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1 Introduction

Graph transformation systems (GTSs) are recognised as a powerful specification for-

malism for concurrent and distributed systems [12], generalising Petri nets. Their

truly concurrent behaviour has been deeply studied and a consolidated theory of

concurrency is now available. In particular, several semantics of Petri nets, like

process and unfolding semantics, have been extended to GTSs (see, e.g., [8,26,1,2]).

However, concerning automated verification, while several approaches exist for Petri

nets, ranging from the calculus of invariants [25] to model checking based on finite

complete prefixes [23], the rich literature on GTSs does not contain many contri-

butions to the static analysis of such systems (see [20,21,14]). Interestingly, several

formalisms for concurrency and mobility can be encoded as graph transformation

systems, in a way that verification techniques for graph transformation systems

potentially carry over such formalisms.

This paper describes a framework, developed in [5,6,4], where behavioural prop-

erties of a system described as a GTS can be specified and verified.

A Logic for Behavioural Properties of GTSs. The logic used here to specify

behavioural properties of GTSs is the temporal logic µL2, which can be seen as

a variation of the µ-calculus. The formulae of µL2 are generated by closing state

predicates under temporal modalities (2 and 3), fixed-point operators (µ and ν),

and standard logical connectives. Negation is classical. In turn, state predicates,

which are used to express the graph properties of interest, are formed according

to the monadic second-order logic L2 on graphs, where quantification is allowed

over (sets of) edges (see, e.g., [9].) Interesting graph properties can be expressed

in L2, like the non-existence or non-adjacency of edges with specific labels, and

the absence of certain paths or of certain cycles. Such properties may be used to

represent in the graph transformation model relevant properties of the system at

hand, like security properties or deadlock-freedom.

Approximating the Behaviour of GTSs. A basic ingredient for the verification

of µL2 is a technique, proposed in [5,6], for approximating the behaviour of GTSs

by means of finite Petri net-like structures, in the spirit of abstract interpretation

of reactive systems [22]. More precisely, an approximated unfolding construction

maps any given GTS G to finite structures, called coverings of G, which provide

“effective” (over-)approximations of the behaviour of G.

The accuracy of the approximation can be chosen by the user and arbitrarily

increased. Essentially one can require the approximation to be exact up to a certain

causal depth k, thus obtaining the so-called k-covering Ck(G) of G. The coverings

are Petri graphs, i.e., structures consisting of a Petri net with a graphical structure

over places. Each Ck(G) over-approximates the behaviour of G in the sense that

every computation of G is mapped to a valid computation of Ck(G) and every graph

reachable from the start graph can be mapped homomorphically to (the graphical

component of) Ck(G) and its image is reachable in the Petri graph. Therefore,

given a property over graphs reflected by graph morphisms, if it holds for all states

reachable in the abstraction Ck(G) then it also holds for all reachable graphs in G.

Verifying Behavioural Properties of GTSs. Relying on the approximations of
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the unfolding, we propose a technique for reducing the verification of a µL2 formula

over a GTS G to the verification of a corresponding multiset formula over (the Petri

net component of) a covering of G. More specifically, fixed a covering Ck(G), we

define a constructive translation of formulae in µL2 into formulae over the Petri net

underlying the abstraction Ck(G). This is done in two steps.

• First, any state predicate F in L2 is mapped to a formula F̂ over markings such

that a marking satisfies F̂ if and only if the graph it represents satisfies F . The

translation is a kind of quantifier elimination procedure which encodes monadic

second-order logic formulae into propositional formulae on markings, containing

only predicates of the form #s ≤ c (the number of tokens in place s is smaller than

or equal to c). This somehow surprising fact can be understood by recalling that

the graph underlying Ck(G) is finite and fixed after computing the abstraction.

• Then any temporal formula in µL2 over G is translated to a temporal formula

over the Petri graph by simply translating its L2-subformulae as sketched above,

and keeping the “temporal part” untouched.

Altogether, these results allow us to verify behavioural properties of a GTS,

expressed in a suitable fragment of µL2, by reusing existing model-checking tech-

niques for Petri nets. In fact, consider a formula T in 2µL2 (i.e., not containing

in the temporal part the modality 3 nor negation) to be checked over a GTS G.

If the state predicates in T are reflected by graph morphisms, by the construction

mentioned above we can translate T into a formula T̂ over the Petri net underly-

ing a covering of Ck(G) of G. (The restriction to 2µL2 is necessary because Ck(G)

over-approximates G.) Then, by general results from abstract interpretation [22],

T̂ can be checked over the Petri net underlying Ck(G). A type inference system

is introduced which characterises a subclass of formulae in the logic L2 which are

reflected by graph morphisms. Hence, the requirement over state predicates in T

can be verified by checking that any such predicate can be typed as “reflected” in

the mentioned type system.

