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Abstract

The phase slope index (PSI) is a method to disclose the direction of frequency-

specific neural interactions from magnetoencephalographic (MEG) time series.

A fundamental property of PSI is that of vanishing for linear mixing of in-

dependent neural sources. This property allows PSI to cope with the artificial

instantaneous connectivity among MEG sensors or brain sources induced by the

field spread. Nevertheless, PSI is limited by being a bivariate estimator of direc-

tionality as opposite to the multidimensional nature of brain activity as revealed

by MEG. The purpose of this work is to provide a multivariate generalization

of PSI. We termed this measure as the multivariate phase slope index (MPSI).

In order to test the ability of MPSI in estimating the directionality, and to

compare the MPSI results to those obtained by bivariate PSI approaches based

on maximizing imaginary part of coherency and on canonical correlation anal-

ysis, we used extensive simulations. We proved that MPSI achieves the highest

performance and that in a large number of simulated cases, the bivariate meth-

ods, as opposed to MPSI, do not detect a statistically significant directionality.

Finally, we applied MPSI to assess seed-based directed functional connectivity

in the alpha band from resting state MEG data of 61 subjects from the Hu-
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man Connectome Project. The obtained results highlight a directed functional

coupling in the alpha band between the primary visual cortex and several key

regions of well-known resting state networks, e.g. dorsal attention network and

fronto-parietal network.

Keywords: Phase slope index (PSI). Multivariate method. Directed

functional connectivity. Magnetoencephalography (MEG). Resting state

networks (RSN). Human Connectome Project (HCP).

1. Introduction

Systems neuroscience studies in the last decade have made clear that nor-

mal brain function requires the concurrent and synergic cooperation of several

segregated areas (Deco et al., 2015; Sporns, 2013). Indeed, the putative coor-

dinating mechanism supporting brain inter-areal functional cooperation is the

phase locking of brain oscillatory activity, i.e., of brain rhythms (Engel et al.,

2013; Hillebrand et al., 2016; Varela et al., 2001). Understanding the resulting

large-scale network organization of the brain has thus become crucial to disclose

brain functioning. To this end, a non invasive measurement of electrophysiolog-

ical activity with millisecond time resolution, such as magnetoencephalography

(MEG) or electroencephalography (EEG), is needed to characterize synchro-

nization among brain sources at a time scale relevant to behavior, i.e. occurring

with subsecond timing and at frequencies in the range 1-100 Hz.

The reliable estimation of functional connections between brain areas from

MEG/EEG data requires methods able to cope with the negative effects of

field spread 1, i.e. the artificial instantaneous coupling between measurement

sensors or brain sources. In fact, the resulting artificial connectivity cannot be

eliminated even by solving an electromagnetic inverse problem to infer source

activities from sensor data.

1The term volume conduction” is sometimes used in literature as a synonym of “field

spread”.
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Several computational approaches have been designed and successfully used

to capture the different aspects of inter-areal synchronization bearing in mind

their ability to face field spread effects (Brookes et al., 2012; Colclough et al.,

2015; Ewald et al., 2012; Hipp et al., 2012; Marzetti et al., 2008; Nolte et al.,

2004, 2009; Soto et al., 2016; Vinck et al., 2011). In this framework, a key aspect

of inter-areal synchronization is the directionality of the coupling. Namely, it is

important not only to know that brain area A is coupled to brain area B but

also if brain area A leads brain area B or vice versa. This knowledge is crucial

to unravel the complex mechanisms that guide dynamic network instantiation

during cognitive processing in humans, e.g. to disambiguate feedback versus

feedforward control.

Among the possible different approaches used to estimate directional cou-

pling between brain areas, a promising approach relies on the temporal delays

that occur because of the finite speed of information (Bastos et al., 2015; Fries,

2015). Indeed, to estimate the directionality of frequency-specific coupling in

a way robust to the field spread effects, the phase slope index (PSI) has been

developed (Nolte et al., 2008). PSI is a bivariate estimator that detects the

coupling direction by relying on the sign of the discrete derivative with respect

to frequency of the phase difference between two time series, e.g. source activ-

ities, this derivative being proportional to the time delay between them (Nolte

et al., 2008; Basti et al., 2017). The bivariate nature of the PSI imposes that

this measure is able to detect the directionality from a pair of scalar, i.e. one-

dimensional, time series. Thus, when used to assess directionality between brain

sources estimated from MEG/EEG data, the vector source activity must be re-

duced to a scalar one, prior to applying PSI. This is usually accomplished by

fixing, for each brain source, a preferential direction for its activity, e.g. geomet-

rical direction normal to the cortical surface, or functional direction such as that

of maximum source power. Nevertheless, this dimensionality reduction might be

suboptimal when connectivity is at target, as already shown for non-directed bi-

variate measures when source direction is fixed according to a maximum power

criterion (Marzetti et al., 2013). Moreover, choosing a geometrical approach
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in fixing the direction can also be misleading if, e.g., coregistration errors or

distortions in the reference anatomical image are present.

1.1. Purpose and structure of the work

In this paper, we will provide the definition of a multivariate measure 2 based

on the concept of PSI, namely the multivariate phase slope index (MPSI), which

overcomes the need for dimensionality reduction prior to PSI estimation in a

way robust to the negative field spread effects. Specifically, the purpose of this

work is to: i) provide the definition of MPSI; ii) demonstrate MPSI performance

in detecting the directionality of coupling in extensive and biologically realistic

simulations based on synthetic multivariate time series; iii) derive frequency-

specific directed networks in a real data application, i.e., resting state data from

61 subjects of the Human Connectome Project (HCP) MEG database.

The paper is organized as follows. In the “Methods” section, we will briefly

review the mathematical formulation of the bivariate PSI, as originally intro-

duced in Nolte et al. (2008), and we will provide a new generalized formulation

for the multivariate case by introducing a blockwise approach. In the “Ex-

periments” section, we will describe the experiments performed in this work:

the simulation studies to evaluate the reliability of MPSI in detecting the right

directionality in multivariate interactions in synthetic data, and the real data

study to assess seed-based directed functional connectivity in resting state MEG

data from the HCP database. Results for MPSI in both synthetic and real data

will be compared to the results of two measures based on the bivariate PSI

in which scalar information are derived either by canonical correlation analy-

sis (Hotelling, 1936) or by maximizing the imaginary part of coherency (Ewald

et al., 2012). The results for the experiments and for the different approaches

are described and discussed in the “Results” and the “Discussion” sections.

2We used the term multivariate to indicate that the signals from which the method esti-

mates the directionality can be two multivariate time series, i.e. two vector time series with

dimensions higher than 1.
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2. Methods

2.1. Bivariate phase slope index

The PSI (Nolte et al., 2008) is a measure of directionality of coupling be-

tween brain areas based on the spectral properties of electrophysiological data.

Specifically, it estimates which is the leading source in a pair by relying on the

sign of the discrete frequency derivative of the phase difference between two

signals. The PSI between two given scalar signals z1 and z2 over the set of

frequencies of interest F , is defined as

PSI := =

(∑
f∈F

sz1,z2(f + df)√
sz1,z1(f + df)sz2,z2(f + df))

s∗z1,z2(f)√
sz1,z1(f)sz2,z2(f)

)
(1)

where = is the imaginary part, the symbol ∗ denotes the complex conjugate,

df is an incremental step in the frequency domain, and, e.g., sz1,z2 is the cross-

spectrum between z1 and z2. That is,

sz1,z2(f) :=< ẑ1(f)ẑ∗2(f) >, (2)

where < · > denotes the expectation value.

