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Abstract

Data analytics are now playing a more important role in the modern industrial systems.
Driven by the development of information and communication technology, an
information layer is now added to the conventional electricity transmission and
distribution network for data collection, storage and analysis with the help of
wide installation of smart meters and sensors. This paper introduces the big data
analytics and corresponding applications in smart grids. The characterizations of
big data, smart grids as well as huge amount of data collection are firstly discussed as a
prelude to illustrating the motivation and potential advantages of implementing
advanced data analytics in smart grids. Basic concepts and the procedures of
the typical data analytics for general problems are also discussed. The advanced
applications of different data analytics in smart grids are addressed as the main
part of this paper. By dealing with huge amount of data from electricity network,
meteorological information system, geographical information system etc., many
benefits can be brought to the existing power system and improve the customer
service as well as the social welfare in the era of big data. However, to advance the
applications of the big data analytics in real smart grids, many issues such as
techniques, awareness, synergies, etc., have to be overcome.

Introduction
With the fast development of digital technology and cloud computing, more and more

data are produced through digital equipment and sensors, such as smart phones, com-

puters, advanced measuring infrastructures, etc., as well as through human activities and

communications. For instance, the size of data on the internet is now measured in

exabytes (1018) and zettabytes (1021) (Emani et al., 2015). Rational, effective and efficient

analysis of these data brings huge value and benefit to our daily life and company activities.

However, the collected data are mounting at an exponential growth, and the structure of

them is also becoming much more complicated. The processing and analysis method of

these large volume data is a new challenge but opportunity at the beginning of this century

with the concept of “big data” (Lv et al., 2017a; Günther et al., 2017).

Although big data is a newly-appeared term, the concept of discovering valuable infor-

mation from massive collected data in commercial operation as aiding knowledge for

business decision has already been proposed in 1989 by Howard Dresner as “business

intelligence” (BI) (Yu, 2002). The trend of internet revolution and ubiquitous information

acquisition devices successfully reduce the cost of data collection, while the huge amount

and complex structure challenge the capability of traditional data analytics techniques.
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In power grid, the traditional fossil fuels are facing the problem of depletion and the

de-carbonization demands the power system to reduce the carbon emission. Smart grid

and super grid are effective solutions to accelerate the pace for electrification of human

society with high penetration of renewable energy sources (Ak et al., 2016). Although the

rising awareness of sustainable development have become the impetus to the utilization

of renewable energy sources, the intermittent characteristics of wind and photovoltaic en-

ergies bring huge challenges to the safe and stable operation in a low inertia power system

(Wenbin & Peng, 2017; Ye et al., 2016). The data analytics based renewable energy fore-

casting methods are a hot research topic for a better regulation and dispatch planning in

such cases. Traditional electricity meters in distribution systems only produce a small

amount of data which can be manually collected and analyzed for billing purpose. While

the huge volume of data collected from two-way communication smart grids at different

time resolutions in nowadays need advanced data analytics to extract valuable information

not only for billing information but also the status of the electricity network. For example,

the high-resolution user consumption data can also be used for customer behavior ana-

lysis, demand forecasting and energy generation optimization. Predictive maintenance

and fault detection based on the data analytics with advanced metering infrastructure are

more crucial to the security of power system (Chunming et al., 2017).

Thus, the great progress of information and communication technology (ICT) provides a

new vision for engineers to perceive and control the traditional electrical system and makes

it smart. An embedded information layer into the energy network produces huge volume of

data, including measurements and control instructions in the grid for collection, transmis-

sion, storage and analysis in a fast and comprehensive way. It also brings a lot of opportun-

ities and challenges to the data analysis platform. This paper is to discuss the concepts of

data analysis and their applications in smart grids. The intent of this paper is three-fold. First

the potential data collected with advanced metering infrastructure in smart grid are dis-

cussed. Next, the paper briefly reviews the concepts of data analytics and the popular tech-

niques. Finally, the paper illustrates the detailed applications of data analytics in smart grid.

Big data in smart grid
Concept of big data

The definition of big data is not very clear and uniform at present. But there is a consensus

among different descriptions: this is an emerging technical problem brought by a dataset of

large volume, various categories and complicated structures which needs novel framework

and techniques to excavate useful information effectively. Therefore, the definition of big

data depends on the ability of data mining algorithms and the corresponding hardware

equipment to deal with large volume datasets (Zikopoulos & Eaton, 2011). It is a relative

concept instead of an absolute definition. The big data can be understood as amount of data

beyond technology’s capability to store, manage and process efficiently in (Kaisler et al.,

2012) as the data size increasing along with the evolvement of ICT technologies.

Concept of smart grids

Smart grid is the power system embedded with an information layer that allows for

two-way communication between the central controllers and local actuators as well as

logistic units to respond digitally to urgent situations of physical elements or quickly
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changing of electric demand. The E.U. defined the smart grid as electricity networks

that can intelligently integrate the actions of all users connected to it – generators, con-

sumers and those that do both – in order to efficiently deliver sustainable, economic

and secure electricity supplies (SmartGrids European Tech, 2010). The U.S. defined the

smart grid of future in a similar way that incorporates the digital technology to improve

reliability, security and efficiency of the electric system through information exchange,

distributed generation and storage resources for a fully automated power delivery net-

work (Zhen Zhang. Smart Grid in America and Europe, 2011).

Compared with traditional power systems, the widespread application of distributed

generators under the call of green energy resources is shaking the hegemony position of

large-scale centralized power plants, which makes the conventional centralized control

strategy less effective due to the unidirectional power flow. Connection of small-scale

power generations (typically in the range of 3 kW to 10 kW) to the public distribution

grid requires two-directional operation and control of distribution grids. Faced with the

challenges of more complicated control and protection strategies, the conventional

electro-mechanical electric grid is supposed to be enhanced with the help of innovations

in the digital information and telecommunications network to overcome the cost from

power outages and power quality disturbances as billions of dollars annually (Executive

Office of the President, 2013).

