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a b s t r a c t

The dispersibility of unfunctionalized multi-walled carbon nanotubes in a polymer matrix is studied
focusing on the role of the morphology and structure of the primary aggregates. The particles, synthe-
sized by fluidized bed catalytic chemical vapor deposition and purified through a scalable one-pot
method, are dispersed in polystyrene by melt mixing. The filler percolation threshold, assessed through
rheological analyses and dielectric spectroscopy, is one order of magnitude lower than that of commer-
cially available nanotubes with similar features. This is ascribed to the hierarchical structure of the pri-
mary aggregates, which facilitates both the infiltration of the polymer in the earlier stages of mixing and
the pulling out of the nanotubes required for their individualization. The high dispersibility is not
achieved to the detriment of the nanotube integrity, and the nanocomposites exhibit enhanced thermal
stability and dynamic mechanical properties at low amounts of filler.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-SA license. 
1. Introduction

The extremely high stiffness, electrical and thermal conductiv-
ity make carbon nanotubes (CNTs) an ideal candidate as filler for
polymer nanocomposites (PNCs) of technological interest. The
large-scale synthesis of CNTs usually results into bundles of hun-
dreds of microns formed by thousands of individual nanotubes
held together by physical entanglements and Van der Waals forces.
This prevents an efficient transfer of the CNT superior properties to
the nanocomposite. Therefore, the commercial breakthrough of
CNT-based nanocomposites requires the overcoming of the diffi-
culties related to the de-agglomeration and dispersion of the pri-
mary aggregates during the mixing with the polymer. A good
nanoscale dispersion is often related to a low percolation thresh-
old, Uc. The latter, however, may hide nanotube breakage that
compromises the macroscopic properties of the PNC [1]. On the
other hand, higher Uc are not necessarily coupled with low perfor-
mances, the PNC properties being the result of a complex interplay
among various features of the nanotubes [2].

Basically, the dispersion of CNTs inside polymer melts starts
with the infiltration of polymer chains into the aggregates, which
crack and erode, and it ends with the pulling out of single nano-
tubes in the late stages of the process [3]. To expedite the disper-
sion, the surface of the nanotubes can be functionalized via a
chemical reaction that enhances the affinity with the host polymer
and/or reduces the tube-tube attractive forces [4]. On the other
hand, dealing with unfunctionalized nanotubes that are them-
selves easy to disperse would be preferred for a large-scale produc-
tion of CNT-based nanocomposites [5]. To reach this goal,
understanding the influence of the morphological features of the
nanotubes and their aggregates in the dispersion process is of cru-
cial importance. Numerous studies have compared the properties
of PNCs based on nanotubes prepared through different synthesis
methods [6], having different aspect ratios [7,8] and different mor-
phology of the primary aggregates [2,9,10]. A series of focused pa-
pers by Pötschke and co-workers ultimately correlated the ease of
dispersion of CNTs in polymer melts to a low bulk density of the
initial aggregates [11–13]. The relationship, however, is not univo-
cal, the bulk density being only one of many parameters which
play a role in determining the actual dispersibility of CNTs [14].
Among others, in this paper we focus on the morphology and struc-
ture of the primary aggregate, interpreted as the space arrange-
ment of the nanotubes over various length scales, from the
texture of the grain down to the entanglements among the CNTs.
More in detail, unfunctionalized multi-walled carbon nanotubes
(MWCNTs) have been synthesized by fluidized bed catalytic chem-
ical vapor deposition (FBCCVD) and purified by means of a novel,
potentially up-scalable three-step process. The dispersibility in
polystyrene (PS) of the resulting powder, whose grains exhibit a
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Fig. 1. Normalized size distribution functions of synthesized (blue) and commercial
(red) CNT aggregates. Solid lines are Lognormal and Gaussian fittings, respectively.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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peculiar hierarchical structure, has been compared to that of com-
mercially available nanotubes with similar features but differently
arranged in the primary aggregates. PS was deliberately selected as
its high chain stiffness is known to hinder the infiltration process
within the pristine aggregates [3]. PNCs at different particle load-
ing have been prepared through a deliberately mild masterbatch
melt mixing route. The state of dispersion of the two kinds of CNTs
has been investigated through rheological analyses, dielectric spec-
troscopy and transmission electron microscopy (TEM). The high
dispersibility of the synthesized nanotubes is proved by a very
low filler percolation threshold, comparable with those attainable
through much more intensive mixing procedures. The PNCs also
exhibit high thermal stability and dynamic mechanical strength
at low filler content, which means that the ease of dispersion is
achieved preserving the structural integrity of the nanotubes.
Our results demonstrate that the synthesis of easily dispersible
CNTs represents a viable route for the large-scale production of
PNCs of technological interest.
2. Experimental