A fundamental property of PSI is that it vanishes for linear mixtures of

independent sources (see Appendix A). This property makes PSI robust to the

artificial connectivity induced by the field spread when PSI is used to disclose

the direction of bivariate interactions from sensor signals or from source time

series.

2.2. Definition of the multivariate phase slope index

In this subsection, we will introduce a multivariate generalization of the

bivariate PSI. To this end, we will firstly define the vector time series of interest

and, then, we will: 1) transform them by using a spatial whitening based on

the real part of their cross-spectra; 2) apply an averaging process based on

the calculations of PSI between all the possible combination of the transformed

signals. This procedure will allow us to obtain a multivariate estimator of
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directionality that will be invariant under invertible linear static transformations

of the vector time series, such as rotations of the physical reference frame.

Let us consider two data spaces A and B of dimensions NA and NB
3 with the

associated vector time series ZA = (z1, ..., zNA
)t and ZB = (zNA+1, ..., zNA+NB

)t,

where t denotes the transposition. For instance, the data spaces could repre-

sent the three-dimensional dipole moments at two brain locations and thus they

would have dimensions NA = NB = 3, or they could indicate two different

groups of electrophysiological sensors and thus NA and NB would be equal to

the number of sensors of each data space.

Now, let us suppose to be interested in investigating the directionality of

a frequency-specific interaction between A and B from the time series ZA and

ZB .

These real valued time courses can be written in the frequency domain

and, at a given frequency f ∈ F with F being the set of frequencies of in-

terest, they are described by the complex vectors ẐA(f) = (ẑ1(f), ..., ẑNA
(f))t,

ẐB(f) = (ẑNA+1(f), ..., ẑNA+NB
(f))t representing their Fourier transforms. For

the sake of simplicity, it is convenient to put them together by using the follow-

ing compact notation

Ẑ(f) = [ẐA(f)t ẐB(f)t]t. (3)

The complex cross-spectral matrix of Z, namely S(f), shows the following

block form:

S(f) =< Ẑ(f)Ẑ(f)H >=

 < ẐA(f)ẐA(f)H > < ẐA(f)ẐB(f)H >

< ẐB(f)ẐA(f)H > < ẐB(f)ẐB(f)H >

 =

(4)

=

 SRAA(f) + iSIAA(f) SRAB(f) + iSIAB(f)

SRBA(f) + iSIBA(f) SRBB(f) + iSIBB(f)

 ,

with H denoting the Hermitian transpose of a matrix, the apexes R and I

the real and the imaginary part, respectively. Each of the four submatrices

3NA does not need to be equal to NB .
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represents the complex cross-spectrum between the corresponding vector time

series.

Now, let us transform the vector Z by using the matrix defined as

T (f) =


(
SR
AA(f)+SR

AA(f+df)
2

)− 1
2

0AB

0BA

(
SR
BB(f)+SR

BB(f+df)
2

)− 1
2

 , (5)

where df is an incremental step in the frequency domain and 0AB , 0BA de-

note the zero matrices of RNA×NB and RNB×NA . The matrix T (f) is a spa-

tial whitening transformation which completely removes the average contribu-

tion of the real parts of cross-spectra at the frequencies f and f + df within

the data spaces A and B and which normalizes the average power spectra.

Indeed, if we define the transformed frequency dependent data as Û(f) =

(û1(f), ..., ûNA+NB
(f))t = T (f)Ẑ(f), for the frequency f , and as V̂ (f + df) =

(v̂1(f + df), ..., v̂NA+NB
(f + df))t = T (f)Ẑ(f + df), for f + df , we have that

<
(
< Û(f)Û(f)H > + < V̂ (f + df)V̂ (f + df)H >

)
/2 = (6)

= <

(
T (f)

(
< Ẑ(f)Ẑ(f)H > + < Ẑ(f + df)Ẑ(f + df)H >

)
T (f)t

)
/2 =

=

 IdAA
CR

AB(f)+DR
AB(f+df))
2

(CR
BA(f)+DR

BA(f+df))
2 IdBB


where < is the real part, IdAA is the identity matrix of dimension NA and, e.g.,

the matrices CRAB , DR
AB denote, respectively, the real part of the cross-spectrum

between UA and UB and between VA and VB .

In particular, by applying T (f) we obtain that the average of the power spectra

at f and f + df of all the transformed scalar time series are exactly equal to

1. Indeed, by indicating with e1 = (1, ..., 0)t a standard vector of RNA , we have

that

(< û1(f)û∗1(f) > + < v̂1(f + df)v̂∗1(f + df) >)/2 = (7)

= et1

((
< ÛA(f)ÛA(f)H > + < V̂A(f + df)V̂A(f + df)H >

)
/2
)
e1 =

= et1
(
IdAA + i(CIAA(f) +DI

AA(f + df))/2
)
e1 = ||e1||2 = 1.
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Even though the spatial whitening normalizes the average power contribution

at f and f + df , it does not guarantee that the power gets exactly flat at

both the two frequencies. In fact, by using a single spatial transformation it is

not possible to guarantee flatness for both frequencies, and the use of multiple

spatial transformations would not lead to the invariance of the resulting metric

under invertible linear static transformations of the data. Thus, the use of the

matrix T (f) is a way to normalize the data at the two frequencies by relying on

a single transformation and, at the same time, to have rotational invariance.

To the final aim of introducing the multivariate version of PSI, let us now

apply an averaging process based on the sum, over all possible combinations, of

the unnormalized bivariate PSIs between the transformed scalar time courses.

Indeed, given that the spatial whitening has already allowed us to remove possi-

ble biases induced by source powers, we do not need to use the PSI normalization

factor, which would be equal to the square root of the product of power-spectra

(see (1)) and which would not guarantee invariance under rotations of the ref-

erence frame. Specifically,

∑
f∈F

NA∑
i=1

NB∑
j=1

=
(
set

i
VA,etjVB

(f + df)s∗et
i
UA,etjUB

(f)

)
= (8)

=
∑
f∈F

NA∑
i=1

NB∑
j=1

=
(
eti < V̂A(f+df)V̂B(f+df)H > ej

(
eti < ÛA(f)ÛB(f)H > ej

)∗)
=

=
∑
f∈F

NA∑
i=1

NB∑
j=1

=
(
eti < V̂A(f+df)V̂B(f+df)H > eje

t
j < ÛB(f)ÛA(f)H > ei

)
=

=
∑
f∈F

NA∑
i=1

eti

(
NB∑
j=1

DI
AB(f + df)eje

t
jC

R
BA(f) +DR

AB(f + df)eje
t
jC

I
BA(f)

)
ei =

=
∑
f∈F

NA∑
i=1

eti

(
DI
AB(f + df)

(
NB∑
j=1

ej ⊗ etj

)
CRBA(f)+

+DR
AB(f + df)

(
NB∑
j=1

ej ⊗ etj

)
CIBA(f)

)
ei =

=
∑
f∈F

NA∑
i=1

eti

(
DI
AB(f + df)CRBA(f) +DR

AB(f + df)CIBA(f)

)
ei =

8
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Figure 1: Graphical representations of the multivariate (MPSI) and bivariate PSI. In partic-

ular, MPSI is able to directly assess directionalities from multivariate signals, e.g., from the

time series of three-dimensional dipole moments at two brain locations, while the bivariate

methods estimate directionality from two one-dimensional time series.

