0.03ms 0.04ms

CPU load (AFP+DP)—no opt 34.5% 30.7% 27.9%

CPU load (AFP+DP)—opt 10.2% 9.5% 8.9%

Furthermore, execution times and processing overhead have
been evaluated. To the theoretical computational cost, in fact,
some overhead must be often added. This overhead may
be introduced by buffers manipulation, memory read/write
operations, and so forth. The number of all these operations
can be severely increased when memory must be saved, a
common situation in embedded processors programming.
We are not taking into account the extra cost of drivers,
operating system, and so forth, which is subject to consider-
able variations depending on software stack implementation
and platforms. In the results, we evaluate below, we only
consider the overhead strictly related to the algorithm
itself.

The implementation has been performed with single-
precision arithmetic, in order to preserve memory. However,
a double-precision version of the code could be easily imple-
mented. The code has been written in ANSI C language. The
benefits of this choice are its faster prototype development,
the possibility to use function libraries provided by TI,
and a fair comparison with other algorithms in terms of
speed. In fact, hand-written assembly code would obtain
faster execution speed, but the results would be platform
dependent, hence meaningless in this context.

Overall detection results are provided in Table 4 for both
Scheme1 and Scheme2 implementations. As the Table shows,
these are similar to Matlab results shown in Table 2. The
tests were conducted with a fixed input volume, evaluated
empirically through a training data set.

Execution time results are provided in Tables 5 and
6 for both Scheme1 and Scheme2 implementations. The
results are specific for the AFP and the DP, showing
absolute execution time and average CPU load percentage.
As mentioned above, the processor is a Texas Instruments
C6747, running at 300MHz. Input signal is acquired at a
44.1 KHz sampling frequency in stereo, but only one channel
is processed in order to evaluate the results against the same
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Table 6: Profiling for Scheme2 on the C6747 processor. Execution
times and CPU load data are averaged over multiple observations.

Frame length 128 256 512

Execution time (AFP)—no opt 0.5ms 0.9ms 1.71ms

Execution time (AFP)—opt 0.13ms 0.28ms 0.57ms

Execution time (DP)—no opt 0.04ms 0.06ms 0.16ms

Execution time (DP)—opt 0.02ms 0.03ms 0.04ms

CPU load (AFP+DP)—no opt 21.9% 17.1% 16.2%

CPU load (AFP+DP)—opt 6.0% 5.4% 5.1%

music database used for computer simulations. The signal
is processed by frames, with a frame length of 256 being
the best trade-off between reactivity of the system, overhead
reduction and memory consumption; however, tests are
conducted also on frames of size 128 and 512, to show
how the execution time increases/reduces. As an example,
if the frame length is 256 samples and the target latency is
approximately 20ms, four TD frames can be stored for the
DP task to handle them.

The results are provided for optimized and nonoptimized
versions of the code for both Scheme1 and Scheme2. In the
first case, no compiler optimization is used (in order to have
an upper bound to the execution speed), whereas in the sec-
ond one, the C code presents calls to the Texas Instruments
DSPlib function library, some preprocessor pragmas to help
the compiler optimize the code and function-level compiler
optimization [23].

The results show a practical decrease of the execution
times by nearly a factor two between Scheme1 and Scheme2
implementations, and a decrease of execution times of
a factor 3 between the nonoptimized Scheme2 and the
optimized Scheme2. Results on optimized code should be
taken as a higher bound for speed, because in a production
environment source code is always compiled with opti-
mizations. However, these can largely vary according to a
number of practical factors, including hardware specifica-
tions, hence nonoptimized results are given for scientific
purposes.

A system such the one described hereby can be used with
one-channel input signal to build a query-by-humming tool
or instantaneous instrument transcription scenario, but in
other cases, multiple channels may be used. This could be
the case of more inventive sound interaction tools, that could
even need a fast haptic feedback for the user. Given the light
computational cost of the algorithm, it is easy to implement
two separate instances of the algorithm to detect onsets on
a stereo source. The detection capabilities of the algorithm
should then increase due to the stereophonic source. By
doubling the processing instances, the computational cost
should double, but by rewriting a single instance to work
on both channels, the computational cost could be reduced,
by taking advantage of the two parallel processing units
available on most DSPs. This will be object of further
implementations.

5. Conclusions

In this paper, a novel musical onset detection algorithm with
particular aim to real-time applications has been presented.
This method has been especially designed for direct imple-
mentation on embedded-processors, and attention has been
paid to keep the computational cost as low as possible. This
method provides good results in both detection capabilities
and speed performances, keeping the former as high as most
complex algorithms and the latter as low as the simplest
ones. A proof-of-concept design on a Texas Instruments
TMS320C6000 DSP processor has been developed to assist
the tuning of the algorithm parameters and to validate its
design and principles. This allowed us to positively conclude
about the flexibility of the proposed musical onset detection
approach, a property extremely useful in real-time system
deployment phase. Experimental results have been provided
in both implementation case studies addressed: computer
and embedded-processor based.

Futurework will include the study of a prewhitening filter
to improve the LPEFs convergence speed and a complex AGC
(automatic gain control) system to allow robust detection
in any environment condition. Parallel computing may
be exploited to implement multichannel onset detection
or to improve detection results by comparing the output
of different onset detection methods. Frequency-domain
adaptive filtering algorithms may be experimented as well
in order to obtain faster implementations, at the expense of
losing the logarithmically-spaced representation of the signal
spectrum. We also plan to evaluate our methods against the
MIREX database [24] for further comparison.
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