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Abstract 

The estimation of functional connectivity between regions of the brain, for example based on statistical 

dependencies between the time series of activity in each region, has become increasingly important in 

neuroimaging. Typically, multiple time series (e.g. from each voxel in fMRI data) are first reduced to a 

single time series that summarises the activity in a region of interest, e.g. by averaging across voxels or 

by taking the first principal component; an approach we call one-dimensional connectivity. However, 

this summary approach ignores potential multi-dimensional connectivity between two regions, and a 

number of recent methods have been proposed to capture such complex dependencies. Here we review 

the most common multi-dimensional connectivity methods, from an intuitive perspective, from a formal 

(mathematical) point of view, and through a number of simulated and real (fMRI and MEG) data 

examples that illustrate the strengths and weaknesses of each method. The paper is accompanied with 

both functions and scripts, which implement each method and reproduce all the examples. 

 

1 Introduction 

Neuroimaging research has demonstrated that the characterisation of functional interactions 

among regions of the brain is vital for a deeper comprehension of the brain’s functioning. Indeed, some 

have claimed that cognitive functions are more closely related to the synergic cooperation among brain 

regions than to responses in individual brain regions (Bressler and Menon 2010). Functional connectivity 

is normally inferred by analysing the statistical dependency between time series (e.g. fMRI, EEG or MEG 

signals) associated with regions of interest (ROIs). There are many different methods for estimating this 

dependency (e.g. Hipp et al. 2012, Bressler and Seth 2010, Van Den Heuvel et al. 2010, Stam et al. 2007, 

Nolte et al. 2004, Lachaux et al. 1999, Biswal et al. 1995). However, one aspect is ignored in most of 

these methods: the fact ROIs are typically composed of multiple voxels whose associated time series 

contain important information about the complex dependencies among the regions themselves. A 

concern is that this information is potentially lost when reducing the original multi-dimensional data to a 

representative one-dimensional time series (Basti et al. 2018). This concern has led to the development 

of various “multi-dimensional connectivity” methods. Note that these methods have also been called 

“multivariate connectivity” (e.g. Anzellotti and Coutanche 2018; Geerligs et al., 2016), but the latter 

term may also refer to the estimation of multiple (one-dimensional) connections between all pairs of 

ROIs within a network, e.g. exploiting multivariate autoregressive modelling (Baccala and Sameshima, 
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2001; Harrison et al., 2003); so to avoid confusion, we use “multi-dimensional connectivity” here to 

refer to the estimation of a single, pairwise connection between two ROIs, but where those ROIs consist 

of multiple measurements (e.g. voxels). 

While Anzellotti and Coutanche (2018) provided an informal and historical review of various 

multi-dimensional connectivity methods, our approach here is more pedagogical, in providing 1) some 

toy (2D) examples that help in illustrating some of the main concepts, such as mapping from voxel-space 

to pattern-distance space, 2) a formal (i.e. mathematical) definition of the main methods, 3) a number 

of simulations that illustrate the strengths and weaknesses of each method, 4) empirical examples (on 

both fMRI and MEG data) and 5) a traditional summary with “ten rules” for conducting multi-

dimensional connectivity analysis. All of the examples are accompanied by MATLAB functions, including 

implementation of each metric used, which are available here: 

https://github.com/RikHenson/MultivarCon/.  

2 Simple 2D illustration  

The purpose of this section is to provide an intuitive understanding of some of the methods and 

concepts, before their formal description in the next section. The MATLAB script that can be used to 

reproduce these results is Example2D.m. 

 Consider a simple case with two ROIs with         voxels and      time points. Figure 

1A-C shows the data plotted for each ROI, where each axis (   ) represents one voxel, and the four time 

points are numbered. In Figure 1A, the dominant variance (between points 1 or 2 and 3 or 4) in both 

ROIs is along the direction    . Since averaging across the two voxels is equivalent to projecting onto 

the line    , simple averaging within each ROI followed by correlation across ROIs reveals a Pearson’s 

correlation coefficient of    . Thus, this is a situation where the currently-dominant approach of one-

dimensional connectivity, based on the mean ROI response, works well. By contrast, consider the case in 

Figure 1B, where the data in ROI2 are reflected across the  -axis with respect to those in ROI1, i.e. the 

dominant direction of variance in ROI2 is now orthogonal to that in ROI1. When the data are averaged 

across voxels, the projection of the data in ROI2 onto the line     produces a different order of time 

point values than when the same projection is done in ROI1, such that the resulting Pearson correlation 

is    .  

 One common solution to this problem is to summarise the ROI’s time series by their first 

temporal mode (or “eigenvector”), rather than their average. The temporal mode can be calculated 
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using a singular-value decomposition (SVD) of the ROI’s matrix of voxels-by-timepoints (SVD is also the 

basis of principal component analysis). A SVD is defined formally in the next section, but it basically 

provides the direction (in voxel space) that captures the dominant variance in the data, and the 

temporal mode is the projection of the data onto that direction. In the current example, the data are 

projected onto     for ROI1 (i.e. the first temporal mode is identical to the average for this ROI), but 

for ROI2, the data are projected onto      instead. Now, the relative ordering of time points on 

these two principal axes then becomes the same, so the Pearson correlation is now     again (if the 

direction of the principal axis is towards the upper left1). 