Normally, the smart grid can be assessed with a Smart Grid Architecture Model (SGAM),

which is a 3-dimensional framework that merges domains, zones and layers together. The

conventional structure of power system can be found in the domains as generation, trans-

mission, distribution, DER (Distributed Energy Resources) and customer premises. The

zones which present the layout of power system management are composed of market, en-

terprise, operation, station, field and process. On top of the first two dimensions, the layout

of interoperability layers includes the component, communication, information, function

and business layers. SGAM as an architectural overview can be used to find the limitations

and commonalities of existing smart grid standards (CEN-CENELEC-ETSI Smart Grid

Working Group Reference Architecture, 2012).

Big data characteristics in smart grid

The characteristics of big data in smart grid is also in accordance with the universal

5 V big data model in many researches (Zhu et al., 2015) as below:

(i) Volume – refers to the vast amount of data generated, which makes data sets too

large to store and analyze using traditional database technology. The possible

solution to this problem is the distributed systems to store data in different

locations, connect them by networks and bring them together by software. In

smart grid the widespread application of smart meter and advanced sensor

technology provide huge amount of data.

(ii) Velocity – refers to the speed at which new data is generated and the speed at

which data moves around. The requirements for real-time exchange of data is in-

creasing. With a sampling rate of 4 times per hour, 1 million smart meters installed

in the smart grid would result in 35.04 billion records, equivalent to 2920 Tb data

in quantification (SAGIROGLU et al., 2016). The following Table 1 indicates the
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amount of records from smart meters in a year under various collection frequency

with the assumption of 1 million devices and a 5 KB record per collection.

(iii)Variety – refers to the types of data we can now use. In the past, we focus on

structured data that neatly fits into tables or rational databases such as financial or

meteorological data. With big data technology, we need to handle different types of

unstructured data including messages, social media conversations, digital images,

sensor data, video or voice recordings, and bring them together with more

traditional, structured data. According to the extensive data sources in smart grid

as shown in Fig. 1, the formats and dimensions of data are diverse in structure.

(iv)Veracity – refers to the messiness or trustworthiness of the data. The quality and

accuracy are less trustworthy with such large amount of big data, which challenge

the outcome data analysis. Errors of measurements in smart grid may exist due to

the imperfections in devices or mistakes in data transmission. The secure and

efficient power system operation relays on the data assessment and state

estimation.

(v) Value – refers to our ability to extract valuable information from the huge

amount of data and derive a clear understanding of the value it brings. The

larger the amount of data is, the lower the density of valuable information will

be. With the improvement of intelligent devices adopted in smart grid, more

and more value of big data analytics is revealed according to the various

applications.

Data sources in smart grids

As an intelligent system of both energy and information, smart grid is the abundant source

of information, which covers the data from process of electricity generation, transmission,

distribution and consumption. These data include the electrical information from distribu-

tion stations, distribution switch stations, electricity meters, and non-electrical information

like marketing, meteorological as well as reginal economic data as shown in Fig. 1 (Keyan et

al., 2015). Collection and analysis of them provide essential help in scheduling of power

plants, operation of subsystems, maintenance for vital power equipment and business

behavior in marketing.

The data sources mentioned above can be sorted into three categories: measure-

ment data, business data and external data (Teng et al., 2014). Most of the

operation parameters in power system are measured through installed sensors and

smart meters, indicating the system’s current and historical status (SAGIROGLU et

al., 2016) (Jiye et al., 2015). The weather conditions and social events like festivals

are the external data that cannot be measured from smart meters but have an

impact on the operation and planning in power system. The business data mainly

includes the marketing strategies and rivals’ behaviors.

Table 1 Quantification of collected data in different sampling rates (Big Data analytics and energy
consumption, 2016)

Collection Frequency 1/day 1/h 1/30 min 1/15 min

Records Collected 365 million 8.75 billion 17.52 billion 35.04 billion

Volume of Data 1.82 TB 730 TB 1460 TB 2920 TB
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Data collection techniques in smart grid

In smart grid, the data are collected and transmitted with help of smart meters which

provide energy related information to both the utility company (or DSO) and cus-

tomers. For the energy consumption of residential customers, the number of smart

meter readings for a large utility company is expected to rise from 24 million a year to

220 million per day (SAGIROGLU et al., 2016). As an emerging component in electri-

city market and smart grid, electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) have

seen a growing popularity with the movement of electrification in transportation sector

and progress of artificial intelligence. To control the normal operation status of the dis-

tribution system, DSO traditionally relies on the measurements in the primary sub-

station, at the beginning of each MV feeder, where the protection systems are normally

installed. The current magnitude information is also needed for the automatic on-load

tap changer in HV/MV transformers for voltage regulation. The measurements of a

typical smart meter include the node voltage, feeder current, power factor, active and

reactive power, energy over a period, total harmonic distortion as well as load demand,

etc. The intelligent devices for data collection in smart grid are listed as Table 2.

Data communication techniques in smart grid

The communication infrastructure of the smart grid is composed of three types of net-

works: home area network (HAN), neighborhood area network (NAN) and wide area

network (WAN) as shown in Fig. 2 (Baimel et al., 2016). The functions and characteris-

tics of the above communication infrastructures are summarized in Table 3.

Basic types of communication technologies for smart meters include wired and wireless

infrastructures. The wireless communication technology allows the data center to gather

measurement information from smart meters with low costs and simple connections

while it may face the electromagnetic problem. Power line communication (PLC) is a

wired communication technology by add a modulated carrier signal to the power cables

and already successfully implemented in power system. The existing communication

Fig. 1 Data Sources of the Grids
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technology include ZigBee, WALN, cellular communication, WiMAX, PLC, etc. (Baimel

et al., 2016).

As one of the first countries for smart metering infrastructure development, Italy has

deployed smart meter to nearly all the customers with the PLC technology to transfer

smart meter data to the nearest data concentrator located in the MV/LV substation.

Then these data are sent to the DSO’s data centers for recording and data analysis.

Table 2 Intelligent data collection devices in smart grid

Intelligent device Technology Application

Advanced metering
infrastructure (AMI)

Integration of smart meters, data management
systems and communication networks to provide
bidirectional communication between customers
and utilities.