We recall that temporal state-based logics over Petri nets, i.e., logics where

basic predicates have the form #s ≤ c, are not decidable in general, but important

fragments of such logics are [17,16,18].

For the sake of simplicity, although the approximation method of [5,6] was de-

signed for hypergraphs, in this paper we stick to directed graphs. Moreover, al-

though not discussed in this document, a dual theory involving under-approximations

of the behaviour of GTSs has been developed (see [4]).

In the rest of the paper, after introducing the class of graph transformation

systems handled by our approach, we will present the monadic second-order logic

L2 of graph formulae, and the temporal logic built on it, called µL2. Next we

shall summarise the approximation technique for GTSs developed in [5], briefly

mentioning some results from [6]. Finally we will propose a method for verifying

µL2 formulae over GTS’s: this makes use of a type system characterising a subclass

of formulae in L2 which are reflected by graph morphisms (and which can thus be

checked on the covering), as well as of an encoding of these formulae into quantifier-

free multiset formulae on the markings of Petri nets.
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2 Graph Transformation Systems

In this section we introduce the class of graph transformation systems considered

in this paper, which are basically graph rewriting systems in the double-pushout

approach [11], with some restrictions.

We first define graphs and structure-preserving morphisms on graphs. We will

assume that Λ denotes a fixed and finite set of labels.

Definition 2.1 (Graph, graph morphism) A graph G = (VG, EG, sG, tG, lG)

consists of a set VG of nodes, a set EG of edges, source and target functions

sG, tG:EG → VG and a function lG:EG → Λ labelling the edges.

A graph morphism ϕ:G1 → G2 is a pair 〈ϕV :VG1 → VG2 , ϕE :EG1 → EG2〉 of

mappings such that ϕV ◦ sG1 = sG2 ◦ϕE , ϕV ◦ tG1 = tG2 ◦ϕE and lG1 = lG2 ◦ϕE for

each edge e ∈ EG1 . A morphism ϕ will be called edge-bijective if ϕE is a bijection.

The subscripts in ϕE and ϕV will be usually omitted.

We next define the notion of graph transformation system and the corresponding

rewriting relation.

Definition 2.2(Graph transformation system) A graph transformation system

(GTS) (G0,R) consists of an initial graph G0 and a set R of rewriting rules of the

form r = (L,R, α), where L, R are graphs, called left-hand side and right-hand side,

respectively, and α:VL → VR is an injective function.

A match of a rewriting rule r in a graph G is a morphism ϕ:L → G which is

injective on edges. We can apply r to a match ϕ in G obtaining a new graph H,

written G
r⇒ H. The target graph H is defined as follows

VH = VG ] (VR − α(VL)) EH = (EG − ϕ(EL)) ] ER
and, defining ϕ : VR → VH by ϕ(α(v)) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise,
the source, target and labelling functions are given by

e ∈ EG − ϕ(EL) ⇒ sH(e) = sG(e), tH(e) = tG(e), lH(e) = lG(e)

e ∈ ER ⇒ sH(e) = ϕ(sR(e)), tH(e) = ϕ(tR(e)), lH(e) = lR(e)

Intuitively, the application of r to G at the match ϕ first removes from G the

image of the edges of L. The resulting graph is extended by adding the new nodes

in R (i.e., the nodes in VR−α(VL)) and all the edges of R. Observe that the (images

of the) nodes in L are preserved, i.e., they are not affected by the rewriting step.

Example 2.3 Consider a variant of the Dining Philosopher system where processes

compete for resources R1 and R2, a process needs both resources in order to per-

form some task, but processes are not organised in a cyclic structure and they can

reproduce themselves. The system is represented as a GTS RPh as follows. We

consider edges labelled by R1, R2, R
f
1 , R

f
2 standing for assigned and free resources,

respectively, and P1, P2 and P3 denoting a process waiting for the first resource,

a process waiting for the second resource, and a process holding both resources,

respectively. Furthermore, edges labelled by D1 and D2 connect the target node

of a process and the source node of a resource when the process is asking for the

resource. When the target node of a resource coincides with the source node of a
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Fig. 1. Start graph of RPh with a process and two free resources.
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Fig. 2. Rewriting rules of the GTS RPh.

process, this means that the resource is assigned to that process. The initial scenario

for RPh is represented in Fig. 1, with a single process P1 asking for both resources.

The rewriting rules of RPh are defined with the aim of avoiding deadlocks in

the form of vicious cycles. There are three kind of rules, depicted in Fig. 2: (1) a

process Pi can acquire a free resource Rfj whenever i = j and it becomes Pi+1,

(2) P3 can release its resources and (3) processes of the form P1 can fork creating

more processes of the same kind competing for the same resources. The natural

numbers 1, 2, 3, . . . which decorate nodes in the left- and right-hand side of rules

implicitly represent the mapping α.