 

Figure 1.  Toy example with 2 voxels in each of 2 ROIs, with each voxel providing data for 4 time points. 
Panels A-C show three different patterns of (actual and transformed) data, while Panel D shows the 
similarity across voxels between every pair of time points in panel C (a so-called “RDM”; see Section 
2.1.4). In Panel A the dominant variance between points 1 or 2 and 3 or 4 in both ROIs is along    , 
while in Panel B the dominant direction in ROI2 is orthogonal to that in the first ROI. Unlike in the 
previous two panels, in Panel C there is a considerable variance along more than one direction, causing 
the one-dimensional connectivity methods to perform worse than multi-dimensional connectivity ones. 

 

                                                           
1
 The sign of the singular vectors following SVD is somewhat arbitrary, so can be flipped to produce correlations of 

either R=1 or R=-1. Thus, the SVD approach normally means one does not care about the sign of the connectivity; 
just its magnitude. 
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 Figure 1C shows the most important case where no one-dimensional connectivity method 

works, and a multi-dimensional connectivity method is needed. This is because reducing the data to one 

dimension (even using SVD) does not capture important dependencies between the two ROIs. In 

particular, the first principal direction for ROI1 is again along the line    , even though there is also 

considerable variance along the orthogonal direction      (between points 1 and 2). This means that, 

when projecting both ROIs onto    , the order of the four time points does not match, such that the 

Pearson correlation following SVD is       . However, if you look more closely, you can still see some 

dependency between the ROIs in terms of the Euclidean distances (dissimilarities) between pairs of time 

points. For example, points 1 and 2 are far apart in both ROIs, whereas points 3 and 4 are close together. 

This becomes apparent when you calculate the distance (in voxel-space) between all pairs of time points 

to produce the     “representational dissimilarity matrices” (RDMs) shown in Figure 1D. Although not 

identical, these (symmetric) matrices share properties like small (dark) values between time points 3 and 

4, and relatively larger (lighter) values between time points 1 and 2. This means that when you calculate 

the Pearson correlation between these matrices (or just their upper right triangular elements), the 

coefficient is reasonably high,       . This projection from voxel space to “pattern-distance space” 

(as expanded in the next Section) is essentially the way that many multi-dimensional connectivity 

methods work, such that the correlation in pattern space can be higher than in the original voxel space. 

In other words, even though the patterns across voxels for each time point can differ dramatically 

between ROIs, the similarities between those patterns can be similar across ROIs. 

Finally, the way that other connectivity measures identify the multi-dimensional statistical 

dependency in Figure 1C is by explicitly estimating the (linear) transformation of the two axes that 

maximises the dependency between the two ROIs, e.g. by considering both directions     and 

     in ROI1, in order to map the four points as closely as possible onto the same four points on the 

(dominant axis) of     in ROI2. With this basic introduction in mind, we now introduce the main MD-

connectivity measures more formally. 

3 Formalisation of one- and multi-dimensional connectivity methods 

In this section, we describe a range of one-dimensional (1D) and multi-dimensional (MD) 

connectivity methods, using both time-domain and frequency-domain measures. For the time-domain, 

we start with the two 1D-connectivity methods described in the previous section, namely a temporal 

correlation between the single time series resulting after either taking the average or first temporal 

mode across voxels. We then consider five different, time-domain MD-connectivity methods: “canonical 
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correlation” (Hotelling 1936), “multivariate pattern dependence” (Anzellotti et al. 2017b), “distance 

correlation” (Geerligs et al. 2016), “representational connectivity analysis” (Kriegeskorte et al. 2008) and 

“linearly predicted representational dissimilarity” (Basti et al. 2019). These represent the prototypical 

cases of all the major methods, of which we are aware, that have been proposed and currently used in 

fMRI. For the frequency-domain, we focus on phase-coupling methods. In particular, we define two 1D 

phase-coupling methods, i.e. “imaginary coherency” (Nolte et al. 2004) and “lagged coherence” 

(Pascual-Marqui 2007a), and their MD-generalisations termed “multivariate interaction measure” 

(Ewald et al. 2012) and “multivariate lagged coherence” (Pascual-Marqui 2007b). These are the main 

MD phase-coupling methods of which we are aware. Nonetheless it would also be possible to consider 

amplitude-based methods or information-theoretic approaches that do not disentangle between phase- 

and pure amplitude coupling (Barrett et al. 2010).  

As shown in Figure 2, let the two ROIs be called X and Y, associated with two multiple time series 

composed of    and    spatially-distinct signals, respectively. The signals within each ROI might 

correspond, for example, to voxels in an fMRI experiment, or source-reconstructed cortical vertices in a 

MEG experiment, or discrete electrodes in an extracranial or intracranial EEG experiment; though we 

call them “voxels” below for simplicity. The time points might be real-time samples, or they could also 

be estimates of event-related responses to successive trials in an fMRI experiment, or the same pre-

stimulus time across successive trials in an MEG/EEG experiment (later, we distinguish between analyses 

based on continuous time series versus those based on multiple trials, but for simplicity, we use the 

term “time points” below). Thus, the multiple time series associated with X and Y can be represented as 

two matrices whose rows and columns denote time points and voxels, respectively. Below, we refer to 

the vector of values over voxels (at a single time point) as a pattern. The presence of multiple runs is 

important for some of the MD-connectivity metrics below, in which patterns in one run are used to 

predict those in another run. 
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Figure 2.  Estimating MD-connectivity via relationships between voxel patterns across time points (A) or 
across runs/trial (B). Panel A also illustrates explicit estimation of the multi-dimensional mapping 
between ROIs X and Y by training on one set of runs and testing on another (cross-validation), while 
Panel B illustrates an alternative of correlating pattern similarity kernels (e.g. representational 
dissimilarity matrices, RDMs; see text). The superscripts and subscripts for each time series denote 
runs/trials and voxels, respectively. 