Remote meter configuration,
dynamic tariffs, power quality
monitoring and local control

Phasor measurement
unit (PMU)

Real-time measurements (30 to 60 samples/
second) of multiple remote points with a
common time source for synchronization

Electrical waves measurement of
power grid

Wide area monitoring
system (WAMS)

An application server to deal with the incoming
information from PMUs

Dynamic stability of the grid

Remote terminal unit
(RTU)

A microprocessor-controlled device that
transmitting telemetry data

Information collection of system
operation status

Supervisory control
and data acquisition
(SCADA)

Both manual and automatic System monitoring, event
processing and alarm

Intelligent electronic
device (IED)

Monitoring and recording status changes in
the substation and outgoing feeders

Combination of different relay
protection functions with
measurement, recording and
monitoring

Fig. 2 Smart grid communication infrastructure

Zhang et al. Energy Informatics  (2018) 1:8 Page 6 of 24



There are around 30 million meters and 400,000 secondary substation concentrators

installed (Bahmanyar et al., 2016).

Data analysis techniques
The most important stage of the big data processing system is data analysis, which is

the basis for discovering valuable information and supporting the decision-making (Fan

et al., 2018; Cheng et al., 2018). There are several similar concepts relevant to data ana-

lysis listed in Table 4.

From a general point of view, the data analytics or data mining is the computational

process to reveal the potential relations between variables with the techniques includ-

ing database, statistics, pattern recognition, machine learning, etc. However, due to the

diverse sources, the collected data sets may have different levels of quality in terms of

noise, redundancy and consistency.

Data preprocessing

The data pre-processing techniques are necessary to improve data quality as shown in

Fig. 3.

Data integration techniques aim to aggregate data collected from disparate sources in

an effective way with a unified view (Roya et al., 2018). For example, when combining the

datasets of weather condition records and power system interruption events, the attribute

of “date time” would appear twice. But apparently only one attribute of “date time” is

needed for the following data analytics process. The same attributes with different name

as well as the different attributes with the same name is to be identified in this process

(Lim et al., 1996). Normally, the correlation analysis is used in the redundancy

Table 3 Summary of communication infrastructure in smart grid

Type of network Function Characteristic

HAN Enabling the communication among smart
home or office devices and smart meters for
local energy management

Deployed at house or small office with a
relatively low transmission data rate (less
than 1 Kbps)

NAN Consisting of several HANs for energy
consumption data aggregation and storage
at load data center (LDC)

Deployed within area of hundreds of meters
with up to 2Kbps

WAN Enabling the communication of all smart
grid’s components

Deployed within tens of kilometers with high
data transmission capability up to few Gbps

Table 4 Concepts related to data analysis

Concept description

Statistics The study of data collection, analysis and interpretation with mathematics methods
which may discover potential relations based on some hypothesis

Machine learning A kind of technique for understanding the law in the data as well as extracting useful
information with the help of computers automatically instead of humanity

Data mining Computing data for discovering valuable information in large data sets with knowledge
of statistics, machine learning and database system.

Pattern recognition A branch of machine learning that focuses on the regularities in data

Deep learning A branch of machine learning based on complex structure of neural networks

Artificial intelligence The study of intelligent systems and agents with the ability of learning from
circumstances and solving problems
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identification to abandon the highly correlated attributes and reduce the size of datasets.

In most cases, the datasets would contain some missing values which influence the results

of data analytics. Deletion or interpolation are the frequent techniques to solve such kind

of problems. As to the abnormal values, the first step is to check whether this is rational

based on the professional knowledge for the application. If it is caused by an error in

sensors or data processing platform, we can treat it as a missing value or try to find the

real value, otherwise it is supposed to be kept in the dataset as a “black swan”. The loga-

rithm is an effective way to “correct” the distribution shape of data with severe skewness,

because some data analytics algorithms are sensitive to imbalanced data. New attributes

such as the temperature difference can be calculated in the pre-processing step if there is

only maximum and minimum value of temperature in the initial dataset. The new con-

structed attributes are usually helpful to improve the accuracy of data analytics results.

Data analytics techniques

The most frequently used data mining or machine learning algorithms are usually

categorized as supervised or unsupervised learning depending on whether there is a

label attached to each item in datasets as shown in Table 5. For the supervised learning

algorithms, the data analytics model can be trained based on the given data to discover

the relation between data attributes and the corresponding categories or values. While

for those without labels, the data analytics model is usually designed to recognize the

possible groups among all the items (Di Zhua & Zhang, 2018).

Procedures of data Mining in Smart Grids

As shown in Fig. 4, the main procedure of data analytics in smart grid is to extract

valuable information from historical data for guiding the operation and maintenance

with the comparison to real-time data (Siryani et al., 2017). The huge amount of data

collected from smart meters and sensors are arranged and stored with data manage-

ment techniques. After preparation, the mathematical model can be established

Fig. 3 Data Pre-processing Techniques
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through data mining techniques based on the clean data. With the input of real-time

measurements, the state status can be evaluated in the derived model, which provides

the possible schemes to guide practical actions and solve potential problems.

Big data analytics in smart grid
Fault detection

The carbon emission reduction and sustainability of environment are the driving force

and construction purpose of smart grid, which is designed in a decentralized structure.