With the given rules, deadlocks are avoided by forcing each process to acquire the

resources in a fixed ordering: first R1 and then R2. An additional rule, analogous

to rule 1 but with i = 1 and j = 2, would possibly lead to a vicious cycle with

circular demand for resources, in two steps (see Fig. 3).

3 A Logic for Graph Transformation Systems

This section presents a behavioural logic for GTSs. It is essentially a variant of the

propositional µ-calculus (i.e., a temporal logic enriched with fixed-point operators)

where propositional symbols range over arbitrary state predicates, characterising

static graph properties, which are expressed in a monadic second-order logic.
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Fig. 3. A vicious cycle representing a deadlock.

3.1 A Monadic Second-Order Logic for Graphs

We first introduce the monadic second-order logic L2 for specifying graph properties,

i.e., “static” properties of system states. Quantification is allowed over edges, but

not over nodes (as, e.g., in [9]).

Definition 3.1 (Graph formulae) Let X1 = {x, y, z, . . .} be a set of (first-order)

edge variables and X2 = {X,Y, Z, . . .} be a set of (second-order) variables ranging

over edge sets. The set of graph formulae of logic L2 is defined as follows, where

` ∈ Λ

F ::= x = y | s(x) = s(y) | s(x) = t(y) | t(x) = t(y) |
lab(x) = ` | x ∈ X | (Predicates)

F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)

∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order variables,

respectively, occurring free in F .

The notion of satisfaction is defined in a straightforward way.

Definition 3.2 (Satisfaction) Let G be a graph, let F be a graph formula in L2,
let σ : free(F ) → EG and Σ : Free(F ) → P(EG) be valuations for the free first-
and second-order variables of F , respectively. The satisfaction relation G |=σ,Σ F
is defined inductively, in the usual way; for instance:

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y)

G |=σ,Σ s(x) = s(y) ⇐⇒ sG(σ(x)) = sG(σ(y))

G |=σ,Σ lab(x) = ` ⇐⇒ lG(σ(x)) = `

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X)

G |=σ,Σ ∀X.F ⇐⇒ G |=σ,Σ′ F for any Σ′ such that Σ′(Y ) = Σ(Y )

for Y ∈ X2 − {X}, and Σ′(X) ∈ P(EG),

Example 3.3 The formula NC ` below states that a graph does not contain a cycle
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including two distinct edges labelled `, a property that will be used to express the

absence of vicious cycles in our system RPh. It is based on the formula NP(x, y),

which says that there is no path connecting the edges x and y, stating that a set

that contains at least all edges reachable from x does not contain y necessarily.

NP(x, y) = ¬∀X.(∀z.(t(x) = s(z) ∨ ∃w.(w ∈ X ∧ t(w) = s(z)))⇒ z ∈ X)⇒ y ∈ X)
NC ` = ∀x.∀y.(lab(x) = ` ∧ lab(y) = ` ∧ ¬(x = y)⇒ NP(x, y) ∨NP(y, x))

A standard compactness argument shows that NC ` cannot be stated in first-

order logic, a fact which motivates our choice of considering a second-order logic.

3.2 Introducing a Temporal Dimension

The behavioural logic for GTSs, called µL2, is a variant of the propositional µ-

calculus where propositional symbols range over formulae from L2.

Definition 3.4 (Logic over GTSs) The syntax of µL2 formulae is the following:

f ::= A | X | 3f | 2f | ¬f | f1 ∨ f2 | f1 ∧ f2 | µX.f | νX.f

where A ranges over closed formulae in L2 and X ∈ X are proposition variables.

The formulae are evaluated over a graph transition system T = (Q,→), i.e.,

a transition system where the set of states Q consists of (isomorphism classes of)

graphs. This can be thought of as the abstract representation of the behaviour

of a graph grammar. Intuitively, an atomic proposition A holds in any state q

satisfying A according to Definition 3.2. A formula 3f / 2f holds in a state q if

some / any single step leads to a state where f holds. Note that (as in [22]) the

operators 2 and 3 only refer to the next step and not (as defined elsewhere) to

the whole computation. The connectives ¬,∨, ∧ are interpreted in the usual way.

The formulae µX.f and νX.f represent the least and greatest fixed point over X,

respectively. When a transition system T has a distinguished initial state q0, we

say that T satisfies a (closed) formula f , written T |= f , if the initial state q0 of T

satisfies f . Since the logic is classical, 3 and ν could be defined in terms of 2 and µ.

All the operators are inserted explicitly since later we will restrict to negation-free

fragments of µL2.

The fragment of µL2 without negation and box operator is denoted by 3µL2.

By dropping negation and the diamond operator we obtain the fragment 2µL2.