 

3.1 Time-domain methods 

We start with the case of a single time series for each voxel, as in Figure 2A. 

3.1.1 Pearson correlation between two single time series 

To reduce the multiple time series across voxels to a single time series, the simplest summary is to 

take the mean across voxels. This is the most common approach in the fMRI connectivity literature, and 

it assumes functional homogeneity within each ROI. If this assumption is true, the averaging enhances 

the signal-to-noise ratio (SNR).  
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An alternative is to perform a singular value decomposition (SVD2) of the matrices   and  , and 

use the first singular vector along the time dimension (first temporal mode) as a summary time series 

for each ROI (as is default for example in the SPM software package, www.fil.ion.ucl.ac.uk/spm; see 

Friston et al 2006). A SVD of the matrix   is defined as:    ( )      , where, in this case,   is a 

matrix whose columns are time series (temporal modes) and   is a matrix whose columns are weights 

across voxels (spatial modes). The matrix   is a diagonal matrix of “singular values”, in which the square 

of the diagonal elements relates to how much variance is explained by each pair of temporal and spatial 

modes, ordered from most to least. Thus, the normalised value of the first singular value (normalised by 

the sum of all singular values) indicates the portion of variance captured by the first temporal and 

spatial modes, i.e. how “successful” the dimension reduction has been. (Principal Component Analysis, 

PCA, is simply the SVD of the covariance matrix     ) In the example code provided, SVD is implemented 

in the function dimreduction.m. 

If the ROIs are functionally homogeneous (i.e. contain identical signal time series for each voxel, 

plus noise that is independent across voxels), then the first spatial mode should give equal weight to 

each voxel, such that the first temporal mode is equivalent to the mean across voxels. However, the 

advantage of SVD arises if the ROIs are not functionally homogeneous (as demonstrated in Section 2, 

where the spatial mode can give different weights (even different signs) to voxels, and thus the first 

temporal mode can be very different from the mean time series. Of course, one could use SVD to define 

ROIs in the first place, i.e. select contiguous voxels such that they do have a common time series (i.e. 

high normalised first singular value). While SVD might be appropriate (for directly defining or) in case of 

ROIs defined through functional/adaptive approaches (see e.g. Farahibozorg et al. 2018 for adaptive 

approaches in MEG), it may not be appropriate if ROIs are defined a priori (e.g. based on standard 

anatomical parcellations). Moreover, this SVD approach is particularly valuable with signed data like in 

EEG/MEG, where the sign of the data depends on the sensor or source orientation, which is often not of 

interest, and such that straight averaging can produce values close to zero. 

Whichever way the dimensionality of the ROI data is reduced to one dimension, with time series 

represented by the vectors  ̅ and  ̅, the simplest measure of connectivity is the Pearson correlation: 

 

      ( ̅  ̅)  
   ( ̅  ̅)

  ̅  ̅
                                                                    (1) 

 

                                                           
2
 In principle, SVD is a way of providing an alternative (orthogonalised) representation of the data, but in functional 

connectivity it is usually applied for the purpose of dimensionality reduction. 
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where     and   denote the covariance and the standard deviation, respectively (nonparametric 

measures also exist, such the Spearman rank correlation). 

 Another method that can be exploited in order to select the direction in the two ROIs along 

which to evaluate the Pearson correlation is ”canonical correlation analysis” (CCA, Hotelling 1936). Even 

if this method applies a dimensionality reduction, it can be still considered as a MD-connectivity 

method. Indeed, rather than averaging across voxels or to applying a within-ROI SVD, CCA finds the two, 

single time series (termed “canonical variates”),  ̅ and  ̅, that have the maximal 1D Pearson correlation 

(even if those time series do not capture the majority of variance within each ROI). That is, CCA 

evaluates  ̅     and  ̅    , where the two directions (termed “canonical vectors”) are (   )   

      ( ̃  ̃)*    (  ̃   ̃)+. This can be achieved by taking a SVD of the covariance matrix between   

and   (Uurtio et al. 2017). Here we use the correlation value between the first pair of canonical 

variables as a measure of the linear statistical dependency between X and Y, but it is worth noting that 

other pairs of canonical variables (which are all orthogonal) could also be selected and considered (see 

Wang et al. 2020 for a broader application of CCA in neuroscience). 

By contrast, all the other (MD) connectivity methods below aim to reduce any dimension-

reduction of the data, thus minimising the loss of potential information.  

 

3.1.2 Multivariate pattern dependence 

Multivariate pattern dependence (MVPD), as proposed by Anzellotti et al. (2017b), estimates the 

statistical dependency between the two matrices of time series, e.g. how well the time series in   can 

be predicted using  . For linear dependence, the simplest way to do this is to use ordinary least squares 

(OLS) estimation, i.e. multi-dimensional regression, estimating (training) the regression weights from 

one set of runs and testing these weights on the remaining set of runs (i.e. cross-validation).  

Since OLS estimation entails matrix inversion, the product     needs to be invertible, one 

requirement for which is that   has fewer (independent) columns than rows, i.e. in this case, fewer 

voxels than time points. If this is not the case, one can perform a SVD and retain only the first   modes, 

where   is less than or equal to the number of time points (and hopefully where the p modes capture 

the majority of variance in   and  ).  