=
∑
f∈F

tr

(
DI
AB(f + df)CRBA(f) +DR

AB(f + df)CIBA(f)

)
where we used that

∑NB

j=1 ej⊗etj = IdB , with the symbol ⊗ denoting the tensor

product. By using the definitions of the spectral matrices of U , V and by using

the properties of the trace, it is thus possible to write the quantity defined in

(8) as a function of only the cross-spectral matrices of ZA and ZB defined in

(4). In fact, ∀f ∈ F

tr

(
DI
AB(f + df)CRBA(f) +DR

AB(f + df)CIBA(f)

)
= (9)

= tr

(((
SRAA(f) + SRAA(f + df)

)
/2
)−1
· SIAB(f + df) ·

((
SRBB(f)+

+SRBB(f+df)
)
/2
)−1
·SRBA(f)+

((
SRAA(f)+SRAA(f+df)

)
/2
)−1
·

·SRAB(f + df) ·
((
SRBB(f) + SRBB(f + df)

)
/2
)−1
· SIBA(f)

)
.

9
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Finally, by using that for two given matrices M1 and M2 it holds that (M1/2)−1 ·

(M2/2)−1 = 4·(M−11 ·M
−1
2 ), we can introduce the multivariate phase slope index

(MPSI) between A and B as

MPSIAB := 4 · tr

(∑
f∈F

(
SRAA(f) + SRAA(f + df)

)−1 · SIAB(f + df) ·
(
SRBB(f)+

+ SRBB(f + df)
)−1 · SRBA(f) +

(
SRAA(f) + SRAA(f + df)

)−1 ·
·SRAB(f + df) ·

(
SRBB(f) + SRBB(f + df)

)−1 · SIBA(f)

)
. (10)

The equation (10) thus represents a multivariate phase slope based approach

to assess the directionality of the frequency-specific multivariate interaction be-

tween A and B.

MPSI exhibits three properties which hold by construction:

1) it can directly assess the directionality of frequency-specific interactions with-

out relying on dimensionality reduction approaches, as opposed to bivariate PSI

(Fig. 1);

2) it vanishes for linear mixture of independent sources, analogously to bivariate

PSI. The proof of this property can be found in Appendix A;

3) it is invariant under invertible linear static transformations of the data such

as rotations of the data spaces A and B. Thus, MPSI is independent of the

choice of the three-dimensional reference frame in which e.g. the MEG source

space is defined. The proof of this property can be found in Appendix B, while

two computational examples are provided in Fig. 2.

As for the bivariate PSI (Nolte et al., 2008, 2010), to assess the statistical

significance of the observed results, it is convenient to consider a standardized

version of MPSI. Indeed, by interpreting the ratio between MPSI and its stan-

dard deviation as a pseudo-Z score, and by fixing a level of significance, it is

possible to read the observed p-values according to a Gaussian distribution.

A complete description of an approach to estimate the standard deviation is

provided in subsection 3.1.

10
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Figure 2: A computational proof of the property of MPSI to be invariant under rotations and

rescaling of signals, by using a simulated directed interaction between two three-dimensional

sources. The panel a) shows the results obtained by MPSI and the average PSI, i.e. the

bivariate PSI averaged over all the possible combination of scalar signals, when we applied

rotations of the xy plane of one of the two vector signal. The panel b) shows the results of

MPSI, with (i.e. as defined in (10)) and without the application of the spatial whitening (i.e.

(10) but without the inverse matrices in the equation), as a function of a scaling factor.
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3. Experiments

In this section, the experiments performed in this work are described. In

the simulated studies, we evaluated the performance of MPSI in detecting the

directionality of frequency-specific multivariate coupling in different synthetic

experiments. Next, we assessed seed-based directed functional connectivity for

resting state MEG data from the HCP database. The results obtained by MPSI

in both simulated and real data were compared to the results obtained by two

bivariate PSI approaches, i.e. PSI after the maximization of the imaginary

part of coherency (MICPSI), and the PSI after canonical correlation analysis

(CCAPSI).

3.1. Synthetic experiment 1

Here, we evaluate the performance of MPSI in assessing directionality from

synthetic datasets consisting in pairs of multivariate time courses defined as a

weighted superposition of a signal term, which represents a directed interaction

between two vector sources of dimensions NA and NB , with a correlated noise

term. This situation corresponds to an ideal case in which e.g. brain activity

is a priori known without the need to estimate it from sensor level data. The

case of estimated brain activity will be considered in the next section (Synthetic

experiment 2).

Each simulated pair of multivariate time series ZA and ZB is combined in

Z = [ZtA ZtB ]t and defined as

Z = (1− γ)
X

||X||F
+ γ

Y

||Y||F
(11)

where X = [Xt
A Xt

B ]t is the signal of interest, Y is a noise vector, ||X||F
and ||Y||F are the Frobenius matrix norms of X = (X(1), ..., X(T )) and Y =

(Y (1), ..., Y (T )). The value of γ ∈ [0, 1] indicates the noise strength, thus e.g.

γ = 1/2 indicates a balanced contribution between signal and noise for Z.

The time series of the leading source, which without loss of generality we

assume to be A, XA = (x1, ..., xNA
)t and the evolution of the following source

XB = (xNA+1, ..., xNA+NB
)t are defined as

12
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xi(t) =

NA∑
j=1

P∑
k=1

aijkxj(t− τk) + ξi(t), i = 1, ..., NA (12)

xi(t) =

NA+NB∑
j=NA+1

P∑
k=1

bijkxj(t−τk)+

NA∑
j=1

P∑
k=1

cijkxj(t−τk)+ξi(t), i = NA+1, ..., NA+NB .

While the noise is modeled as

Y =
(
y1, . . . , yNA+NB

)t
= M

(
ỹ1, . . . , ṽN

)t
, (13)

where the components, which are independent among them, have the following

evolution

ỹi(t) =
P∑
k=1

dikỹi(t− τk) + εi(t) i = 1, ..., N. (14)

In the equations (12) and (14) aijk, bijk, cijk, dik, ξi(t) and εi(t) are realiza-

tions of independent Gaussian random variables of zero mean and a standard

deviation equal to 1/10. Finally, M ∈ R(NA+NB)×N is a mixing matrix whose

entries are realizations of a standard normal random variable.

For all the simulation repetitions, we set the dimension of each data space

equal to 3, i.e. NA = NB = 3, the number of noise sources N equal to 6, the

model order P equal to 5. Each of the generated time courses has a length of

T = 76200 data points, which, sampled at 254 Hz, corresponds to 5 minutes

of continuous data. With this approach, we used 20000 pairs of multivariate

time series. Specifically, 2000 for each value of γ in the range from 0 (i.e.,

100% signal) to 0.9 (i.e., 10% signal and 90% noise) with an incremental step

of 0.1. These 2000 pairs were further divided into 20 sets of 100 pairs of time

courses each, such that for each value of γ, the average percentage and standard

deviation over the 20 sets of the number of right detections, of wrong detections

and of no answers of MPSI in the alpha band (8-12 Hz) can be estimated.