The employment of distributed generator units in modern power distribution system now

provides an effective means for the utilization of widespread renewable energy such as

Table 5 Data Analytics Algorithms

Category Algorithm description

Supervised Learning Decision tree A non-parametric method with a tree-like method whose
leaves represent class labels and branches represent
conjunctions of features

Naive Bayes A probabilistic method based on Bayes theorem with
the assumption of independence between every pair
of features

Support vector
machine classifier

An algorithm to find a separating hyperplane between
the two classes by mapping the labelled data to a
high-dimensional feature space

K Nearest Neighbor A non-parametric method based on the minimum
dissimilarity between new items and the labelled items
in different classes

Random Forest An algorithm consisting of a collection of simple tree
predictors independently for the estimation of the final
outcome

Unsupervised Learning K-means An unsupervised learning method with a given number
of clusters to sort the data based on the average value
of data in each group as the centroid

K-medoids An unsupervised learning method similar to k-means by
assigning the centroid of each group with an existing
data point instead of the average value

Hierarchical Clustering An alternative approach which aims to build a hierarchy
of clusters in a dendrogram without a given number
of clusters

DBSCAN A density-based clustering algorithm to identify clusters
with specific shape in distribution

Expectation-Maximization An iterative way to approximate the maximum likelihood
estimates for model parameters

Correlation FP-Growth Algorithm An efficient method for mining the complete set of
frequent patterns with a special data structure named
frequent-pattern tree with all the association information
reserved

Apriori Algorithm A classical data analytics algorithm to discover the potential
association rules among frequent items

Dimensionality
reduction

Principal Component
Analysis

An orthogonal transformation of data with a new
coordinate system with the greatest variance projected to
the first coordinate

Self-organizing Map A type of artificial neural network for a low-dimensional
representation of the training data space

Random Matrix An algorithm which reveal potential regulations with
high order matrices for massive data by eigenvalue
analysis
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wind and solar energy. These emerging microgrids are vital for the expectation of

a low-carbon society. Moreover, the close distance between the generator and loads

in microgrid improves the reliability of power delivery and reduces the power

transmission loss. The ability to operate in an island mode also protects the load

from damages caused by power system including voltage fluctuation, frequency

deviation, etc. (Mishra et al., 2016).

However, the intermittent characteristic of renewable energy increases the uncertainty

in power grid, whose typical solution is to use inverter interfaced distributed generators

(IIDGs) for a better power quality. In contrast with the traditional bulk generators like

large-volume thermal, nuclear or hydro generators, the much lower inertia of IIDGs is a

severe potential threat when the faults in microgrids cannot be detected and cleared in a

short time due to the limited current carrying capacity. Most of the traditional techniques

relying on the detection of overcurrent and negative sequence current origin from the

large-scale centralized power system and seem less effective in microgrids. A statistical

classifier-based protection scheme using local current measurements is proposed by

applying the wavelet transform and the decision tree (DT) model in (Mishra et al., 2016).

The wavelet transform can decompose the signal in time-frequency domain with the time

localization reserved. Energy, Shannon entropy and standard deviation of the wavelet

coefficients which contain the information during transient events are calculated. Finally,

15 statistical features extracted from the current data for one cycle by sequence analyzer

and wavelet transformation are fed into the DT models for fault detection and classifica-

tion. A differential protection scheme for microgrid is proposed in (Kar et al., 2017) with

the most sensitive features at both ends of the respective feeder processed by the discrete

Fourier transform. These differential features are then utilized in the decision tree-based

data-mining model for determining the final relaying decision.

For a grid-connected microgrid, the severe weather conditions or grid blackouts may

trigger an unintentional islanding accident, which threats the safety operation and causes

technical issues. Artificial neural networks (ANNs) are trained in (Hashemi et al., 2017)

with features extracted from the differential transient of the rate of change of frequency

(ROCOF) signal in order to identify islanding accidents. A support vector machine (SVM)

classifier is established in (Alam et al., 2017) with multiple features extracted from system

variables as an islanding detection approach. The feature extraction process is imple-

mented with a sliding window whose width is optimized for the highest detection rate.

AMI

Fig. 4 Example of big data analytic procedures in smart grid
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As a real-time social sensor for the smart grid, social media like Twitter or Facebook

could contain potential information indicating the occurrence and location of power

outages (Bauman et al., 2017). A probabilistic framework is devised in (Sun et al., 2016)

for detecting a targeted event from the fragmented and noisy tweets. The method

shows a good performance in locating accrual outage areas in experiment, which could

be integrated to a social data-driven outage management.

Predictive maintenance/condition based maintenance

Distribution automation (DA) is a concept of smart grid which focuses on the operation

and system reliability at the distribution level. A successful DA has the capability to

localize and isolate the faults in distribution system with a reduced restoration time and

improved customer satisfaction. Under the concept of DA, increasing volume of oper-

ational data have been collected from supervisory control and data acquisition (SCADA)

or advanced metering infrastructure (AMI) for state monitoring and fault diagnosis.

Reference (Wang et al., 2017a) proposes an analyzing scheme for preventative mea-

sures to avoid or minimize the outages with the data related to pole mounted

auto-recloser (PMAR). PMAR is a kind of protection intelligent electronic device in-

stalled on the overhead lines of a distribution network which attempts several recloses

after an interruption happened in the downstream of the feeder.

Thanks to the development of ICT technology in power systems, a huge volume of

data can be collected via AMI and communication infrastructures. Power system oper-

ating data, weather information and log data of relay protection devices are processed

as the input of a one class classification system, which is a data-driven model of fault

phenomena based on a hybridization of evolutionary learning and clustering techniques

in (De Santis et al., 2015; De Santis et al., 2017). This fault recognition system is vali-

dated in the medium voltage power grid in Rome. The traditional statistical methods

such as linear discriminant analysis (LDA) and logistic regression are discussed for

mining the relation between power system faults and the features extracted from raw

data (Cai & Chow, 2009).

As a potential threat to the security of transmission systems, the galloping of power

lines can cause structural and electrical failures. After analyzing the impact factors of

galloping, a data-driven model based on SVM and AdaBoost bi-level classifiers is pro-

posed in (Wang et al., 2016a) for early warning. The extreme learning machine (ELM)

algorithm is applied in an intelligent early-warning system for reliable online detection

of risky events in power system in (Zhang et al., 2017). Since the weights in ELM train-

ing are randomly chosen and then determined through matrix computation without it-

erative parameter adjustment, the learning speed is much faster than conventional

algorithms, which is an ideal solution in “big data” cases. The optimal balance between

earning accuracy and warning earliness of the data-driven framework is also discussed.