For leave-one-run-out cross-validation, the first step is to concatenate the multiple time series 

across all the runs except one. For the sake of simplicity, assume we have only two runs, and use the 

first for training and second for testing. If a SVD is applied to      and      (the superscript “r=1” 
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denotes the first run), then assume the dimensionality of the ROIs is reduced from    to    (and 

from    to   ). The transformation matrix   between      and      (or between their dimensionality 

reduced version) is then estimated via OLS, i.e. by solving the minimization problem 

         {‖            ‖ 
 }, where  ‖ ‖  denotes the Frobenius norm, defined as the square-

root of the sum of all the squared entries of the matrix. For this minimization problem (if it is well 

defined) there is a unique solution that can be written as   (    )     ((    )     )  , where 

( )   denotes the inverse operation. The idea behind MVPD is to apply the transformation   in order to 

estimate the multiple time series      (  
         

   ) associated with the left-out run via 

 ̂         . MVPD is then defined as the weighted-average across voxels and runs of the correlation 

coefficient between the actual single time series   
    and the estimated one,  ̂ 

   , i.e.  

{
 
 

 
      

 

 
∑     (  

   
  ̂ 

   
)  

   
   

  
   

 
( 

 
 
   )

 

∑ ( 
 
 
   )

 

 

                                                (2) 

 

The weights   
   

 are given by the portion of the overall variance explained by the  -th single time 

series. One advantage of MVPD is that the transformation between ROIs is explicitly represented as part 

of estimating connectivity. While a linear transformation has been assumed above, a different estimator 

(or nonlinear projection of the ROI data) could be used to estimate nonlinear transformations (Anzellotti 

et al. 2017a). 

More generally, one does not need to perform dimensionality reduction of each ROI first in order to 

apply OLS, but instead use a regularised solution to the above minimization problem, such as ridge 

regression3  for example (see the Linearly Predicted Representational Dissimilarity method below, Basti 

et al. 2019). This has the potential advantage of detecting temporal components that covary strongly 

between X and Y, even if they only explain a small percentage of variance within X and Y separately (and 

therefore might be removed by the prior dimensionality reduction). Both SVD and regularised 

approaches are implemented in the associated function data2mvpd_lprd_fc.m. 

                                                           
3
 OLS and ridge regression are just two of many linear methods to capture a statistical dependency between two 

matrices, e.g. voxel-by-time point matrices in the case of MD-connectivity. Other classical approaches are 
canonical correlation analysis (CCA), partial least squares (PLS) and least absolute shrinkage and selection 
operators (Kherif et al. 2002, Tibshirani 1996); however, these are beyond the present remit. 
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3.1.3 Distance Correlation 

Distance Correlation, dCor (Székely et al 2007, Geerligs et al. 2016), is a MD-connectivity method 

that measures both linear and non-linear dependencies between ROIs. Conceptually, if each time point 

is viewed as a point in the   - and   -dimensional voxel spaces, dCor will indicate high connectivity 

when a large distance between two time points within one space (ROI) is mirrored by a large distance 

between the same time points in the other space (ROI), and conversely when small distances in one 

space are mirrored by small distances in the other (as in Figure 1D).  

The first step is to compute the Euclidean distances between each pair of time points s and t in 

voxel-space, for each ROI, i.e.   (   )  ‖ ( )   ( )‖  and   (   )  ‖ ( )   ( )‖ . Second, a 

correction, called U-centring, is applied to the time-by-time distance matrices    and    in order to 

ensure that the correlation estimates are not biased by the different dimensions of the two ROIs. Finally, 

the distance correlation is defined as:  

 

     √   *    (     )  +                                                         (3) 

 

where     (     ) is computed between the vectorised U-centred matrices    and   ; the term 

   *    (     )  + included in the above equation ensures positive estimates. This is implemented in 

the function data2dcor.m. 

 

3.1.4 Representational connectivity analysis (RCA) 

U-centring aside, dCor can be seen as a special case of representational connectivity analysis 

(RCA, Kriegeskorte et al. 2008). In RCA, a (dis)similarity metric is estimated between every pair of 

patterns (i.e. between every pair of time points/trials), and then dissimilarity values for all pairwise 

comparisons are compared across ROIs. This resembles the “kernel method” (Theodoridis and 

Koutroumbas, 1998) in machine-learning, in which the original (voxel) data are transformed into a 

feature (pattern) space via a dissimilarity function (kernel). Indeed, dCor is a special case of RCA when 

the dissimilarity measure is Euclidean distance. However, other measures of dissimilarity are also 

possible, such as 1 minus the Pearson correlation (which is what we use here), or more generally, the 

Mahalanobis distance (Mahalanobis 1936). 

The time point by time point matrices whose entries describe the dissimilarity (of voxel 

patterns) between each pair of time points are called Representational Dissimilarity Matrices (RDMs), as 
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in Figure 1D. The RCA between the RDMs for ROI X and Y, given by    and   , is simply the correlation 

between them: 

 

        (     )                                                                     (4) 

 

where the correlation is computed between the vectorised upper (or lower) matrices    and   . This is 

implemented in the function data2rc.m.4 

A related idea is to train a classifier to discriminate between the patterns associated with, say, 

two classes of stimuli, in each ROI separately (e.g. on one subset of runs), then compute each ROI’s 

classifier performance at each time point (in the remaining runs). The correlation between the resulting 

classification performances of the two ROIs across time points can then be used to indicate whether the 

information in the two ROIs is coupled (“informational connectivity”, Coutanche and Thompson-Schill 

2013). Though this provides a narrow perspective on shared information between the two regions (in 

that only one particular distinction is being tested), it is potentially more powerful when a single 

hypothesis is under consideration. 

One limitation with the RCA approaches (and hence with dCor as well) is that they do not 

explicitly estimate the transformation between the pattern spaces represented within the ROIs. This 

leads to our last time-domain measure, the linearly predicted representational dissimilarity (Basti et al. 