The calculation of MPSI requires the estimation of the cross-spectra between

time courses. To compute them, we firstly divided each multivariate time series

into E = 150 epochs of the same length, containing continuous data, and we

further divided each epoch into 3 segments which have 50% overlap within each

13
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epoch but not across the epochs. We estimated the cross-spectra as an average

of the products of the Fourier transforms over all segments (Nolte et al., 2008)

and we calculated MPSI over each pair of frequencies f and f + df for which

at least one of them lies in the alpha band, by using a df value equal to 1 Hz.

To provide an estimation of the standard deviation (SD) of MPSI, we used

the jackknife method (Nolte et al., 2008, 2010). In this approach, the SD of

MPSI is defined over a set of its estimates, MPSIk with k = 1, ..., E, each

obtained from the data in which the k-th epoch has been removed. The SD of

the MPSI value is finally estimated for the E epochs as
√
Eσ where σ is the

standard deviation of the set {MPSI1, ...,MPSIE}.

Finally, we used a significance level for the standardized MPSI equal to

0.01. This means that if the absolute value of MPSI for a given pair of time

series exceeded 2.58, the direction of coupling detected by the sign of MPSI was

considered as significant.

3.2. Synthetic experiment 2

Here, in order to investigate the impact of the MEG forward and inverse

models on MPSI and the other phase slope based metrics, we performed bio-

logically realistic simulations. Specifically, we simulated networks of interacting

sources with two different levels of complexity. In the first case, we generated

a single pair of interacting sources and four independent noise sources. In the

second case, we simulated more complex networks, comprising four interacting

sources and four independent noise sources, with a partially connected topol-

ogy consisting of a directed closed cycle of three sources and a feed-forward

connection from one of them to the fourth source.

The simulated time series at the level of brain regions were always modeled

as single three-dimensional current dipoles with a temporal evolution following

equations in (12) for the drivers and the receivers. The evolution of the in-

dependent noise sources follows the same equation of the drivers, but without

any source which receives information from them. For the simulation of the

first case, the cortical locations of the two interacting regions were chosen to
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be located on the somatosensory areas (panel a) of Fig. 4 while, for each time

series realization of the second case, the location of the four regions belonging

to the simulated network were randomly chosen among six locations placed on

parietal, frontal and temporal lobes (Fig. 5a). Finally, the noise sources for

each different simulation realization were randomly located over the cortex.

In both cases, the simulated signals were projected to the sensor space to

obtain the MEG recordings S as

S = (1− γ)

∑N
i=1 LiXi

||X||F
+ γ

∑N+4
i=N+1 LiYi

||Y||F
+ µ (15)

where X and Y denote the time courses of the N interacting regions (two for

the first case and four for the second case) and the four independent regions, γ

denotes the strength of the biological noise, L is the spread pattern (i.e. leadfield

matrix) for the neural sources and µ is an uncorrelated sensor noise with 0 mean

and standard deviation equal to 1/10. For each of the ten γ values considered

(from 0 to 0.9 with step of 0.1), we generated 2000 time series. The length

of each time series generated was 76200 data points which, with a sampling

frequency of 254 Hz, corresponds to 5 minutes of continuously recorded activity.

The leadfield matrix L was obtained by a single shell approach (Nolte, 2003)

for one among the realistic source space, which consisted of a cortical layer of

8004 uniformly distributed points, and volume conductor model provided by

the HCP.

Finally, in order to reconstruct the brain activities Z from S, we applied

an inverse operator to generated MEG recordings. To this end, we used the

eLoreta inverse method (Pascual-Marqui et al., 2011), a non-adaptive linear

inverse solver with a weight matrix such that the estimated source distribu-

tion has maximal power at the true single dipole location. We relied on the

eLoreta implementation provided in the FieldTrip toolbox (Oostenveld et al.,

2011) where the weight matrix is obtained from the normalized leadfields. The

cross-spectra in the alpha band (8-12 Hz) were estimated as averages of the

products of the Fourier transforms over all segments and the SD of MPSI was

estimated by using the jackknife method, as for the simulation described in the
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previous paragraph. Each directionality obtained from one of the methods was

considered as significant if the absolute value of the measure was larger than

2.58, i.e. we used for all the methods a level of significance of 0.01.

In the first case, we assessed the mean value and the standard deviation

of the number of right, wrong and not significant detections. In the second

case, we assessed the ability to identify the correct topology of the simulated

network by using a compound measure of pairwise coupling between all the

different network nodes. Specifically, for each γ value, we computed the ratio

between the mean squared errors (MSEs) in estimating the directionality of

each simulated coupling. By denoting with ωi ∈ {−1, 1} the parameter which

describes if the direction of the i−th simulated interaction is from source1 to

source2 (source1-to-source2, ω = 1), or from source2 to source1 (source2-to-

source1, ω = −1), we have that the MSE of MPSI in approximating Ω = {ωi}

is defined as

MSE(MPSI) =
1

#time series pairs

∑
i

(sgn(MPSI(i))− ωi)2, (16)

where sgn(MPSI(i)) is equal to ±1 if a statistical significant source1-to-source2

or source2-to-source1 direction for the i−th coupling is detected by MPSI, while,

it is equal to 0 if the detected directionality is considered to be not statistically

significant. Analogously, MSEs for MICPSI and CCAPSI can be defined. The

ratio between the MSE of MPSI and the MSE of either MICPSI or CCAPSI

allows a direct comparison between the performance MPSI and the other two

approaches. Hence, a value lower than 1 for this ratio implies a better per-

formance of MPSI in disclosing statistically significant directionalities, while a

value larger than 1 implies the opposite. To calculate the average and standard

deviation of the number of right detections, of wrong detections, of not signifi-

cant detections and of MSEs of the three methods, the generated signals were

divided into 20 sets of 100 pairs.
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3.3. Real MEG data experiment

3.3.1. Resting state MEG data from Human Connectome Project

Resting-state MEG data were taken from 61 subjects as part the HCP MEG2

release (Larson-Prior et al., 2013). The release included a total of 67 subjects,

but resting-state recordings that passed the quality control checks were not

available from 6 of them, leading to the final cohort of 61 subjects, all young

(22-35 years of age) and healthy. The same cohort of 61 subjects was used

in Colclough et al. (2016). For each subject, resting-state data were measured

using a whole-head Magnes 3600 scanner (4D Neuroimaging, San Diego, CA,

USA) in three consecutive sessions lasting 6 min each. Preprocessing, as pro-

vided in the MEG2 release, included: data down-sampling to 508.6 Hz, removal

of noisy time segments from the recordings, identification of faulty recording

channels, and artefact rejection based on an independent component analysis

(ICA) decomposition (Mantini et al., 2011). For ease of computation, we further

down-sampled the data to 254.3 Hz.