Some typical liveness properties of the form “eventually A” (i.e., µX.(A ∨ 3X))

can be expressed in the fragment 3µL2, whereas some typical safety properties of

the form “always A” (i.e., νX.(A ∧2X)) can be expressed in the fragment 2µL2.

Example 3.5 Consider the system RPh in our running example. We would like to

express the fact that, according to the design intentions, RPh is deadlock-free. This

is formalised by the requirement that all reachable graphs do not contain a vicious

cycle, i.e., a cycle of edges where P2-labelled edges (processes holding a resource

and waiting for a second resource) occur twice. Notice that this is a safety property

which can be encoded in 2µL2 as follows:

TNC = νϕ.(NCP2 ∧2ϕ )

where NC` is the formula considered in a previous example.
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4 Approximated Unfolding Construction

In this section we sketch the algorithm, introduced in [5,6], for the construction of

finite over-approximations of the unfolding of a graph transformation system. This

plays a crucial role in the verification process of the logic µL2.

4.1 Petri Graphs

In order to approximate graph transformation systems we will use Petri net-like

structures, called Petri graphs, originally introduced in [5].

To deal with Petri nets we first need to recall some basic notation concerning

multisets. Given a set A we will denote by A⊕ the free commutative monoid over

A, whose elements will be called multisets over A. We will sometimes identify A⊕

with the set of functions m:A → N such that the set {a ∈ A | m(a) 6= 0} is finite.

E.g., in particular, m(a) denotes the multiplicity of an element a in the multiset m.

Sometimes a multiset will be also identified with the underlying set, writing, e.g.,

a ∈ m for m(a) 6= 0. Given a function f :A → B, by f⊕:A⊕ → B⊕ we denote its

monoidal extension, i.e., f⊕(m)(b) =
∑

f(a)=bm(a) for every b ∈ B.

Petri graphs over a given graph transformation system G are basically Petri nets

equipped with an additional graphical structure where the places play the role of

edges, while the transitions represent applications of the rules of G.

Definition 4.1 (Petri graph) Let G = (G0,R) be a GTS. A Petri graph P (over

G) is a tuple (G,N,m0) where G is a graph and

• N = (EG, TN ,
•(), ()•, pN ) is a Petri net, where the set of places EG is the edge

set, TN is the set of transitions, •(), ()•:TN → E⊕G specify the post-set and pre-

set of each transition and pN :TN → R is the labelling function, mapping each

transition to a corresponding rule;

• m0 ∈ (EG)⊕ is the initial marking of the Petri graph, satisfying m0 = ι⊕(EG0)

for a suitable graph morphism ι : G0 → G (i.e., m0 must properly correspond to

the initial state of the GTS G).

We shall write m [r〉m′ if a transition labelled by r is enabled at marking m and its

firing produces m′. A marking m ∈ E⊕G will be called reachable (coverable) in P if

it is reachable (coverable) from the initial marking in the Petri net underlying P .

A marking m of a Petri graph can be seen as an abstract representation of a

graph in the following sense.

Definition 4.2 Let (G,N,m0) be a Petri graph and let m ∈ E⊕G be a marking of N .

The graph generated by m, denoted by graphG(m), is the graph H without isolated

nodes (unique up to isomorphism) such that there exists a morphism ψ:H → G

injective on nodes with ψ⊕(EH) = m. More explicitly, the graph H is defined as:

VH = {v ∈ VG | ∃e ∈ m: (sG(e) = v ∨ tG(e) = v)}, EH = {(e, i) | e ∈ m ∧ 1 ≤ i ≤
m(e)}, sH((e, i)) = sG(e), tH((e, i)) = tG(e) and lH((e, i)) = lG(e).

An example of Petri net marking and the corresponding generated graph can be

found in Fig. 4.
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Fig. 4. A pair (G′,m′) contained in a simulation.

4.2 Approximated Unfolding Algorithm

Given a GTS (G0,R), with some minor constraints on the format of rewriting rules

(see [5,6]), for any k ∈ N we can construct a Petri graph approximation of (G0,R),

called (k-)covering and denoted by Ck(G0,R). Intuitively, the k-covering is exact

up to causal depth k, i.e., any computation consisting of less than k (possibly

concurrent) steps, is represented in Ck(G0,R) without any loss of information.

In order to make this more formal, given a Petri graph P = (N,G), let the causal

relation < be the least transitive relation over transitions such that, if t1
• ∩ •t2 6= ∅

then t1 < t2. Then define the depth of a transition t to be the length of the longest

sequence t0 < t1 < . . . < tn < t. The depth of an edge is the maximum among the

depths of transitions which contain the edge in their post-set.

Then the covering Ck(G0,R) is produced by the last step of the following (ter-

minating) algorithm which generates a sequence Pi = (Gi, Ni,mi) of Petri graphs.