2019). 

 

3.1.5 Linearly predicted representational dissimilarity 

Finally, a time-domain measure that combines the estimation of the transformation between 

the multiple time series and the concept of representational connectivity is the linearly predicted 

representational dissimilarity (LPRD), defined in Basti et al. (2019). Similar to MVPD, an estimate of the 

matrix transformation   between the (Z-scored, i.e. de-meaned and scaled by standard deviation) 

multiple time series   and   can be obtained for each run by using regularised least-squares estimation, 

i.e.          {‖    ‖ 
   ‖ ‖ 

 }, where   denotes a regularisation parameter. When the norm F 

corresponds to the (Frobenius) 2-norm of the matrix (ridge regression), there is a unique solution to the 

estimation of the transformation   ( )  (        )  . The regularization parameter   can be 

                                                           
4
 Note that RCA could also be performed across runs, i.e.    and    could correspond to RDMs from two separate 

scanning runs. This is also implemented in the script, however, our simulations generate data independently in 
different runs and therefore are not suited for exploring between-run RCA. 
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obtained in several ways, including (nested) leave-one-out cross-validation. In this case, the optimal 

value is          {∑ ‖ ( )      ( )‖
 

 
 }  where      is the transformation obtained from ridge 

regression of the multiple time series   and  , but in which the  -th time point has been removed, and 

with a regularisation parameter equal to   (Basti et al. 2019, Golub et al 1979).  

Finally, LPRD is defined as the average (over runs) of the correlation between the RDM    

associated with the actual   and the RDM   ̂ of the estimated  ̂ (whose patterns  ̂( ), for every  , are 

defined as  ( )   with the subscript denoting the removal of the time point   in the estimation of the 

transformation), i.e. 

 

         (     ̂)                                                                (5) 

 

(an across run approach similar to MVPD can be also performed). The latter is implemented in the 

function data2mvpd_ lprd _fc.m. 

 

3.2 Frequency-domain methods 

Continuing with the single time series per voxel in Figure 2A, we can also calculate connectivity in the 

frequency-domain instead. 

3.2.1 Imaginary part of coherency  

The frequency-domain version of temporal correlation is coherence. In particular, coherence 

can be thought as the magnitude of a normalized version of the Fourier transform of the cross-

covariance, i.e. the covariance between one time series and a second one shifted by  , over all the time-

lags   (Brillinger, 1981). The complex version of the coherence, i.e. the one obtained without computing 

the magnitude, is simply called coherency (Nolte et al. 2004). 

In the context of MEG/EEG data, the zero-lag component between two sensors or estimated 

sources can be artifactual, caused by field spread from the same true source (Marzetti et al. 2019). In 

the frequency-domain, this corresponds to phase differences of 0 or  , which in terms of complex 

number representation corresponds to situations in which the imaginary component of coherency is 0. 

To exclude such possibly artifactual connections, a common proposal is to use only the imaginary part of 

coherency (ImCoh, Nolte et al. 2004), instead of relying on its magnitude, thus reducing the zero-lag 

contributions associated with its real part. Using the two single time series  ̅ and   ̅ above to refer to a 
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dimensionality-reduced version of the multiple time series   and  , the ImCoh at a frequency of interest 

  is defined as: 

 

       (
  ̅  ̅( )

√  ̅  ̅( )   ̅  ̅( )
)                                                                  (6) 

 

where  ( ) is the imaginary part of a complex number and e.g.   ̅  ̅( ) denotes the Fourier transform (at 

frequency  ) of the cross-covariance between  ̅ and   ̅ (the so called cross-spectrum). Note ImCoh is still 

a 1D-connectivity measure (and can be combined with a SVD to reduce each ROI time series to one 

dimension). 

3.2.2 Multivariate interaction measure 

The generalisation of ImCoh to MD-connectivity has been called a multivariate interaction 

measure (MIM, Ewald et al. 2012). MIM can be applied directly to   and Y without the need of 

dimensionality reduction. Let    ( ) be the cross-spectral matrix between   and  , i.e. the matrix 

whose entry in the  -th row and the  -th column denotes the cross-spectrum,      
( ), between the 

single time series    and     MIM is thus defined as: 

 

      ((   
 ( ))

  
    

 ( ) (   
 ( ))

  
(   

 ( ))
 
)                                     (7) 

 

where ( )  and ( )  are the real and the imaginary parts of the cross-spectral matrices, and   ( ) is the 

trace of a matrix, i.e. the sum of the diagonal entries. Similar to ImCoh, MIM also avoids inflation of the 

estimated values caused by artificial zero-lag connectivity. Moreover, its value is invariant under 

rotation of the data X and  , making MIM independent from the choice of the physical reference frame 

(e.g. for source-localised MEG/EEG data).5 

                                                           
5
 Interestingly, there is a strong mathematical relation between MIM and CCA (Kherif et al. 2002, Hotelling 1936). 

Indeed, most of the linear algebra steps used in Ewald et al. (2012) to introduce MIM matrix (i.e. the matrix prior 
the application of the trace operator) from the real part of cross-spectrum can be directly applied to the 
covariance for defining the canonical correlation matrix between the so-called canonical vectors. Thus, the 
application of the trace operator to this canonical correlation matrix defines a further time-domain measure of the 
total multi-dimensional (linear) statistical dependency between two sets of time series (i.e. a time-domain version 
of MIM). 
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3.2.3 Lagged coherence  

Similar to imaginary coherency, Pascual-Marqui (2007a) introduced the lagged coherence 

(LagCoh) as a method that, by completely removing the zero-lag contributions from the signals, is only 

sensitive to lagged coupling. LagCoh is defined as: 

       
[ (  ̅  ̅( ))]

 

  ̅  ̅( )   ̅  ̅( )  [ (  ̅  ̅( ))]
                                                  ( ) 

where  ( ) is the real part of a complex number. Indeed, this formulation is equivalent to the corrected 

imaginary coherence (Ewald et al. 2012). Note that there are yet other phase-coupling methods, such as 

imaginary part of the phase locking value (Palva and Palva 2012; Lachaux et al 1999) or weighted and 

unweighted phase lag index (Vinck et al. 2011; Stam et al 2007), but they do not yet have multi-

dimensional generalisations. 