A seed-based analysis was used to assess functional connectivity in the alpha

band. As a preliminary step, we applied a data driven approach based on power

maps in the alpha frequency band to identify the seed location as the location

of maximum alpha power.

To this end, we computed channel level power from each session in the alpha

band using a set of 7 orthogonal Slepian tapers (Slepian, 1978) with a 10 Hz

center frequency to produce 2 Hz frequency smoothing. Alpha band power in

source space, which consisted of a cortical layer of 8004 uniformly distributed

points, was estimated by the eLoreta inverse procedure with free source orien-

tation (Pascual-Marqui et al., 2011). We relied on the eLoreta implementation

provided in the FieldTrip toolbox (Oostenveld et al., 2011) where the weight

matrix is obtained from the normalized lead fields obtained with the single

shell approach (Nolte, 2003) for the source space and volume conductor model

provided by the HCP. The group averaged alpha power map was obtained as

the mean across all sessions and subjects. The HCP source space and volume
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conductor model are already provided in the standard co-ordinate space of the

Montreal Neuroimaging Institute (MNI), thus allowing straightforward group

averaging. Finally, the seed was defined as the location corresponding to maxi-

mum alpha power.

Once the seed location has been identified as above, seed-based MPSI anal-

ysis in source space has been performed and the directed connectivity map has

been obtained as the map of

MPSIA,B =
1√

3 · 61

3∑
ses=1

61∑
sub=1

MPSIses,subA,B

std(MPSIses,subA,B )
(17)

where 1/
√

3 · 61 is a normalization factor used to have the standard deviation

of the group MPSI equal to 1. In other words, the map was obtained as the

average over the 61 subjects and the 3 sessions of the standardized MPSI be-

tween the multidimensional source time series of any cortex location A and the

multidimensional source time series of the seed, denoted by B.

The estimates of the cross-spectra and of the SDs of MPSI were computed as

for the synthetic data. Furthermore, we used the same level of significance, i.e.

we considered as statistically significant only observed p < 0.01. Nevertheless,

to account for multiple comparisons, a false discovery rate (FDR) correction on

the observed p-values has been used.

3.4. Bivariate approaches based on PSI

The results obtained from MPSI on synthetic and measured time series were

compared to the results of other two methods based on the phase slope, namely

MICPSI and CCAPSI.

More specifically, MICPSI is the bivariate PSI between two scalar time series

obtained from an approach based on the maximization of the imaginary part of

coherency (Ewald et al., 2012) applied to the multivariate signals ZA and ZB ,

i.e. the PSI between the bivariate signals α̃tZA and β̃tZB where

α̃ := argmax||α||=1

{
αt
∑
f∈F

(
SRAA(f)−

1
2SIAB(f)SRBB(f)−1SIBA(f)SRAA(f)−

1
2

)
α

}
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β̃ := argmax||β||=1

{
βt
∑
f∈F

(
SRBB(f)−

1
2SIBA(f)SRAA(f)−1SIAB(f)SRBB(f)−

1
2

)
β

}
.

(18)

In (18) SAA, SBB , SAB and SBA indicate cross-spectral matrices, and the

superscripts R and I denote the real and imaginary part, respectively, following

the same notation adopted in equation (4). Hence the directions, α̃ and β̃, over

which the multivariate signals are projected are those which allow for the max-

imization of the imaginary part of the coherency between any pair of bivariate

signals αtZA and βtZB in the alpha band.

On the other hand, CCAPSI is a bivariate PSI between two scalar time series

obtained from canonical correlation analysis (Hotelling, 1936) as detailed below.

Let us define the alpha band-filtered data Z̃A and Z̃B obtained from the original

signals ZA and ZB . The estimator of directionality is then the bivariate PSI

between the time series α̃tZA and β̃tZB where the vectors α̃ and β̃ are defined

as:

α̃ := argmax||α||=1

{
αt(ΣAA)−

1
2 ΣAB(ΣBB)−1ΣBA(ΣAA)−

1
2α

}
β̃ := argmax||β||=1

{
βt(ΣBB)−

1
2 ΣBA(ΣAA)−1ΣAB(ΣBB)−

1
2 β

}
(19)

where ΣAB denotes the covariance between Z̃A and Z̃B , and similarly for ΣBA,

ΣAA, and ΣBB . Thus, the bivariate PSI is calculated on the directions, α̃ and

β̃, which allow for a maximization of the temporal correlation between any pair

of bivariate signals αtZ̃A and βtZ̃B .

The approaches used to estimate the cross-spectra between time courses,

which are the basis for MICPSI and CCAPSI computation, as well as for SDs,

are the same described in subsection 3.1.
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4. Results

4.1. Synthetic experiment 1

We found that MPSI outperforms both PSI based methods, i.e. MICPSI

and CCAPSI, as shown in Fig. 3a. Indeed, MPSI features a percentage of right

detections which is two to four times (in case of high or low signal percentage,

respectively) the corresponding percentages featured by MICPSI and CCAPSI.

Conversely, no substantial differences among the three methods in the number

of wrong detections are evident (Fig. 3b). Actually, all estimators have obtained

very low average percentages of wrong detections (< 3%), even in very noisy

conditions, showing the robustness to noise of both the multivariate and the bi-

variate phase slope based methods. However, it is important to notice that, over

all the simulation realizations, the number of pairs in which MPSI has detected

a wrong directionality is exactly 0. Finally, Fig. 3c shows the percentage of not

statistically significant detections for the three methods. Specifically, the per-

centage for MPSI decreases as the signal percentage increases reaching a value

of about 20%. Conversely, the curves for MICPSI and CCAPSI, clearly show

a slower decrease with average percentages always larger than 50%. Thus, the

observed prominent difference between MPSI and the two bivariate methods is

basically due to the large number of multivariate pairs for which MICPSI and

CCAPSI are not able to asses a statistically significant directionality.

4.2. Synthetic experiment 2

When the effect of the MEG forward/inverse model and of biological noise

are taken into account, a consistent difference in the performance between MSPI

and the bivariate estimators is also evident.

In the simple case, with a network made by only two nodes, the results are shown

in Fig. 4 panels b), c), d). Specifically, MPSI achieves the highest number of

right detections, panel b), and the lowest number of not significant detections

and wrong detections, panels c) and d), in comparison to both MICPSI and

CCAPSI. This general behaviour is in accordance with the results found for the
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Figure 3: Average percentages and standard deviations of a) right, b) wrong and c) not

significant detections are shown for the three methods, i.e. multivariate PSI (MPSI), the

bivariate PSI with a maximization of imaginary part of coherency approach (MICPSI) and

the bivariate PSI with a canonical correlation analysis approach (CCAPSI).

”Synthetic experiment 1” in which the effect of MEG forward/inverse model

was not considered.

The results obtained for the complex network case are shown in Fig. 5 and

Fig. S1 of the Supplementary Material. Here, we compared the mean squared

errors (MSEs) of the different methods in reconstructing the correct topology

of the simulated network. The ratio between the MSE of MPSI and the MSEs

of the other two methods, panel b) for MCIPSI and panel c) for CCAPSI, is

always lower than 1. Moreover, the MSE of MPSI is, on average, about 10%

lower than each of the other two MSEs. This result thus reveals that MPSI is,

for every noise condition, better at reconstructing the topology of the simulated

network.