2.1. Materials

The polymer matrix is atactic polystyrene (PS, Polimeri Europa,
Italy) with average molecular weight Mw = 125 KDa, polydispersity
index Mw/Mn = 2, zero-shear rate viscosity g0 = 1.7 � 103 Pa s at
temperature T = 200 �C and glass transition temperature
Tg = 100 �C. Unfunctionalized MWCNTs are produced by FBCCVD
and then purified via a novel three-step process entirely carried
out in a single device (details are given in the next section). Com-
mercial grade MWCNTs (Baytubes� C150P, Bayer MaterialScience,
Germany), produced by chemical vapor deposition using a metal
catalyst, are used as reference material. The main features of the
synthesized and commercial nanotubes are summarized in Table 1.
2.2. Synthesis of the nanotubes and preparation of the nanocomposites

Unfunctionalized MWCNTs were synthesized in a large scale
(500 g/batch) fluidized bed reactor (diameter 15 cm, height
100 cm) using a c-alumina substrate impregnated with iron as cat-
alyst [17], ethylene as carbon source, hydrogen and nitrogen as flu-
idizing agents. The reaction was carried out at T = 600 �C and at
atmospheric pressure. The reaction was monitored by an on-line
gas-chromatograph (Double Channel MicroGC 3000 Agilent) to
evaluate in real-time the ethylene conversion and the yield of
the reaction; the average duration of the synthesis was about
Table 1
Main features of the two kinds of MWCNTs.

Property Synthesized MWCNTs Commercial MWCNTs

Carbon purity >99%a P95%b

Outer mean diameter �10 nmc �10.5 nmd

Mean length �720 nme �770 nmd

ID/IG ratiof 1.21 ± 0.15 1.22 ± 0.04
Aggregates average size 103 ± 63 lmg 382 ± 122 lmg

Bulk density 90–120 Kg m�3h 130–150 Kg m�3b

a From TGA analyses.
b Taken from Ref. [15].
c From image analysis of TEM micrographs.
d Taken from Ref. [2].
e From image analysis of TEM micrographs following the same procedure as

described in Ref. [16].
f Ratio between the intensity of the D (1280–1350 cm�1) and G (1580–

1600 cm�1) bands as deduced through Raman spectroscopy.
g From particles size analysis.
h According to EN ISO 60 norm.
120 min. Then, the pristine MWCNTs were purified in a three phase
slurry bubble vessel through a three-step liquid phase acid treat-
ment: (i) refluxing sulfuric acid solution to dissolve catalyst parti-
cles; (ii) water washing to remove the amount of acid; (iii) drying
to remove the remaining water. PNCs at different filler content (U)
were prepared by a two-step melt mixing route. First, a master-
batch at U � 6 wt.% of MWCNTs was produced using a co-rotating
conical twin-screw micro-compounder (Xplore, DSM). The result-
ing sample was then diluted by melt mixing with neat PS to adjust
Fig. 2. SEM micrographs of the primary aggregates of the (a–c) synthesized and (d–
f) commercial CNTs on different length scales.



Fig. 3. (a and b) x-Dependent elastic modulus and (c and d) f-dependent real conductivity of the nanocomposites filled with (a and c) synthesized and (b and d) commercial
nanotubes at different compositions. From bottom to top: (a and c) U = 0.07, 0.20, 0.42, 0.73, 0.95, 1.36, 1.81 wt.%; (b and d) U = 0.11, 0.32, 0.62, 0.80, 1.13, 1.44, 2.07 wt.%.
Solid lines in a and b represent the G0 of the neat PS; in c and d are guides for the eye. Full symbols represent the G00 (a and b) and the rDC (c and d) of the samples above the Uc.
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the composition. The extrusions were all performed at T = 200 �C in
nitrogen atmosphere at a screw speed of 200 rpm, corresponding
to average shear rates of �75 s�1. Finally, the extrudate was com-
pression-molded into disks (diameter 40 mm, thickness �1.5 mm)
for the subsequent analyses.