3.2.2 Multivariate lagged coherence 

We call the multi-dimensional generalisation of LagCoh “multivariate lagged coherence” 

(MVLagCoh, Pascual-Marqui 2007b), defined as: 
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where   is a matrix of zeros and    ( ) indicates the determinant of a matrix. Similar to its 1D-version, it 

is sensitive to (linear) lagged interactions but insensitive to instantaneous coupling; in fact, the 

denominator of the above equation characterises that instantaneous coupling. Like MIM, MVLagCoh is 

invariant under rotation of X and  . Since MVLagCoh is not bounded (unlike the other connectivity 

measures above), we use a bounded version here, i.e.         (        ). 
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3.3 Similarity of patterns between runs/trials for each time point 

 Thus far, we have estimated a single measure of connectivity by using multiple time points 

(replications) – what might be called static connectivity (Figure 2A). Of course, one could use moving 

time windows to estimate connectivity changes over time. However, another common approach is to 

leverage the fact that, particularly in trial-based EEG/MEG experiments and single-cell recordings, there 

can be multiple trials, each containing the same time points with respect to the onset of a trial (e.g. 

epochs of -100 ms to +500 ms locked to stimuli presented every 1000 ms). In this case, one can take a 

single time point, and construct a RDM of similarities between all pairs of trials/stimuli for that time 

point (Figure 2B). In other words, one can calculate the RCA between the RDMs for a single time point 

and repeat across time points in order to construct a time series of dynamic connectivity between ROIs. 

Indeed, once one has a single time series of MD-connectivity, one can even use techniques like Granger 

causality on the two RCA time series, to infer which ROI is “driving” the other ROI (Goddard et al 2016; 

Kietzmann et al., 2019). Alternatively, one can correlate each ROI’s RDM at a given time point with an 

independent (model-based) RDM – based on, for example, a theoretical division of stimuli into two 

classes, akin to the “informational connectivity” (Coutanche and Thompson-Schill, 2013) mentioned 

earlier – thereby producing a single time series for each ROI that captures the similarity of that ROI’s 

pattern with the theoretical RDM, e.g. tracks out the dynamics of when a theoretically-relevant 

distinction emerges.  

 More generally, the above examples illustrate the flexibility of pattern-based approaches. Thus, 

while measures like dCor and RCA considered in the previous sections quantify the extent to which two 

regions have similar temporal dynamics, in terms of the geometries of the time points in each ROI’s 

voxel space, the same logic of correlating pattern similarity kernels (RDMs) can be applied to compare 

the geometry of points in each ROI’s voxel space when each point now reflects a run, trial or stimulus, 

rather than time point.  

In the next section, we will focus on some simulation cases, showing some possible pitfalls and 

caveats associated with all the above connectivity methods. 

 

4 Simulation Examples 

The purpose of this section is to illustrate some of the advantages and disadvantages associated 

with the MD-connectivity metrics defined above. The MATLAB script for all examples is demo.m in 

https://github.com/RikHenson/MultivarCon. 
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For the first seven examples, the time series in the ROI2 for the  -th run,   , is a function of 

those in the ROI1,   , i.e for each time point  :   ( )   (  ( )   ), where    is the functional 

mapping that may, or may not, change across runs. For linear mappings,   is a multiplication and    is a 

       matrix, leading to   ( )    ( )  . Finally, to simulate measurement noise, independent 

Gaussian noise (  ) with mean of 0 and standard deviation equal to   is added to both    ( ) and 

  ( ). 

An important property of the voxels in ROI1 (that in our examples are being mapped to ROI2) is 

the covariance matrix of their time series,   . If this matrix is such that the time series are highly 

positively correlated between all pairs of voxels, i.e. the ROI is functionally homogeneous (or the data 

are spatially smooth), then the mean time series over voxels can be a sufficient summary of activity in 

that ROI. Indeed, if there is additional independent noise on each time series in a ROI, then averaging is 

an effective way of attenuating that noise. If the voxel time series in the ROI2 are also positively 

correlated (which here depends on the properties of the functional mapping,   , e.g. whether a uniform 

mapping), then connectivity can be captured by a 1D metric, as shown in Example 1. However, if ROI1 is 

not functionally homogeneous, or if the functional mapping is not uniform, then the remaining 

examples illustrate the merits of using multi-dimensional connectivity metrics instead. 

 For the first six examples below, we assume 50 voxels for ROI1 and 60 for the ROI2, each with 

400 time points, generated for two independent runs (we need more than one run in order to estimate 

MVPD). In the last example, we assume 12 voxels for ROI1 and 10 for the ROI2, each with 2 runs of 

15,360 time points. We simulated data from 20 participants with the measurement noise in both ROIs 

having a standard deviation of 1, i.e.    .  