4.3. Real MEG data experiment

For the HCP resting state MEG data, the cortical location associated with

the maximum of the group averaged alpha power was used as seed for the di-

rected functional connectivity analysis (Fig. S2 panel A). The resulting location

belongs to the ”calcarine fissure” parcel of the AAL Atlas (Tzourio-Mazoyer

et al., 2002) and specifically it is positioned in the right primary visual cortex
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Figure 4: The panel a) shows the locations of the interacting sources (green dots), with the

direction of the interaction, and the locations of the independent noise sources (black dots)

for a single time series realization. The panels b), c) and d) show, respectively, the average

percentages and standard deviations of right, wrong and not significant detections for the

three methods.
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Figure 5: The panel a) shows the complex network with four interacting sources which, for

each time series realization, were randomly chosen among the six locations denoted by the

green dots. The panels b), c) and d) show, respectively, the average percentages and standard

deviations of right, wrong and not significant detections for MPSI and the two bivariate

methods.
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Figure 6: The FDR corrected (p <0.01) group averaged map in the alpha band between V1

(grey dot on the right medial view) and all other locations over the cortex obtained by using

MPSI approach is shown. Red cortical locations exert an influence on V1 while V1 exerts an

influence on blue coloured regions. The coloured dots represent resting state network nodes

which overlap the blue and red areas.

(V1) at MNI coordinates (6.5, -62.5, 18.5) mm (grey dot on the right medial

view in Fig. 6, Fig. 7, Fig. S2 and Fig. S3).

Fig. 6 shows the FDR corrected (p <0.01) group averaged map in the alpha

band between V1 and all other locations over the cortex obtained by applying

MPSI.

In this map, regions which exert an influence on V1 are color coded in red

while regions on which V1 exerts an influence are indicated in blue. Specifically,

we observe as a prominent feature an input from V1 to occipital cortex, left and

right frontal cortex, and medial prefrontal cortex. Conversely, bilateral parietal

areas and the posterior cingulate cortex lead V1.

Of note, all of the above areas belong to well-known resting state networks

(RSNs), i.e. sets of brain regions exhibiting temporally correlated activity fluc-

tuations in the absence of imposed task structure ((Deco & Corbetta, 2011),
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Table 1: Resting State Network nodes, their MNI coordinates (mm) and the directionality

of their interactions with V1 seed revealed by using MPSI. A leading role exerted on V1 is

denoted with the symbol → while, a following role, with the symbol ←.

Cortical MNI coord. Direction Resting State

area (x, y, z) Network

left aIPS (-32.3, -45.6, 46.6) → V1 Dorsal Attention Network

left SPL (-22.2, -57.3, 53.6 ) → V1 Dorsal Attention Network

right SPL (28.3, -53.1, 53.8 ) → V1 Dorsal Attention Network

left dlPFC (-43.4, 20.9, 38.1) ← V1 Fronto-Parietal Network

left IPL (-31.3, -62.9, 42.4 ) → V1 Fronto-Parietal Network

right IPL ( 51.5, -50.6, 43.0 ) → V1 Fronto-Parietal Network

right vPrCe ( 39.4, 10.2, 23.4 ) ← V1 Ventral Attention Network

right IFG-AI (42.4, 28.8, 2.6 ) ← V1 Ventral Attention Network

right vIFG (46.5, 10.9, 10.4 ) ← V1 Ventral Attention Network

left PCC (-4.0, -54.0, 30.0 ) → V1 Default Mode Network

left mPFC (-10.0, -53.0, 2.0 ) ← V1 Default Mode Network

right PCC ( 4.0, -54.0, 30.0 ) → V1 Default Mode Network

right mPFC ( 10.0, 53.0, 2.0 ) ← V1 Default Mode Network

left dV2 ( -2.0, -94.1, 3.7 ) ← V1 Visual Network

right V3 (20.2, -95.7, 14.5) ← V1 Visual Network

(Fox et al., 2005), (Smith et al., 2009)). Indeed, the MPSI map in Fig. 6

shows that areas of dorsal attention network (DAN), fronto-parietal network

(FPN), ventral attention network (VAN), default mode network (DMN) and

visual network (VN) are coupled to V1 in the alpha band. Specifically: i) for

DAN areas, an influence on V1 is exerted by the left and right superior parietal

lobule (SPL); ii) for FPN areas, while the left inferior parietal sulcus (IPS) and

the right inferior parietal lobule (IPL) lead V1, the left dorsolateral prefrontal

cortex (dlPFC) follows V1; iii) for VAN areas, the right inferior frontal gyrus

(IFG) and the right anterior insula (AI) are influenced by V1; iv) for DMN

areas, the posterior cingulate cortex (PCC) exerts an influence on V1 while V1
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leads the medial prefrontal cortex (mPFC); v) for VN areas, left primary visual

areas. RSN nodes, whose MNI coordinates are listed in table 1, are taken from

Hacker et al. (2013) and Marzetti et al. (2013).

These MPSI results can be compared to the results on the same data and

frequency band obtained by the bivariate PSI approaches. Indeed, Fig. 7 shows

a comparison of the MPSI results with MICPSI and CCAPSI results (FDR

corrected p < 0.01). Although some of the observed directed interactions with

V1 are visible for all metrics, e.g. an input from V1 to the right occipital

cortex and from parietal areas to V1, differences in group averaged functional

connectivity maps are evident. Specifically, CCAPSI in contrast to MPSI did

not detect a statistically significant input from V1 to the right middle frontal

cortex and left inferior frontal cortex, while MICPSI detected these couplings

only to a lower extent. Furthermore, MPSI is the only method among the three

which is able to disclose an input from V1 to the right and left mPFCs and from

PCC to V1.

Altogether, the maps obtained by applying the bivariate methods on real

MEG data show fewer regions which exhibit directed interactions with V1 with

respect to the map obtained by using MPSI.

Finally, a point-to-point comparison between the group averaged alpha power

map and the group averaged MPSI map results into a very small value of

the square of Pearson correlation between MPSI and the alpha power value

(r2 = 0.047) indicating a weak degree of predictability between the two vari-

ables. Specifically, only the 4.7% of the variation of the MPSI values can be

explained by the variation in the alpha power (Fig. S2).

5. Discussion

In this work, we developed and successfully applied to synthetic and real

data, the multivariate phase slope index (MPSI), a generalization to multivariate

time series of the phase slope index (PSI) (Nolte et al., 2008) directed connectiv-

ity method, that retains the desirable property of being by construction robust
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Figure 7: The FDR corrected (p < 0.01) group average MPSI, MICPSI and CCAPSI maps

of the directed functional connectivity in the alpha band for the 61 HCP MEG subjects are

shown.
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to the artificial brain source coupling. MPSI is able to disclose the directionality

of frequency-specific neural interactions from multivariate electrophysiological

signals, such as those associated to the brain sources as reconstructed from

magnetoencephalographic (MEG) or electroencephalographic (EEG) data. The

usual way to detect directionality of frequency-specific neural interactions from

e.g. MEG source time courses is to first find, for each source, a scalar time

series obtained by a priori fixing the source orientation, and second to use a

bivariate approach on the reduced time series of the sources. Conversely, MPSI

can directly assess the coupling direction from e.g. MEG source time courses,

without fixing an a priori orientation.