Reference (Cui et al., 2017) provides a method to extract electrical features from

high-impedance fault current and voltage signals and build an effective feature set

(EFS) via a ranking algorithm. Therefore, only a small number of signal channels are re-

quired to build a statistical classifier for fault detection. Reference (Jiang et al., 2016)

also provides an effective method to reduce the huge volume of PMU data while retain-

ing the critical information for fault detection in power system.
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Transient stability analysis

Transient stability is a critical issue closely related to the safely operation of power system.

However, the increasing demand for electricity, growing penetration of renewable energy

sources and deregulated market force power grid to operate near their secure operating

limits (Liu et al., 2014). Facing with the challenges from a more complex system, transient

stability analysis (TSA) for the study of dynamic behavior taking the electromechanical

and electromagnetic process in power system taken into consideration is becoming a hot

research topic. The transient process and new operating conditions need be calculated

with the TSA technique after a severe interruption in power grid for a comprehensive

protection scheme. Traditional TSA based on the time-domain simulation is not able to

provide universal results due to so many uncertainties.

Under the concept of smart grid, a large amount of data collected via AMI are

involved in the state assessment of power systems to support the energy management,

system operation and decision making. Therefore, efficient summarization techniques

are required for extracting useful patterns and discovering valuable information from

redundant measurements in power system. A DT-based framework is proposed in (Liu

et al., 2014) (Vittal, 2013) for the dynamic security assessment (DSA) in power system

with high penetration of DGs. Two contingency-oriented DTs are trained based on the

databases generated from real-time simulations. One of the well-trained DT is fed with

real-time wide-area measurements to identify potential security issues, and the other

DT provides the online corresponding preventive control strategies to deal with the

problems. In (He et al., 2016) the dominant instability generation group (DIGG) in

power system is identified without time domain simulation since the features adopted

for TSA are extracted from steady-state variables. Reference (Parate et al., 2016) pro-

posed an approach to classify the collected data from smart grid into two classes called

vulnerable and non-vulnerable data sets with the data analytics such as multichannel

singular spectrum analysis (MSSA), principal component analysis (PCA) and SVM. A

framework for online contingency screening is presented in (Dimitrovska et al., 2017)

with respect to first swing transient stability. The large spectrum of pre-fault operating

state variables and critical clearing times of several contingencies are collected to com-

pose a dataset for pattern recognition methods. The metric which can be used for oper-

ating condition evaluation is developed through PCA.

In addition to the renewable energy micro-sources distributed in smart grid (SG), the

grid-connected high capacity wind farms are also widely accepted and applied for an

effective utilization of pollution free and abundant nature resources. The improvement of

technologies for large wind turbine generators and high capacity power converters accel-

erate the amount of wind energy integration into power system. To address the potential

deterioration and stability problem caused by the large integration of wind energy to

power grid, reference (Andalib-Bin-Karim et al., 2017) proposed data-driven analytics to

determine the Q-V characteristic curve at the point of interconnection of the wind farm

with valuable information for voltage stability extracted. Without prior knowledge of the

system configuration and parameters, different curve-fitting techniques are adopted in a

real case study in Canada.

Power swing is the oscillation of power flow on transmission lines when the

angles of rotors of synchronous machines are advancing or retracting to each other

which may cause a large disturbance. Heavy load shedding, generator triggering
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and short-circuit faults clearance are all the potential reasons. Reference (Sweta-

padma & Yadav, 2016) used a decision tree-based scheme for fault detection and

classification during power swing within half cycle time. The decision tree

algorithm is also adopted in (Jena & Samantaray, 2016) with 21 potential features

extracted from phasor measurement unit (PMU) data after Kalman filter process

for intelligent relaying in transmission system. A probabilistic framework is

established in (Papadopoulos et al., 2018) based on the decision tree and hierarch-

ical clustering for dynamic behavior of power systems after an occurrence of inter-

ruption. The unstable groups which may lose synchronism can be successfully

detected.

Although the PMU and WAMS provide high-resolution datasets for engineers to

discover patterns of normal and abnormal operation, the low probability of events

that occur in power grid leads to a severe class imbalance problem. The conventional

data analytics are difficult to extract the features of rare instability from massive syn-

chrophasor measurements. Reference (Zhu et al., 2017) develops a systematic imbal-

ance learning machine for online short-term voltage assessment. A forecasting-based

nonlinear synthetic minority oversampling technique is adopted in the cost-sensitive

learning algorithm to deal with the class skewness. To take full advantage of massive

power grid data, the random matrix theory is introduced in (Wei et al., 2016; XUXi-

nyi, 2016) with a high-order data-driven model to present the power system parame-

ters and external data like meteorological information. The eigenvalue-based analysis

method is proven to deal with online transient state analysis. An online monitor of

instantaneous electromechanical dynamics in transmission system is presented in

(Zhang et al., 2016a) based on the parallel computing and k-nearest neighbors

learning algorithms. The information that indicating time-varying correlations of

power generation and consumption is extracted with the proposed framework. An

active learning solution is proposed in (Malbasa et al., 2017) to solve the problems for

online data-driven model updating and offline training, which provide an efficient

way for data sets preparation. A novel PMU-based robust state estimation method is

proposed in (Zhao et al., 2016) for online state estimation of a power system under

different operation conditions with the help of an adaptive weight assignment func-

tion to dynamically adjust the measurement weight according to the large disturbance

revealed from PMU data. A similar framework is proposed in (Shah et al., 2017) to

enable the utility company for real-time data processing. The core vector machine

(CVM) is used for a two-class classification in (Wang et al., 2016b) to process the

huge amount of PMU data from power grid. The CVM model is trained offline with

24 features extracted from the raw data for an online assessment evaluation for the

TSA problem. The transient stability boundary of large-scale power systems is

analyzed in (Lv et al., 2017b) by a statistical nonparametric regression methodology

based on the critical clearing time to determine whether a steady-state condition can

recover after a given fault.