 

4.1 Positively correlated activities in ROI1 and one-to-one voxel mapping 

Figure 3A shows a covariance matrix for ROI1 that produces positively correlated time series, 

while Figure 3B shows a mapping matrix that produces a linear one-to-one mapping between the    

voxels in ROI1 and the first    of the    voxels in ROI2 (with the remaining voxels in ROI2 therefore 

being just random noise). Figure 3C and 3D show the first 50 time points of two voxels in each ROI and 

their positive correlation. Figure 3E shows the mean values for the connectivity methods described in 

the previous section, together with error bars for their standard deviation, across 20 simulated subjects 

(grey bars); the transparent blue bars show the mean scaled by the standard deviation, analogous to a Z-
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statistic. Figure 3F shows their normalised values, which arise after subtracting the mean value of each 

metric when there is no true connectivity and then normalising by the standard deviation of the null 

estimates. Removing this potential bias is important because some of the metrics do not have an 

expected value of 0 when there is no connectivity (e.g. dCor is always positive) and also different 

measures do not necessarily have the same scale, thereby allowing effect sizes to be compared across 

the different metrics. Similar to panel 3E, the transparent blue bars give the Z-statistic for the 

normalised values which can be used to infer reliability of connectivity across subjects (versus zero). For 

each simulated subject, this null-connectivity was estimated by computing the measures from null data 

obtained by permuting the time points randomly for every voxel (20 times).6  

In terms of the basic (unnormalised) values (Figure 3E), Pearson-CCA and both the two 1D 

metrics are best, achieving values close to 1. Pearson-CCA always selects the directions in the two ROIs 

that maximise the correlation and, in terms of raw performance, it does better than the other two 

metrics by definition. Instead, the advantage of the two 1D-connectivity methods with respect to the 

other MD-connectivity ones arises from the intrinsic low dimensionality of the signals generated by the 

high covariance among the voxels in ROI1, thus allowing an enhancement of the SNR when using a 

dimensionality reduction approach.  The SVD approach actually does better than simply taking the 

average: though the voxel weights of the first spatial mode in ROI1 are fairly uniform (analogous to 

taking the average), they can vary sufficiently to capture small differences in the randomly-drawn time 

points that make some time series more or less similar to others. This difference is less evident when 

considering the normalised values (Figure 3F). Notably, Pearson-CCA produces lower performance than 

1D-connectivity methods, owing to an overestimation of the correlation in case of no connectivity. This 

behaviour will reoccur in some of the next examples. Though the remaining MD-connectivity methods 

are not as sensitive as the two 1D-connectivity methods in this low-dimensional case, they do 

nonetheless produce significant (non-zero) Z-statistics, i.e. also able in principle to detect the presence 

of connectivity.  

  

                                                           
6
 Different time points were independent from each other in our simulations, however, in real data there is often 

temporal autocorrelation. Random permuting of the time points does not preserve the temporal autocorrelation 
and therefore permuting for real data should preserve this autocorrelation, e.g. by using Fourier phase scrambling 
instead. 
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Figure 3. We simulated a one-to-one voxel mapping in which every voxel in ROI1 has a clone (except for an 

additive noise component) in ROI2. Panel A shows the covariance matrix of ROI1. Panel B shows the functional 
mapping between the two regions. Panel C and D show the first 50 time points of two voxels in each ROI and their 
correlation. Panel E and F respectively show the unnormalised and normalised mean (and standard deviation) 
values for the connectivity methods across the 20 simulated subjects. The high covariance among the voxels of 
ROI1 leads to intrinsic low dimensional time series, and thus to higher performance of the one-dimensional 
connectivity methods than the multi-dimensional connectivity ones.  
 

4.2 Anticorrelated activities within ROI1 and one-to-one voxel mapping 

Though the functional mapping is the same as the one used in the previous example (Figure 4B), 

this second example illustrates the presence of two functional subdivisions within ROI1, which are 

negatively correlated one another, as indicated in Figure 4A. This pattern has been seen in real fMRI 

data for example (Geerligs et al. 2016), arising perhaps when the chosen ROIs do not respect the true 

functional anatomy of the brain. This “structure” can be seen in Figure 4C-D, which show the time series 

(for the first 50 time points) for all voxels, now in an “image” format, rather than the line plots in Figure 

3C-D. In this case, due to anticorrelations, averaging over voxels in ROI1 (and ROI2) destroys most of the 

signal, leaving just noise, and so Pearson correlation between the mean values across voxels is close to 
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zero (Figure 4E-F). Taking the first temporal mode from a SVD, however, recovers sensitivity. This is 

because some voxel weights of the dominant spatial mode are positive whereas the other voxel weights 

are negative, such that the combined signal is not cancelled out. Nonetheless, the signal is still one 

dimensional (indicated by the dominance of the first singular value of the SVD), meaning that the 1D-

correlation is still more sensitive than the MD-connectivity methods. 

 

Figure 4. We simulated a one-to-one voxel mapping in which every voxel in ROI1 has a clone (except for an 

additive noise component) in ROI2. Panel A shows the covariance matrix of ROI1. Panel B shows the functional 
mapping between the two regions. Panel C and D show the first 50 time points of all the time series in each ROI. 
Panel E and F respectively show the unnormalised and normalised mean (and standard deviation) values for the 
connectivity methods across the 20 simulated subjects. In this case, ROI1 is composed of two anti-correlated 
subpopulations time series, such that simple averaging over voxels destroys the signal. However, by taking the first 
temporal mode from a SVD instead, connectivity can still be detected by a 1D Pearson’s correlation. 
 

4.3 Uncorrelated activities and multi-dimensional mapping 

Figure 5A shows a covariance matrix that produces uncorrelated time series in ROI1, while 

Figure 5B shows a functional mapping whose entries are drawn randomly from a Gaussian distribution. 