The results obtained on simulated data prove that MPSI achieves substantial

higher performance than bivariate PSI approaches in detecting directionality of

multivariate interactions, i.e. with source orientation fixed according to a canon-

ical correlation based approach and with source orientation fixed according to

the maximization of imaginary coherency. Indeed, the latter procedures lead

to unavoidably discard part of the signal and to not completely exploit the

multivariate nature of the sources, thus supporting the notion that bivariate

estimators perform worse than multivariate methods (Marzetti et al., 2013).

Additionally, biologically realistic simulations have proven that MPSI outper-

forms the other two tested approaches also when the sources are considered as

resulting from the solution of an MEG inverse approach. This is true for the

estimation of directionality between two sources in a simple network, but also

for the detection of the topology of a more complex network with several in-

teracting and non-interacting nodes and with a given pattern of directionality

among the interacting sources. Importantly, the general pattern of these results

is only mildly affected by the simulated signal strength, indicating that MPSI is

able to correctly assess the directionality also for signals with low signal-to-noise

ratio.

MPSI has also proven to be able to disclose directed interactions in real

MEG data from a resting state experiment in 61 subjects from the Human

Connectome Project database. Our findings are in line with the existing MEG
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observations of resting state alpha band coupling between the Visual Network

and other RSNs (Brookes et al., 2011; de Pasquale et al., 2010, 2012; Marzetti

et al., 2013). In addition, our study provides an insight into a directed coupling

between the visual cortex and DAN, VAN and FPN which is in accordance

with feedback and feedforward relations (Varela et al., 2001) between areas of

these networks (Vossel et al., 2014; Corbetta & Shulman, 2002). Specifically,

the results concerning the coupling from the DAN to the visual cortex are in

accordance with the idea of a feedback control exerted by the DAN on visual

areas to instantiate goal-directed control of attention (Corbetta & Shulman,

2002). Along the same line, the observed coupling from the visual cortex to

the VAN can be attributed to the role of the VAN in stimulus driven control

of attention (Corbetta & Shulman, 2002). We also found a twofold coupling

between the visual cortex and the FPN. Indeed, while the parietal parts of the

FPN exert a leading role on the visual cortex in line with the notion that FPN

controls cognitive processes through a feedback mechanism(Dosenbach et al.,

2008), the dlPFC is connected to the visual cortex in a feedforward fashion.

The latter result is in accordance with the putative role of this region in action

preparation in response to the visual stimulus (Heekeren et al., 2006).

The observed coupling between the visual network and the DMN can be

ascribed to the processing of internal visual representations related to the DMN.

Indeed, our directionality results are in line with the hypothesis that PCC,

which is known to be involved in visual imagery (Cavanna & Trimble, 2006),

exerts a control on the visual cortex to instantiate a visual response even in

the absence of a visual stimulus (Tong, 2004), and that, in turn, the visual

cortex sends inputs to the mPFC node of the DMN which is known to be

involved in mentalizing and self-referential processing (de Pasquale & Marzetti,

2014; Marzetti et al., 2014). Finally, the internal coupling observed within

the visual network is consistent with previous observations that primary visual

areas lead secondary and associative visual areas according to a feedforward

model (Riesenhuber & Poggio, 1999) to account for, e.g., the ability to recognize

specific objects.
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In conclusion, the relatively large cohort of subjects from the Human Con-

nectome Project allowed us to conclude that the alpha band directed interactions

between visual cortex and several RSNs are a remarkable feature of MEG rest-

ing state networks coupling. An interesting perspective for future studies would

be the reproducibility of this feature in single subjects as well as its alterations

in brain diseases.

As for the simulated situations, the differences in the directed functional

connectivity results for the three methods observed in real data are likely to

be attributed to the higher performance of the MPSI in the detection of the

coupling direction between areas which conceivably have a multivariate nature.

Indeed, in the simulation studies we found a large number of multivariate cou-

plings in which, as opposed to MPSI, MICPSI and CCAPSI did not succeed to

disclose a statistically significant directionality. The unthresholded resting state

maps reveal that the same behaviour holds for the three methods at different

significance levels. Thus, ultimately suggesting that MPSI is able to detect the

same coupling directions of MICPSI and CCAPSI but with noisier data, e.g.

with lower number of subjects.

An additional interesting general issue to be discussed when connectivity is

the target is to what extent the connectivity maps differ from the power maps.

We have thus investigated, in the real data experiment, if there is a direct

relation between the group averaged MPSI maps (with respect to the primary

visual cortex) and the corresponding alpha band power maps. Our results have

shown a weak degree of predictability between the power and MPSI on a point-

to-point basis on the cortex. Moreover, the points corresponding to cortical

regions belonging to the tail of the 5% of sources with the highest power can have

either small or large, positive or negative, in the corresponding MPSI map (Fig.

S2). This result is conceivable given that MPSI implies a whitening step which

takes into account power normalization. Indeed, although this normalization

is not able to exactly flatten at the same time the power at frequency f and

at frequency f + df from a theoretical point of view, in practice, given that

power variations across frequency within physiological bands are smooth, this
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normalization results into making MPSI results not driven by power results.

Even though MPSI has extensively proven to be a better estimator of the

directionality than the tested bivariate versions, one must be aware of a potential

limitation of these approaches. Indeed, all phase slope based methods can detect

the directionality of delayed interactions only and, thus, the direction of the

functional couplings occurring at zero phase cannot be assessed by MPSI as well

as by the bivariate PSIs. Nevertheless, it is unlikely that perfectly zero phase

interactions occur in the brain consistently with the communication through

coherence model (Fries, 2015) and as reasonable due to conduction delays in

physical communication between brain areas.

Additionally, while in this work we compared only methods based on phase

slope, other computational approaches which exploit different features of the

data have been defined to assess the directionality of neural couplings. It will

be thus interesting to investigate in future studies the performance of MPSI as

compared to other types of measures, e.g. based on Granger causality (GC)

(Geweke, 1982; Granger, 1969). Of note, GC based approaches do not differ

from phase based approaches in that they also assess directionality by relying

on temporally delayed signals. Moreover, most of GC based measures are not

able to cope with the negative effects of field spread, and the use of an or-

thogonalization procedure (Brookes et al., 2012; ONeill et al., 2015) prior to

their application can indirectly make the obtained results robust to these ef-

fects. For example, a bivariate GC approach in the frequency domain (Geweke,

1982) can be used to assess directionality from synthetic scalar signals obtained

by maximizing the power of the two simulated sources after orthogonalization.

Preliminary simulations referring to data generated with the Synthetic exper-

iment 1 approach (Fig. S4) show that also in this case the use of a bivariate

approach on multivariate data results in a lower percentage of right detections.

Indeed, several GC versions exist, e.g.: the one in the time domain (Granger,

1969), the nonlinear one (Marinazzo et al., 2008), or other slightly different

measures such as the partial directed coherence (Baccalá & Sameshima, 2001)

or the directed transfer function (Blinowska et al., 2004). An extensive compar-
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ison between phase slope based methods and these Grager causality versions is

beyond the scope of this work and will be the topic of future investigations.