(i) P0 = (G0, N0,m0), where the net N0 contains no transitions and m0 = EG0 .

(ii) As long as one of the following steps is applicable, transform Pi into Pi+1,

giving precedence to folding steps.

Unfolding. Find a rule r = (L,R, α) ∈ R and a match ϕ:L → Gi such that

ϕ(E⊕L ) is coverable in Pi. Then extend Pi by “attaching” R to Gi according to

α and add a transition t, labelled by r, describing the application of rule r.

Folding. Find a rule r = (L,R, α) ∈ R and two matches ϕ,ϕ′:L → Gi, at

depth greater than or equal to k, such that
• ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and
• the second match causally depends on the transition unfolding the first

match.

Then merge the two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and

factoring through the resulting equivalence relation ≡.

For instance, an unfolding step involving rule 3 is depicted in Fig. 5. Transi-

tions are represented as black rectangles and the Petri net structure is rendered by

connecting edges (places) to transitions with dashed lines. The label n for dashed

lines represents the weight with which the target/source place occurs in the post-set

(pre-set); when the weight is 1, the label is omitted. In the resulting Petri graph we

can find three occurrences of the left-hand side of rule 3. The latter two are causally

dependent on the first, which means that they can be merged in two folding steps.

The algorithm, starting from the start graph in Fig. 1, terminates producing the

Petri graph C0(RPh) in Fig. 6, where the initial marking is represented by tokens.

The covering Ck(G0,R) is an abstraction of the original GTS (G0,R) in the

following sense.
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Fig. 5. An unfolding and two folding steps.
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Fig. 6. The Petri graph C0(RPh) computed as covering of RPh.

Proposition 4.3 (Abstraction) Let G = (G0,R) be a graph transformation sys-

tem and let Ck(G) = (G,N,m0) be its k-covering. Furthermore, let G be the set of

graphs reachable from G0 in G and let M be the set of reachable markings in Ck(G).

Then there exists a simulation S ⊆ G×M with the following properties:

• (G0,m0) ∈ S;

• whenever (G′,m′) ∈ S and G′
r⇒ G′′, then there exists a marking m′′ with

m [r〉m′′ and (G′′,m′′) ∈ S;

• for every (G′,m′) ∈ S there exists an edge-bijective graph morphism ϕ:G′ →
graphG(m′).

The above result will allow us to use existing results concerning abstractions

of reactive systems [7,22]. Consider the property TNC in Example 3.5 expressing

the absence of dead-locks in system RPh. Observe that the graph property NCP2 ,

i.e., the absence of vicious cycles where P2-labelled edges (processes holding one

resource and waiting for a second one) occur twice is reflected by edge-bijective

graph morphisms. Hence, by using Proposition 4.3, if we can prove it on the covering
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C0(RPh) of Fig. 6, we could deduce that it holds for the original system RPh as well.

Observe that actually, in this case, even the stronger property “#e ≤ 1”, i.e., “e

contains at most one token”, where e is the edge labelled P2, holds for all reachable

markings as it can be easily verified by drawing the coverability graph of the Petri

net. This is an ad hoc proof of the property, which instead, by the results in this

paper, will follow as an instance of a general theory.

5 Verifying µL2 on Graph Transformation Systems

In this section we show how the verification of properties of a GTS G, expressed in

the logic µL2, can be reduced to the verification of suitable properties of the Petri

net underlying a covering of G. This is done by viewing our technique as a specific

instance of abstract interpretation [10,19], and exploiting some results from [22].

The idea is the following. Let G be a GTS and let Ck(G) be its k-covering. By

Proposition 4.3, Ck(G) = (G,N,m0) “approximates” G via a simulation consisting

of pairs (G′,m′) such that G′ can be mapped to graphG(m′) (see, e.g., Fig. 4) via

an edge-bijective morphism. Given a formula on graphs F in L2, expressing a

state property in G, a corresponding formula M(F ) on the markings of Ck(G) is

constructed such that, for any pair in the simulation,

m′ |= M(F ) ⇒ G′ |= F

and thus, in a sense, F can be safely checked over the approximation Ck(G). This

will be obtained in two steps. First, we will define a type system which allows us

to identify formulae F which are reflected by edge-bijective morphisms, ensuring

that graphG(m′) |= F implies G′ |= F . Then, we will encode F into a propositional

formula M(F ) on multisets such that m′ |= M(F ) ⇐⇒ graphG(m′) |= F .

Finally, consider the temporal logic µL2 over GTSs. For suitable fragments of

such logics, e.g., the fragment 2µL2 without negation and the “possibility operator”

3, by Proposition 4.3 and exploiting general results in [22], a temporal formula T

over G, where state predicates can be typed as “reflected”, can be translated to a

formula M(T ) over markings (translating the state predicates as described above),

such that, if Ck(G) |= M(T ) then G |= T , i.e., T is valid for the original GTS.