Electric device state estimation/health monitoring

As a vital component for electrical energy conversion, a failure in power transformers may

cause catastrophic blackouts in power system (Reinhardt & Reinhardt, 2016). Therefore, the
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life-cycle management of power transformers based on an accurate estimation attracts a lot

of researches for a more stable and reliable power grid. The existing diagnosis methods for

power transformers mainly focus on limited state parameters with the threshold-based diag-

nosis. To take information of system operation and meteorological conditions into state

estimation analysis, three classical algorithms for association rule mining are discussed in

(Sheng et al., 2018), namely, Apriori, AprioriTid and AprioriHybrid. The rule mining

methods are combined with probabilistic graphical model for potential failure prediction.

In most commercial buildings, the building automation system (BAS) are designed

and adopted to control the heating, ventilating and airing conditioning (HVAC) system

to maintain proper temperature and humidity for the occupants. If the indoor smart

grids can be monitored on a continuous or regular basis, a proper operation strategy

may be proposed for the improvement of energy efficiency, fault diagnosis and system

reliability. In (Allen et al., 2016) a novel health monitoring system is proposed by the

fuzzy logic for abnormal operating condition detection. The fault signatures for various

fault types are generated by the ANN classification technique.

As the rising number of aging assets in power system is becoming a potential threat

to the safety operation, a lot of failure models are proposed focusing on variables of

aging time or conditions. Reference (Murthy et al., 2004) proposed a failure rate model

for general electric power equipment with the lifecycle data of service age, maintainer,

health index taken into consideration. In order to make the best use of these data, the

stratified proportional hazards model (PHM) is developed as a nonparametric regres-

sion method to process and classify the lifecycle data into multi-type recurrent events

quantitatively (Qiu et al., 2016). The potential risk problem and health condition can

be predicted with the help of this PHM method (Colombo et al., 1985).

Power quality monitoring

As a worldwide issue, Electric power quality (PQ) refers to the magnitude, frequency and

waveform of voltage and current in power system and highly related to the safe operation

of power grid as well as the satisfaction of consumers. With the increasing application of

nonlinear and power electronics based loads and generators, the harmonic distortions

and instable situations frequently appears in power grid. Deep learning is successfully

employed for the classification of PQ events of the electricity networks in (Balouji & Salor,

2017). Instead of sampling the voltage data of the PQ event data like the existing analysis

methods, the image files of the three-phase PQ events are processed for classification by

deep learning techniques. Due to the high cost for installation of advance metering

devices, the conventional electromechanical analog meters still work in some residential

areas and the data analytics-based PQ analysis cannot be properly utilized. Reference

(Tang et al., 2015) presents a framework that collecting electricity information of from

analog meters via image processing techniques. The power consumption information can

then be collected to a cloud server through online data exchange. Under the consideration

of balance between computation capability and the satisfactory performance of the

algorithm, a compact method is presented in (Borges et al., 2016) for feature extraction

from the raw data in smart grid to get information that is highly related to the field of

power quality. A robust and fast processing pattern recognition algorithm is proposed in

power quality events (PQE) classification is illustrated in (Ferhat et al., 2016). The features
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highly correlated to the PQE are extracted with the discrete wavelet transform-entropy

and basic statistical criteria for the establishment of ELM classifier.

Topology identification

Taking the advantage of information layers in smart grid is an effective means to approach

the challenges from the renewable energy sources (RES) in distribution network. The

measurement, monitoring, communication and control of smart grids by advanced

sensors and devices are making the complex network sensible and perceptible. The

randomness of RES and uncertainty of the load are increasing the urgency and necessity

for a comprehensive decision based on huge volume of data collecting and processing.

The SCADA and WAMS provide voltage and power data of smart grid in near real-time

sampling rate (Gungor et al., 2011) (Ghosh et al., 2013). Since the network-constrained

economic dispatch problems are supposed to be solved by the real-time electricity process

in a contemporary whole-sale electricity market, the potential of recovering the topology

of a grid is explored with market data in (Kekatos et al., 2014). Another dynamic solution

for online SG topology identification (TI) is proposed in (Babakmehr et al., 2016) which is

reformulated as a sparse-recovery problem. Grapy theory and probabilistic DC optimal

power flow are adopted for building the network model.

With the purpose for a greener society, the low carbon technologies (LCTs) are

driven by the government by application of heat pumps, photovoltaic, electric vehicles

and other smart appliances in low voltage (LV) distribution networks. Therefore, the

visualization of LV networks with limited metering and data acquisition equipment

attracts increasing research interests. The network load profiling based on the identifi-

cation of representative load profiles of LV systems is an economical alternative

method. A novel three-stage network load profiling method proposed in (Li et al.,

2015a; Li et al., 2015b) aims to evaluate the capabilities of the current LV networks to

accommodate the LCTs by clustering, classification and scaling. The first two stages are

used to identify the load conditions of unmonitored LV systems with similar fixed data

to those monitored LV substations. The contribution factor for each LV template is

then determined by the cluster-wise weighted constrained regression algorithm.

Renewable energy forecasting

The abundant and environmental friendly RES such as wind and photovoltaic energies are

supposed to be the dominant energy source for the next generation of power grid. How-

ever, the randomness and intermittent characteristics are always obstacles for a large-scale

utilization of RES in a stable way. To deal with such enormous challenges and get an

improved dispatch planning, maintenance scheduling as well as regulation, an accurate

and reliable RES forecasting approach has become the hot spot around the world (Ak et

al., 2016). A data mining based method consisting of k-means and neural networks is

proposed in (Wenbin & Peng, 2017). The meteorological information in historical records

are used for clustering approach to classify the days into different categories. Then the

bagging algorithm based neural network is trained to get the forecasting results of wind en-

ergy. Instead of using the neural network, (Ye et al., 2016) utilizes the support vector

regression method to predict the wind speed with the time series historical wind speed

processed by empirical mode decomposition into several intrinsic mode functions and
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residue. In (Yang et al., 2015) a short-term probabilistic wind generation forecast method

is presented based on the sparse Bayesian classification and Dempster-Shafer theory as a

nonparametric approach. Reference (Khodayar et al., 2017) studies the ultra-short-term

wind forecasting with the deep learning method through unsupervised feature learning

from the unlabeled historical wind speed data. The forecasting approach of distributed

solar energy systems from macro- and micro-aspects is discussed in a general way in

(ZHAO et al., 2017) with clustering of capacity and location of PV system. The data-driven

forecasting approach of PV diffusion is proposed based on cellular automation in micro-

scopic analysis. By decomposing the time-series data with discrete wavelet transform, the

proposed recurrent neural network (RNN) model in (Nazaripouya et al., 2016) is developed

for ultra-short-term solar power prediction.