2.3. Characterization

Transmission electron microscopy (TEM, Tecnai G2 Spirit Twin
T-12 by FEI) was carried out on the pristine powders to evaluate
the diameter and length of the single CNTs. Scanning electron
microscopy (SEM, ZEISS EVO 50 EP apparatus) was performed on
the dry CNT powders to investigate the morphology of the primary
aggregates. A CILAS 1180 L particle size analyzer was used to assess
the dimensions of the primary aggregates. TEM analyses on the
PNCs were performed using a Philips EM208 apparatus. The obser-
vations were carried out on �150 nm-thick slices cut at room tem-
perature using a diamond knife. Rheological tests were performed
in dry nitrogen atmosphere at T = 180 �C using a stress-controlled
rotational rheometer (ARG2, TA Instruments) in parallel-plate
geometry (diameter d = 40 mm). First, low-frequency (x = 10�1 -
rad/s) time-sweep experiments were carried out. After the reach-
ing of the steady state, the elastic (G0) and viscous (G00) shear
moduli were measured as a function of mechanical frequency in
the linear regime, which was previously evaluated for each compo-
sition through strain amplitude tests. Dielectric spectroscopy was
performed at room temperature on the disks recovered at the
end of rheological tests. Measurements were carried out using a
rotational rheometer (ARES, Rheometrics Scientific) equipped with
a dielectric thermal analysis tool, constituted by a couple of stain-
less steel parallel plates (d = 25 mm) connected with a LCR Meter
(E4980A, Agilent). The real (e0) and imaginary (e00) parts of the com-
plex permittivity were monitored as functions of the frequency of
the electrical field, f. The measurements were repeated five times
per sample. The real part of the complex conductivity was esti-
mated as r0 = e00�e0�f, where e0 = 8.85 � 10�12 F m�1 is the permit-
tivity of free space. Thermogravimetric analyses were performed
using a Q5000 TGA apparatus (TA Instruments). The samples were
heated up to T = 700 �C at 10 �C min�1 in nitrogen atmosphere. The
onset of thermal degradation, identified as the temperature at
which a weight loss of 5 wt.% occurred (T5%), and the temperature
of maximum rate of degradation (Tpeak) were recorded. The actual
content of nanotubes in the PNCs was estimated as the residual
weight at T = 550 �C. Dynamic mechanical analyses were carried
out using a Tritec 2000 DMA apparatus (Triton Technology Ltd.,
Grantham). The elastic (E0) and viscous (E00) flexural moduli were
measured as function of temperature in single-cantilever bending
mode at a frequency of 1 Hz and with a total displacement of
0.02 mm, which is small enough to be in the linear regime. The
sample bars (10 � 20 � 1 mm3) were heated at 2 �C min�1 from
room temperature. Three independent measurements were carried
out for each sample.



Fig. 4. U-Dependence of the network elasticity (circles) and the DC electrical
conductivity (triangles) for the nanocomposites filled with synthesized (black) and
commercial (blue) nanotubes. Lines are power law fittings. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. TEM micrographs of nanocomposites at (a) U = 0.07 wt.% of synthesized
nanotubes and (b) at U = 0.32 wt.% of commercial ones.
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3. Results and discussion

3.1. Morphology and structure of the primary aggregates

The normalized size distribution functions (SDF) of the dry
powders are reported in Fig. 1 for the two kinds of CNTs. The aver-
age size of the aggregates is much smaller for the synthesized par-
ticles. Such a parameter, however, is not strictly related to the
dispersibility of CNTs in polymer matrices [18]. More important,
the SDF of the commercial nanotubes results much wider. The
small aggregates fill up the space between the big ones, thus affect-
ing the value of bulk density of the powder. The latter is often ta-
ken as indicative of the bulk density of the single aggregate, qa,
which is known to be a relevant parameter in the dispersion pro-
cess of CNTs [13]. Actually, qa only partially reflects the actual
space arrangement of the single nanotubes inside the aggregates,
which ultimately governs the dispersibility. SEM micrographs
showing the internal structure of the two kinds of aggregates are
reported in Fig. 2. The synthesized CNTs are in the form of loosely
packed agglomerates with coarse-grained texture (Fig. 2a), which
is likely to facilitate the infiltration of the polymer in the earlier
stages of melt mixing. Such an ‘‘opened’’ structure persists also
on micro-scale (Fig. 2b), reflecting the presence of interwoven bun-
dles of combed yarns of nanotubes (Fig. 2c). Such an aligned
arrangement on nanoscale is expected to favor the pulling out of
the nanotubes required for their individualization when melt
mixed with polymer matrices. In contrast with the hierarchical
structure of the synthesized particles, the aggregates of commer-
cial CNTs appear as fine-textured blocks (Fig. 2d), whose apparent
dense structure is the result of a random arrangement of highly
entangled, thus difficult to unravel, nanotubes (Fig. 2e and f).