5.1 Preservation and Reflection of Graph Formulae

Preservation and reflection of graph formulae by graph morphisms are defined as

follows.

Definition 5.1 Let F be a formula in L2 and ϕ : G1 → G2 be a graph mor-

phism. We say that F is preserved (resp. reflected) by ϕ if for all valuations

σ : free(F ) → EG1 and Σ : Free(F ) → P(EG1), G1 |=σ,Σ F implies (resp. is

implied by) G2 |=ϕ◦σ,ϕ◦Σ F .

We are interested in syntactic criteria characterising classes of graph formulae

reflected, respectively preserved, by all edge-bijective graph morphisms. Similar

considerations on reflection and preservation on morphisms can be found in [15].

Here we provide a technique which works for general second-order monadic formulae.

It is based on the type system of Fig. 7 which allows to prove judgements of the form

11
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s(x) = s(y), s(x) = t(y), t(x) = t(y):→ x = y, lab(x) = `, x ∈ X:↔

F : d−1

¬F : d

F1, F2: d

F1 ∨ F2, F1 ∧ F2: d

F1: d−1, F2: d

F1 ⇒ F2: d

F : d

∀x.F : d

F : d

∃x.F : d

F : d

∀X.F : d

F : d

∃X.F : d

Fig. 7. A type system for preservation and reflection of L2 formulae by edge-bijective morphisms.

F :→ (resp. F :←), meaning that the L2-formula F is preserved (resp. reflected) by

all edge-bijective graph morphisms. In the typing rules, it is intended that→−1=←
and ←−1=→. Moreover F :↔ is a shorthand for F :→ and F :←, while F1, F2 : d

stands for F1 : d and F2 : d.

Example 5.2 The judgements NP(x, y):← and NC `:← are provable using the

type system of Fig. 7, thus the absence of paths and of vicious cycles is reflected by

edge-bijective morphisms.

The proposed type system can be shown easily to be correct, but it is not com-

plete. In fact, it is possible to show that the set of closed first-order formulae which

are preserved (resp. reflected) by edge-bijective morphisms is undecidable. There-

fore, a fortiori, not all L2-formulae which are preserved or reflected are captured

by the above type system.

5.2 A Propositional Logic on Multisets

In order to characterise markings of Petri nets we use a propositional logic on

multisets. We consider a fixed universe A over which all multisets are formed.

Definition 5.3(Multiset formulae) The set of multiset formulae, ranged over by

M , is defined as follows, where a ∈ A and c ∈ N

M ::= #a ≤ c | ¬M | M ∨M ′ | M ∧M ′.

Let m be a multiset with elements from A. The satisfaction relation m |= M is

defined, on basic predicates, as m |= (#a ≤ c) ⇐⇒ m(a) ≤ c. Logical connectives

are dealt with as usual.

We will consider also derived predicates of the form #a ≥ c and #a = c with

the obvious meaning. E.g., (#a ≥ c) stands for ¬(#a ≤ c− 1) if c > 0 and for true

otherwise.

5.3 Encoding Graph Logic into Multiset Logic

We show how graph formulae can be encoded into “equivalent” multiset formulae.

More precisely, for a fixed Petri graph P = (G,N,m0) the aim is to find an encoding

M1 of L2-formulae into multiset formulae such that graphG(m) |= F ⇐⇒ m |=
M1(F ) for every marking m of P and every closed graph formula F .

We actually propose two encodings: an inductive one, which works only for first-

order formulae, and a general one which works for the whole set of graph formulae.

Inductive Encoding. The encoding M1 of first-order graph formulae is based on

the following observation. Every graph graphG(m) for some marking m of P can be

12
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generated from the finite “template graph” G in the following way: some edges of G

might be removed and some edges might be multiplied, generating several parallel

copies of the same template edge. Whenever a formula has two free variables x, y

and graphG(m) has n copies e1, . . . , en of the same edge, it is not necessary to

associate x and y with all edges, but it is sufficient to assign e1 to x and e2 to y

(first alternative) or e1 to both x and y (second alternative). Thus, whenever we

encode a formula F , we have to keep track of the following information: a partition

Q on the free variables free(F ), telling us which variables are mapped to the same

edge, and a mapping ρ from free(F ) to the edges of G, with ρ(x) = e meaning that

x will be instantiated with a copy of the template edge e. Since there might be

several different copies of the same template edge, two variables x and y in different

sets of Q can be mapped by ρ to the same edge of G. Whenever we encode an

existential quantifier ∃x, we have to form a disjunction over all the possibile choices

for x: either x is instantiated with the same edge as another free variable y, and in

this case x and y should be in the same set of the partition Q. Or x is instantiated

with a new copy of an edge in G. In this case, a new set {x} is added to Q and we

have to make sure that enough edges are available by adding a suitable predicate.