Load forecasting

Like the RES prediction, an accurate short-term load forecasting is the essential basis for

energy management, system operation and market analysis. As is mentioned in (Bunn &

Farmer, 1985; Ni et al., 2016), an increase of forecasting accuracy may bring a lot of

benefits and save the investments. With the emerging active role of customers in smart

grid, the high efficient dynamic electricity market is also based on a good performance of

electricity consumption prediction. Since electricity consumption is affected by the

weather conditions to some extent, reference (Liu et al., 2018) proposed a Map/Reduce

programming framework for distributed load forecasting by partitioning the geographical

area according to local weather information. An extreme learning machine ensembled

with a novel wavelet transform is used for electricity consumption in (Li et al., 2016a) after

a conditional mutual information based feature selection, which is also used in (Ahmad et

al., 2017). To overcome the volatility and uncertainty of load profiles, the recurrent neural

network is adopted with a novel pooling layer to avoid overfitting problems in (Shi et al.,

2017). Rather than the aggregated load forecasting, the energy consumption in a single

house is usually volatile and difficult to be predicted. Driven by the recent success of deep

learning, a long short-term memory recurrent neural network based framework in (Kong

et al., 2017) is applied to the residential load forecasting as the latest deep learning tech-

niques. A hidden mode Markov decision process model is developed in (Li & Jayaweera,

2015) to the forecast the customers’ real-time behavior. Reference (Moreno-Munoz et al.,

2016) analysis the emerging trends and challenges in the new era of using social media

through mobile apps to improve their customer engagement and load forecast. Reference

(Cai et al., 2017) considers the impact of social activities on the prosumers’ arrangements

for their generation and consumption patterns and further discuss the overall impact on

the final load and the network usage.

Load profiling

Load profiling is a way to describe the typical behavior of electric consumption, which

is usually represented in time domain for load forecasting, demand-side management

and capital planning (Wenhao et al., 2016; Claessens et al., 2016; Granell et al., 2015;

Singh & Yassine, 2017; IMRAN et al., 2016). As an effective method for energy man-

agement, the tariff structure designed before is usually based on the type of activity,

which is not able to indicate the electrical behavior in a comprehensive way (Ahmed et
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al., 2017). Reference (Bo et al., 2016) utilized a two-stage clustering algorithm to classify

customers according to their load curves. In the first-stage, the load patterns are

clustered into different categories according to the evaluation index, and then the

customers are classified according to the comprehensive load shape factors defined in

the first-stage with SVM algorithm. In contrary to the time domain analysis (Al-Otaibi

et al., 2016), the DFT method is adopted in (Zhong & Tam, 2012) to discover the infor-

mation of customers’ behavior, which can be accurately reconstructed using limited

frequency components and still satisfy the strict requirements. The residential electri-

city consumption usually can be divided into three parts: fixed, regulable and deferrable

loads, which is the theoretical basis for the optimal energy management of the demand

response (DR) mechanism. DR is used to initiate a change in the customers’ consump-

tion or feed-in pattern with an incentive from costs or ecological information.

Reference (Li et al., 2017) utilizes the spectral domain analysis methods DWT and DFT

to decompose smart metering data with the extracted coefficients. Results show that

DWT performs better than DFT in individual level while DFT is more suitable to be

used in the analysis at a highly aggregated level. A learning based DR strategy combin-

ing data analytics and optimization is developed for regulatable loads focusing on the

residential HVAC (Zhang et al., 2016b). Because when the customers’ behavior is

obtained, an optimal DR technique for household HVAC unit can be designed based

on weather prediction, day-ahead electricity price. Reference (Jindal et al., 2016) takes

the advantage of the social networking to minimize the peak power consumption of the

electrical appliances by proposing a “family plan” approach which leverages the social

network topology and statistical energy usage patterns of the users.

To better understand the information behind the stochasticity and irregularity of

residential energy consumption, an in-depth analysis is presented in (Grindrod, 2016) with

a finite mixture model-based clustering technique. The self-organizing maps (SOM) as a

type of ANN is used in (Verdú et al., 2006) to reduce the dimension of collected raw data

for load pattern extraction. The frequency-domain data analytics in the SOM shows a su-

periority over the time-domain data with a higher accuracy in new customer classification.

As one of the main tasks of load profiling, a better understanding of the flexibility of cus-

tomers’ electricity consumption is the basis for DR, which can be used to release the pres-

sure of distribution system in terms of thermal and voltage constrains. A multi-resolution

analysis method based on wavelet analysis is proposed in (Li et al., 2016b) to extract spec-

tral and time-domain features of load data. Different permutations of typical load profiles

provide a more flexible load profiling with a reduction of computation. With the

popularization of electric vehicles (EVs), learning the charging load patterns of them is be-

coming a key step for the stability of power grids. An unsupervised clustering algorithm is

used in (Munshi & Mohamed, 2018) to extract the pattern of EV charging loads with only

the real power measurements. Furthermore, the flexibility of the collective EV charging

demand is analyzed with Bayesian maximum likelihood. References (Tong et al., 2016;

Wang et al., 2017b) focus on the problem brought by the huge load profile data with the

popularity of smart meters installed at the household level, which poses challenges to the

communication and storage of measurement data as well as the vital information

extraction from massive records. K-SVD sparse representation technique is used to

decompose the load profiles into several partial usage patterns for a linear SVM based

method to recognize the type of customers.
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Load disaggregation

Load disaggregation is also called non-intrusive load monitoring (NILM), aiming to segre-

gate the overall load profiles at household level into the energy consumption of individual

appliances. Unlike direct appliance monitoring framework, the NILM from only one

smart meter installed in the house is easier to be accepted by the customers (Liang et al.,