Finally, while the real data results have provided interesting insights into

RSNs directed interactions, a whole brain all-to-all connectome in which direc-

tionality between all brain areas is assessed would provide a broader view on

brain functioning. Therefore, while a connectomic approach was beyond the

scope of this work, we believe that an all-to-all approach is a worth direction to

take in future works and that MPSI should be used to derive directed frequency

specific all-to-all connectomes, which can be subsequently subject to e.g. graph

analysis (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). In fact, being

the MPSI defined as a product of cross-spectral matrices, a fast implementation

of MPSI that allows to derive a dense functional connectome is indeed possible.

Additionally, a connectomic approach would further limit the possible effects in-

duced by spurious interactions from ghost sources on the observed results (Palva

& Palva, 2012) with respect to seed based approaches.
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Appendix A: PSI and MPSI vanish for linear mixtures of independent

sources

The purpose of this appendix is to show an explicit proof that PSI and MPSI

are robust to the artificial and instantaneous coupling induced by field spread

effects in source space.

Let us assume that the one-dimensional sensor signals {σi}Nsensors
i=1 can be

written as a superposition of Nsources three-dimensional brain sources, denoted

by {(x1k, x2k, x3k)}Nsources

k=1 . Therefore, for a fixed channel i it holds that its

Fourier transform can be written as σ̂i(f) =
∑3
g=1

∑Nsources

j=1 Ligj x̂gj(f), where

L ∈ RNsensors×3×Nsources is the leadfield tensor and f is a fixed frequency.

The application of an inverse procedure to the Nsensors signals leads to the

definition of Ñsources reconstructed source time series {(z1k, z2k, z3k)}Ñsources

k=1 .

The h-th component of the k-th three-dimensional vector is thus described,

in the frequency dependent domain, as ẑhk(f) =
∑Nsensors

i=1 Whkiσ̂i(f), where

W ∈ R3×Ñsources×Nsensors is the inverse operator. Moreover, these reconstructed

source time courses can be in turn expressed as a superposition of the compo-

nents of the actual brain sources, as in:

ẑhk(f) =

Nsensors∑
i=1

Whkiσ̂i(f) =

Nsensors∑
i=1

3∑
g=1

Nsources∑
j=1

WhkiLigj x̂gj(f) = (20)

=
3∑
g=1

Nsources∑
j=1

x̂gj(f)

Nsensors∑
i=1

WhkiLigj =
3∑
g=1

Nsources∑
j=1

Rhkgj x̂gj(f)

where R ∈ R3×Ñsources×3×Nsources is the resolution tensor.

As we previously noted, to apply the bivariate PSI on a pair of reconstructed

source time courses it is necessary to fix a unidimensional time series for each

vector source. To this end, a transformation that leads each three-dimensional

source time series into a scalar time series has to be defined. Alternatively, it

is possible to use MPSI which is basically an average process defined over the

bivariate PSIs calculated between time series which are obtained by a suitable

linear mixing of the components of the vector sources. Thus, to prove that PSI

and MPSI are robust to the negative field spread effects, it is sufficient to show
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that the cross-spectrum between every pair of linear combination of the source

components is a real number if the components of two different brain sources

are non-interacting and the components of the same brain source have among

them a zero-phase difference. Indeed, a real cross-spectrum would imply zero

values for PSI and MPSI given that the PSI numerator at frequency f can be

written as a difference between products of real and imaginary parts of cross-

spectra as in: =(s1,2(f + df))<(s1,2(f)) − =(s1,2(f))<(s1,2(f + df)). Thus, if

the imaginary part of cross-spectrum vanishes, it also vanishes PSI and MPSI.

We thus have to prove that the cross-spectrum between
∑3
h=1 Thkzhk and∑3

e=1 Telzel, where T ∈ R3×Ñsources , is real for all k and l in the range 1, ..., Ñsources.

By using that the components of the reconstructed sources can be written as

functions of the components of the actual brain sources and by using that R

and T are not time dependent, it holds that

<

(
3∑

h=1

Thkẑhk

)(
3∑
e=1

Telẑel

)∗
>=

3∑
h=1

3∑
e=1

ThkTel < ẑhk(f)ẑ∗el(f) >= (21)

=
3∑

h=1

3∑
e=1

ThkTel <

(
3∑
g=1

Nsources∑
j=1

Rhkgj x̂gj(f)

)(
3∑
d=1

Nsources∑
i=1

Reldix̂di(f)

)∗
>=

=

3∑
h=1

3∑
e=1

ThkTel

3∑
g=1

3∑
d=1

Nsources∑
j=1

Nsources∑
i=1

RhkgjReldi < x̂gj(f)x̂∗di(f) > .

Now, by assuming that the actual brain sources are independent among them, we

have that all terms < x̂gj(f)x̂∗di(f) > with j 6= i are equal to zero. In fact, these

terms can be written as the product between < x̂gj(f) > and < x̂∗di(f) >, which

are both equal to zero. Furthermore, by assuming that all the components of

the same brain source are independent among them or that they have a pairwise

phase difference equal to zero, it holds that < x̂gi(f)x̂∗di(f) >∈ R. Thus, the

equation (21) becomes equal to

3∑
h=1

3∑
e=1

ThkTgl

3∑
g=1

3∑
d=1

Nsources∑
i=1

RhkgiReldi < x̂gi(f)x̂∗di(f) >, (22)

which is a real number.
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Appendix B: MPSI is invariant under invertible linear static trans-

formations of the data

Let WA and WB be two linear and invertible spatial transformations of the

data spaces A and B. We will in the following show that the MPSIAB between

the multivariate time series ZA and ZB coincides with the MPSIÃB̃ between

WAZA and WBZB . This statement follows from

MPSIÃB̃ = 4 ·
∑
f∈F

tr

((
WAS

R
AA(f)W t

A +WAS
R
AA(f + df)W t

A

)−1
· (23)

·
(
WAS

I
AB(f + df)W t

B

)(
WBS

R
BB(f)W t

B +WBS
R
BB(f + df)W t

B

)−1
·

·
(
WBS

R
BA(f)W t

A

))
+ 4 ·

∑
f∈F

tr

((
WAS

R
AA(f)W t

A +WAS
R
AA(f + df)W t

A

)−1
·

·
(
WAS

R
AB(f + df)W t

B

)(
WBS

R
BB(f)W t

B +WBS
R
BB(f + df)W t

B

)−1
·

·
(
WBS

I
BA(f)W t

A

))
= 4 ·

∑
f∈F

tr

((
SRAA(f) + SRAA(f + df)

)−1
SIAB(f + df)·

·
(
SRBB(f)+SRBB(f +df)

)−1
SRBA(f)+

(
SRAA(f)+SRAA(f +df)

)−1
SRAB(f +df)·

·
(
SRBB(f) + SRBB(f + df)

)−1
SIBA(f)

)
= MPSIAB ,

where we have used that(
(WAS

R
AA(f)W t

A+WAS
R
AA(f+df)W t

A)
)−1

=
(
WA(SRAA(f)+SRAA(f+df))W t

A

)−1
=

(24)

= (W t
A)−1

(
SRAA(f) + SRAA(f + df)

)−1
W−1A

and the same for B.
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