We need the following notation. We will describe an equivalence relation on

a set A by a partition Q ⊆ P(A) of A, where every element of Q represents an

equivalence class. We will write xQy whenever x, y are in the same equivalence

class. Furthermore we assume that each equivalence Q is associated with a function

rep : Q→ A which assigns a representative to every equivalence class. The encoding

given below is independent of any specific choice of representatives.

Given a function f : A → B such that f(a) = f(a′) for all a, a′ ∈ A with aQa′

and a fixed b ∈ B we define nQ,f (b) = |{k ∈ Q | f(rep(k)) = b}|, i.e., nQ,f (b) is the

number of sets in the partition Q that are mapped to b.

Definition 5.4 (Encoding of first-order graph formulae) Let G be a finite

directed graph, let F be a graph formula in the first-order fragment of L2, let

ρ : free(F ) → EG and let Q ⊆ P(free(F )) be an equivalence relation such that

xQy implies ρ(x) = ρ(y) for all x, y ∈ free(F ). The encoding M1 is defined as

follows:

M1[¬F, ρ,Q] = ¬M1[F, ρ,Q]

M1[F1 ∨ F2, ρ,Q] = M1[F1, ρ,Q] ∨M1[F1, ρ,Q]

M1[F1 ∧ F2, ρ,Q] = M1[F1, ρ,Q] ∧M1[F1, ρ,Q]

M1[x = y, ρ,Q] =

{
true if xQy
false otherwise

M1[lab(x) = `, ρ,Q] =

{
true if lG(ρ(x)) = `
false otherwise

M1[s(x) = s(y), ρ,Q] =

{
true if sG(ρ(x)) = sG(ρ(y))
false otherwise

formulae t(x) = t(y) and s(x) = t(y) are treated analogously

M1[∃x.F, ρ,Q] =
∨
k∈Q

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, Q\{k} ∪ {k ∪ {x}}]) ∨

∨
e∈EG

(M1[F, ρ ∪ {x 7→ e}, Q ∪ {{x}}] ∧ (#e ≥ nQ,ρ(e) + 1))

M1[∀x.F, ρ,Q] =
∧
k∈Q

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, Q\{k} ∪ {k ∪ {x}}]) ∧

13
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∧
e∈EG

((#e ≥ nQ,ρ(e) + 1)⇒M1[F, ρ ∪ {x 7→ e}, Q ∪ {{x}}])

If F is closed (i.e., without free variables), we define M1(F ) = M1[F, ∅, ∅].

General Encoding. General monadic second-order graph formulae in L2 can

be encoded into multiset formulae, but differently from the first-order case, the

encoding is not defined inductively, even if quantifier elimination is still possible.

Proposition 5.5 Let G be a fixed finite template graph. A closed graph formula F

in L2 can be encoded into a logical formula M2(F ) on multisets as follows. For any

multiset k ∈ E⊕G , let Ck be the conjunction over the following formulae:

• #e = k(e) for every e ∈ EG satisfying k(e) < qd1(F ) · 2qd2(F ) and

• #e ≥ k(e) for every e ∈ EG satisfying k(e) = qd1(F ) · 2qd2(F ).

where qd1(F ) and qd2(F ) denote the first and second order quantifier depth of F ,

defined in the obvious way. Let M2(F ) be the disjunction of all Ck such that k ∈ E⊕G ,

graphG(k) |= F and k(e) ≤ qd1(F ) · 2qd2(F ) for every e ∈ EG.

Then graphG(m) |= F ⇐⇒ m |= M2(F ) for every m ∈ E⊕G .

Intuitively, for every first-order quantifier we have to try every edge of the template

graph. Furthermore we have to try every possible membership to the sets assigned

to second-order variables, of which there are at most qd2(F ), hence there are at

most 2qd2(F ) possible membership combinations.

Although a formal complexity analysis is beyond the scope of this paper, we

mention that the inductive encoding offers the advantage of generally producing

smaller propositional formulae, easier to simplify.

5.4 Verification of Temporal Formulae of µL2

We need to recall some concepts from [22], the more basic one being the formalisa-

tion of abstraction given in terms of Galois connections.

Definition 5.6 (Galois connection) Let Q1 and Q2 be two sets of states. A

Galois connection from P(Q1) to P(Q2) is a pair of monotonic functions (α, γ),

with α : P(Q1) → P(Q2) (abstraction) and γ : P(Q2) → P(Q1) (concretisation),

such that idP(Q1) ⊆ γ ◦ α and α ◦ γ ⊆ idP(Q2).