3.2. Estimate of the percolation threshold in the PNCs

The structural and morphological differences between the
aggregates of the two kinds of fillers affect the quality of their dis-
persion within the host polymer. Linear viscoelastic analyses and
Table 2
Rheological and electrical percolation thresholds and corresponding fitting parameters.

G00 ¼ kðU�Ur
cÞ

m

Ur
c (wt.%) k (Pa) m

PS/synthesized CNTs 0.08 ± 0.01 969 ± 17 1.8
PS/commercial CNTs 1.02 ± 0.05 289 ± 16 1.2
dielectric spectroscopy are used to assess the percolation thresh-
olds of the two kinds of nanotubes in the PNCs. Before measure-
ments, the samples have been annealed for about 2 h at
T = 220 �C under gaseous nitrogen. Driven by particle–particle
attraction, the re-agglomeration of the filler eventually results in
time-independent viscoelastic and dielectric properties [19], which
we study as a function of the mechanical and electrical frequency.

The elastic modulus G0, more sensitive than G00 to the state of
dispersion of the nanotubes, is shown in Fig. 3a and b for PNCs
based on synthesized and commercial CNTs, respectively. The
two systems share the same qualitative behavior, peculiar of many
PNCs. In particular, the flattening of G0 at low frequency indicates
the occurrence of a liquid- to solid-like rheological transition due
to the formation of an elastic network of CNTs [20]. The compari-
son between the two families of curves reveals that higher con-
tents of worse dispersed commercial CNTs are required to obtain
comparable enhancements of G0 as those attained in the case of
synthesized nanotubes. Similar conclusions can be drawn looking
at the real part of the complex conductivity shown in Fig. 3c and
d. The appearance of the low-frequency plateau of r0 is indicative
of an insulator–conductor transition, which reflects the formation
of a percolating network of conductive particles. The system based
on the synthesized CNTs experiences such a transition at some U
in the range 0.07–0.20 wt.%, whereas the critical content of the
rDC ¼ r0ðU�Ue
cÞ

t

Ue
c (wt.%) r0 � 106 (S/m) t

± 0.1 0.13 ± 0.05 91.3 ± 34.8 3.1 ± 0.8
± 0.1 1.10 ± 0.09 10.3 ± 5.1 1.7 ± 0.5
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commercial ones falls in the range 0.8–1.13 wt. To estimate more
accurately the percolation thresholds, the percolation theory has
been exploited. Both the network elasticity, G00, and DC conductiv-
ity, rDC, are known to grow with U as:

Y ¼ aðU�UcÞb ðfor U > UcÞ ð1Þ

where Y represents either G00 or rDC, and a and b are parameters re-
lated to the mechanisms of stress bearing or electrical transport
[21]. Eq. (1) has been fitted to the values of G0 and r0 at the lowest
investigated frequencies, which we take as representative of the
network elasticity and DC conductivity, respectively. Incrementally
varying Uc in the composition ranges previously identified, the rhe-
ological, Ur

c , and electrical, Ue
c , percolation thresholds are set as the

values which return the maximum regression coefficient R2. The re-
sults of the fitting procedure are shown in Fig. 4, and the computed
parameters are summarized in Table 2.

Electrical percolation requires direct contact between nano-
tubes, whereas mechanical interactions among particles may take
Fig. 6. U-Dependence of (a) T5% and Tpeak of the nanocomposites filled with
synthesized (squares) and commercial (circles) CNTs. The full triangle represent the
neat PS and the solid lines are guide for the eye.

Fig. 7. (a) T-dependence of E0 and E00 for the neat PS (triangles) and for nanocomposite at
(circles). (b) U-Dependence of E0g for the nanocomposites filled with synthesized (squares
lines are guide for the eye.
place via the mediation of shells of confined or adsorbed polymer
chains. Consequently, in both systems the value of Ue