2010a; Liang et al., 2010b; Gillis et al., 2016). Since different types of the household

electric appliances have different potential to be involved in the DR program, the

appliance-level load profiles allow the utilities to understand the customers’ behavior bet-

ter and helps to develop a more energy efficient strategy. The early techniques for NILM

are mainly based on the detection of “edge” in power signal to indicate the state “on” or

“off” of a known device (Sultanem, 1991). The more effective and complex appliance

signatures are then proposed with the harmonics computation of steady-state power or

current (Berges et al., 2009; Lee et al., 2004). The hidden Markov models (HMMs) are

adopted in (Kong et al., 2018) with the segmented integer quadratic constraint program-

ming to disaggregate the household power profile at an average frequency of 0.3 Hz into

the appliance level. In (Henao et al., 2017) a NILM approach based on the subtractive

clustering the maximum likelihood classifier is proposed for a low-sampling-rate date set

of 1 Hz sampling rate. The appliances are modeled as ON/OFF states in this event-based

load disaggregation algorithm. As a single channel blind source separation problem, the

dictionary learning based approaches can be used in NILM. A deep learning approach

with multiple layers of dictionaries trained for each device as “deep sparse coding” is

utilized in (Singh & Majumdar, 2017; Zico Kolter et al., 2010). Compared with HMM, the

latter method is not suitable for real-time application. By combining the decision tree and

nearest-neighbor algorithms, the semi-supervised machine learning is applied to the

NILM problem in (Gillis & Morsi, 2017) with the signal features extracted by matching a

set of net wavelets to the load classes.

Non-technical loss detection

The nontechnical loss (NTL), which is probably caused by the electrical theft or errors

in accounting, is one of the prominent concerns that have plagued the power system

utilities for a long time (Leung, 2016; Zhan et al., 2016; Non-Cooperative Game Model

Applied to an Advanced Metering Infrastructure for Non-Technical Loss Screening in

Micro-Distribution Systems, 2014; Guerrero et al., 2018). According to the survey

published by Northeast Group, LLC, the loss caused by electricity theft reached more

than $89.3 billion in the world every year (PR Newswire, 2014). Furthermore, large

scale electricity fraudulent behavior may cause severe imbalance problems in power

system. Therefore, the effective framework to detect the NTL in the complex power

grid has appealed many research interests. A comprehensive top-down scheme based

on DT and SVM is proposed in (Jindal et al., 2016). DT is trained with various features

including heavy appliances, number of persons, weather conditions to get the expected

value of electricity consumption for the customer during a particular time. Then the

calculated consumption along with other features are fed to the SVM classifier which is

already trained based on the collected dataset to determine whether the customer’s

behavior is normal or fraud. In (Zanetti et al., 2017) the fraud detection is triggered

when a discrepancy is detected between energy supplied from the power system and
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collected information from smart meters. The anomalies in consumption patterns are

discovered with the fuzzy clustering algorithm.

Open issues for the application of big data analytics in smart grids

Even though there are increasing researches on the big data analytics in smart grids,

the deployed applications are few. There are still many open issues needed to be

addressed before the techniques can create implications in reality.

With the fast deployment of smart meters and advanced sensors, huge amount of data

with multiple types and structures from deference sources with a variety of protocols are

generated every second. However, the lack of standard data format for the information

software and database structures, as well as the issue of interoperability of different infor-

mation and communication systems deployed in the smart grids, make it complicated and

difficult to obtain data for real application. The traditional way of isolated storage of the

data in various systems also increases the barrier for data sharing among applications.

As a conventionally sensitive industry, most of the data generated in the smart grid

are considered as confidential or related with privacy issues; therefore, it is impractical

for researchers to conduct highly relevant studies which can be smoothly transferred

later on into deployment. Thus, most of the researches are still about the algorithms

which are tested with ideal data, and hence stay in the Ivory tower.

In addition, due to the lack of strategic vision, top design of application, large invest-

ment in reality, combined with the short-sighted recognition of the value of the data,

the applications of big data in real systems are growing very slow. Even though, the

majority of utility companies showed great interests in the big data analytics and their

application in their business, they are still waiting to see convincing results before they

are willing to put more efforts and investment.

Last but not least, the big data analytics in smart grids is a comprehensive and

complicated field, which does not only depend on the mathematic algorithms or tech-

niques, it also depends on the operation of the systems, the behaviors of vast number

of autonomous users, the ICT technologies, the expertise of the field, etc. Therefore, it

needs the synergy among experts from different fields if we would like to see the bene-

fits of it in the smart grids.

Conclusion
In this article, the big data in smart grid and the corresponding state-of-the-art analysis

methods have been reviewed and discussed. The data which may contain valuable

information are collected from smart meters installed in the power system, electricity

market, GIS, meteorological information system, social media, and so on. The purpose

of advanced ICT technology in power system is to associate the traditional physical

parameters in power system to the external variables to discover potential regulations

and scientific problems. Eleven applications of data analytics mentioned in the paper

are nearly involved in every aspect of smart grids, including the operation, mainten-

ance, load/output forecasting, protection as well as fault detection and location. After

extracting the useful features from raw information with the background knowledge of

electrical engineering, typical data analytics methods, such as neural network, k-means,

and support vector machine, could be widely applied. Secure and efficient operation
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strategies as well as optimal business decisions are supposed to be made with the data

analytics from a more unified view.

With more advanced ICT technologies applied in power system, the fast and efficient

data analytics framework for huge volume of data would become a challenging require-

ment. Moreover, the cyber security and privacy protection could become as important

as a relay protection in power system. Even though the interactive communication with

customers provides a potential solution for more accurate demand response, it also

increases the difficulties in consumption behavior analysis at the same time. A secure

and high-performance data analytics platform would be crucial for the social welfare

and power companies’ interests in the future. As the application of data analytics in

smart grids is a comprehensive and complicated field, involving mathematics, ICT

technologies, computer science, electrical engineering, etc., thus, it needs the synergy

among experts from different fields as well as the strategic visions for the top designs.
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