Galois connections can be defined on general partial orders, but in this context

we only need to consider them over powerset lattices. Next we introduce 〈α, γ〉-
simulations which turn out to coincide with simulations in the sense of Milner.

Definition 5.7(〈α, γ〉-simulation) Let Ti = (Qi,→i) with i ∈ {1, 2} be transition

systems, where Qi is a set of states and →i⊆ Qi×Qi is the transition relation. Let

furthermore (α, γ) be a Galois connection from P(Q1) to P(Q2).

We say that T2 〈α, γ〉-simulates T1, written T1 v〈α,γ〉 T2, if α ◦ pre[→1] ◦ γ ⊆
pre[→2], where the function pre[→i] : P(Qi) → P(Qi) is defined by pre[→i](Q) =

{q ∈ Qi | ∃ q′ ∈ Q : q →i q
′}.

14



Baldan, Corradini, König and König

Let T1, T2 be transition systems and let ϕ : T1 → T2 be a transition system

morphism, i.e., a function ϕ : Q1 → Q2 such that for any q, q′ ∈ Q1 if q →1 q
′ then

ϕ(q) →2 ϕ(q′) (in other words, ϕ is a special kind of simulation). Then the pair

(ϕ,ϕ−1) is a Galois connection and furthermore T1 v〈ϕ,ϕ−1〉 T2.

These definitions allow us to interpret the approximations of the behaviour of a

graph grammar in this context. In fact, let us identify any graph grammar G with the

obvious graph transition system generated by G (as described after Definition 3.4).

Observe that also a Petri graph (G,N,m0) over G can be seen as a graph transition

system, by simply identifying any marking m with the graph graphG(m). In this

view, it can be shown that for any k ∈ N, for suitable α and γ

G v〈α,γ〉 Ck(G).

By exploiting the results of [22] regarding the preservation and reflection of

modal µ-calculus formulae on transitions systems and the results in this paper we

have the following.

Proposition 5.8 Let G = (G0,R) be a GTS, and let T be a µL2-formula. Consider

the formula M2(T ) obtained by replacing any state predicate A in T by the multiset

formula M2(A) as defined in Proposition 5.5. Then if T ∈ 2µL2 and for any state

predicate A in T the judgement A :← is provable using the type system of Fig. 7,

then for any k ∈ N
Ck(G) |= M2(T ) ⇒ G |= T

The above result shows how to reduce the analysis of the full transition system

of a graph grammar to the analysis of simpler transition systems, generated by Petri

nets (underlying Petri graphs). These transition systems might still have infinitely

many states, but there are several decidability results for fragments of the modal

µ-calculus and other forms of temporal logics [13,17,18]. Analogous result can be

proved by restricting state predicates to the first-oder fragment of L2 and using the

encoding M1.

For instance, consider the safety property TNC over system RPh of Example 3.5,

i.e., the absence of vicious cycles including two distinct P2 processes in all reachable

graphs. The formula TNC can be translated into a formula over markings, by

translating its graph formula components according to the techniques described in

Sections 5.3. This will lead to the formula M2(TNC) = νϕ.(M2(NCP2) ∧ 2ϕ ).

Since TNC belongs to the 2µL2 fragment and the basic predicate NCP2 can be

typed as “reflected”, i.e., the judgement NCP2 :← is provable in the type system of

Fig. 7, by Proposition 5.8, if Ck(RPh) |= M2(TNC) then RPh |= TNC . Therefore the

formula TNC can be checked by verifyingM2(TNC) on the Petri net component of the

approximated unfolding. In this case it can be easily verified that M2(TNC) actually

holds in C0(RPh) and thus we conclude that RPh satisfies the desired property.

6 Conclusions

We have presented a logic for specifying graph properties, useful for the verification

of graph transformation systems. A type system allows us to identify formulae of

this logic reflected by edge-bijective morphisms, which can therefore be verified on
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the covering, i.e., on the finite Petri graph approximation of a GTS. Moreover, fixed

an approximation of the original system, we can perform quantifier-elimination and

encode these formulae into boolean combination of atomic predicates on multisets.

Combined with the approximated unfolding algorithm of [5], this gives a method for

the verification and analysis of graph transformation systems. This form of abstrac-

tion is different from the usual forms of abstract interpretation since it abstracts

the structure of a system rather than its data. Maybe the closest relation is shape

analysis, abstracting the data structures of a program [24,27].

Some natural generalisations of the approach presented in this paper are un-

der development. Firstly, we intend to extend the approach to general hypergraph

rewriting, also considering the fact that the approximation method of [5,6] was in-

deed designed for hypergraphs. The extension to general hypergraphs will require

some basic changes to the graph logic L2. Furthermore, we intend to consider wider

classes of GTSs where it is possible to specify that an hyperedge is preserved by

a rule: this will require to consider Petri graphs having an underlying contextual

Petri net [3].
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