c results
slightly higher than Ur

c . In any case, the better dispersibility of
the synthesized CNTs clearly emerges from the comparison of
the percolation thresholds. Besides being about one order of mag-
nitude lower than that of the commercial nanotubes, the Uc of the
system based on synthesized particles is among the lowest re-
ported in the literature for polystyrene–CNT nanocomposites, irre-
spective of the adopted compounding technique [22]. We stress
that such a result has been obtained without the optimization of
the processing parameters, whose fine tuning is known to be
important for enhancing the dispersion of CNTs inside polymer
matrices [23]. Finally, the comparison between the values of the
critical exponents m and t reported in Table 2 reveals that both
the strength and electrical conductivity of the network grow with
U more rapidly for the synthesized CNTs. This is ascribed to the
different structures of the percolating networks, which are based
on distinct building blocks. To isolate such basic elements, TEM
analyses have been performed on two diluted samples with com-
parable viscoelastic and dielectric features. Individualized nano-
tubes and small clusters can be noticed in the case of
synthesized particles (Fig. 5a), whereas the presence of bigger
entangled hanks characterizes the sample based on commercial
nanotubes (Fig. 5b). The former, smaller and better distributed in
the space, are expected to be more effective in contributing to
the mechanical and electrical properties of the network.
3.3. Thermal and dynamic mechanical analyses

The very low percolation threshold detected for the PNCs based
on synthesized particles reveals that the nanotubes are well dis-
persed inside the host polymer matrix. To demonstrate that such
a result has not been obtained to the detriment of the integrity
of the CNTs, the thermal stability and dynamic mechanical re-
sponse have been investigated. Nanotube breakage, in fact, would
negatively reflect on the macroscopic properties of the PNCs [11].
The results of TGA are summarized in Fig. 6 in terms of onset of
thermal degradation (Fig. 6a) and temperature of maximum rate
of degradation (Fig. 6b) for the two families of PNCs. Besides being
systematically higher, both T5% and Tpeak grow with U more rapidly
for the nanocomposites based on the synthesized nanotubes.
Again, such a higher sensitivity to filler content reflects a finer
and more homogeneous dispersion of the particles. Similar conclu-
U � 0.4 wt.% of synthesized CNTs (squares) and at U � 2.0 wt.% of commercial ones
) and commercial (circles) CNTs. The full triangle represent the neat PS and the solid
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sions can be drawn for the dynamic-mechanical properties. The
viscoelastic moduli are shown in Fig. 7a as a function of tempera-
ture for the neat PS and two representative PNCs above their per-
colation thresholds. The overall effect of the two kinds of filler is
similar, the moduli of the PNCs being higher than those of the neat
polymer except for E00 at low temperature. The high dispersibility of
the synthesized particles ensures the same enhancements at much
lower CNT loadings. We observe that dealing with small amounts
of particles is also desirable because too large amounts of filler
can deteriorate the ultimate mechanical properties of the nano-
composite [24]. Focusing on the glassy modulus, E0g , which is re-
ported in Fig. 7b as a function of filler content, we still notice a
faster growth with U for the samples based on the synthesized
CNTs. Negligible enhancements of the mechanical properties are
usually observed for melt processed MWCNT-filled composites,
especially for brittle matrices such as polystyrene [25]. Nonethe-
less, an increase of about 50% is obtained upon addition of only
�0.4 wt.% of synthesized CNTs. It is important to stress that such
a result is exclusively due to the reinforcing action of the CNTs.
The amorphous nature of our matrix, in fact, excludes possible con-
tributions of a crystalline phase which may enucleate in the prox-
imity of the CNT walls [26].
4. Conclusions

The dispersibility of MWCNTs synthesized by fluidized bed cat-
alytic chemical vapor deposition and purified through a scalable
one-pot route has been investigated focusing on the role of the
morphology and structure of the primary CNT aggregates. Com-
mercially available nanotubes with the same features but differ-
ently arranged in the aggregates have been used as reference.
Specifically, the synthesized particles are in the form of small
and loosely packed clusters made by interwoven bundles of
combed yarns of nanotubes. Differently, the aggregates of the com-
mercial particles appear as bigger blocks, whose fine-textured sur-
face is the result of a random arrangement of highly entangled
nanotubes. Polystyrene-based nanocomposites at different particle
loading were prepared through a mild masterbatch melt mixing
route. The peculiar hierarchical structure of the synthesized parti-
cles results in a superior dispersibility in the host polymer matrix,
as confirmed by both rheological measurements and dielectric
spectroscopy. In particular, the CNT percolation threshold in the
nanocomposites filled with the synthesized particles is resulted
one order of magnitude lower than that attained with the commer-
cial ones, and is among the lowest reported in the literature for PS–
CNT nanocomposites. Such a result is not achieved to the detri-
ment of the nanotube integrity, and the nanocomposites exhibit
enhanced thermal stability and dynamic mechanical properties.
In particular, a noticeable enhancement the glassy modulus has
been achieved at low amounts of CNTs (�0.4 wt.%) despite the brit-
tle and amorphous nature of the polymer matrix.
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