The independent time series generated in RO1 (Figure 5C) and the time series in ROI2 (Figure 5D) 

obtained through the application of the complex MD-mapping can no longer be optimally reduced to a 
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single time series by taking the average or first temporal modes (better performance is obtained by 

Pearson-CCA, since the two single time series are not separately selected for each ROI, but rather 

chosen together by taking into account the covariance between ROIs). Thus, both 1D-connectivity 

methods performed poorly compared to all MD-connectivity methods (Figure 5E and 5F). 

 

Figure 5. In this example, the covariance matrix is the identity matrix that generates uncorrelated time series in 
ROI1. The functional mapping from ROI1 to ROI2 is generated such that its entries followed standard Gaussian 
distribution. The combination of these two features leads to low performance of both the 1D-connectivity methods, 
while the MD-connectivity methods obtained high performance.  

 

We can use this example to compare the various metrics in their sensitivity to noise (the number 

of time points is 400 and the size of the two ROIs X and Y is 50 and 60, respectively). Figure 6A shows 

how each metric performs as the signal-to-noise ratio (SNR) increases (i.e. noise decreases from left to 

right). The y-axis plots the normalized performance, such that the lines and shaded areas show the 

mean and standard error of the difference between true and null (permuted) values.  As expected, the 

1D-connectivity methods perform poorly, though for high SNRs, they perform above chance, most likely 

because some dependency between the ROIs can still be captured by projecting onto a single 

dimension. In this case, selecting only one single direction per ROI based on CCA is not sufficient to 
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reach the performance obtained by other MD-connectivity methods, which can use multiple 

dimensions. Interestingly, dCor seems least sensitive to noise, and RCA is most sensitive to noise, while 

LPRD and MVPD show maximal performance at high SNRs. However, as apparent in subsequent 

examples below, there are situations other than the current case of uncorrelated activities and MD-

mapping (i.e a fixed, linear mapping   plus random noise) where some MD-connectivity metrics are 

better than others, regardless of the SNR. 

                                                                                      

          

Figure 6. Panel A shows normalised performance (true minus null) of each metric for Example 3 (uncorrelated 
activities and multi-dimensional mapping) as signal-to-noise ratio (SNR) increases left to right. SNR is defined as the 
variance of signal over the variance of noise. 0 corresponds to no signal and pure noise and very large SNR means 
that there is very little noise variance compared to signal variance. Panel B shows normalised performance as the 
ration between the number of time points and the total number of voxels in the two ROIs increases left to right. 

 

 Figure 6B shows the same normalized performance plotted now against the number of time 

points (relative to the total number of voxels across the two ROIs). Thus, for the same level of noise used 

in example 3 (i.e. a SNR approximately equal to 1), this plot shows how the metrics perform as the 

amount of data (duration of recording) increases. Again, MVPD does best when there are lots of data, 

but dCor can do better when there is little data (at least relative to the size of the ROIs). Interestingly, 

RCA and LPRD seem relatively robust to the amount of data, while CCA shows the greatest dependence 

on data duration, only approaching performance of the other metrics when the ratio of time points to 

voxels is high. 
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4.4 Multi-dimensional mapping that changes across runs 

This example is identical to the previous one – in that the voxel time series are uncorrelated 

(Figure 7A) and the functional mapping is random (Figure 7B) – except that the functional mapping now 

changes across runs (Figure 7B is an example from only one run). This might happen if the voxel-wise 

sampling of the underlying neurons changes across runs, e.g. due to uncorrectable head motion, or if 

there are effects of learning across runs that change the functional connectivity. Alternatively, it might 

happen if different runs contain different stimuli (where each time point represents one trial with one 

stimulus, and there are complex interactions between neurons in the two ROIs that depend on the 

specific stimuli). For example, in an experiment with both auditory and visual stimuli, it might well be 

the case that regions have different connectivity for visual and for auditory stimuli. In any case, changes 

in   across runs detrimentally affect MVPD, because the MD-mapping is trained on one run and tested 

on others. However, the within-run measures of Pearson-CCA, dCor, RCA and LPRD remain sensitive 

(Figure 7F). 

 

Figure 7. Inconsistent linear MD-mappings between the two regions cannot be detected by MVPD. In this example, 

like the previous one, the activity of each voxel in ROI2 is a weighted combination of activities of all voxels in ROI1 
with some additive noise (destroying 1D-connectivity). Importantly the weights change for independent 
measurements, i.e. runs. Panel B shows the weights for one of the runs only (it would be different for any other 
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run). This severely affects MVPD. However, distance correlation, RCA and LPRD can detect these types of 
interactions. 

4.5 Nonlinear mapping 

In Figure 8, we return to the positive voxel covariance in ROI1 (Figure 8A) and the one-to-one 

functional mapping matrix    (Figure 8B) that were used in Example 1. However, the time series in ROI2 

are now a nonlinear function of those in ROI1 and   , here illustrated by taking the absolute value of 

  ( )  . Thus, whereas the time series in ROI1 (Figure 8C) are centered around zero, the time series in 

ROI2 (Figure 7D) are generally above zero (except for the additive Gaussian noise). This now abolishes 

connectivity according to all measures but dCor, which can handle such nonlinearity (Figure 8F). Note 

however that this is because dCor uses a Euclidean metric of similarity of voxel-patterns between time 

points (trials) – if we change the similarity measure in RCA from (Pearson) correlation to Euclidean, then 

RCA can also produce significant connectivity just like dCor. 

 

Figure 8. In this example, the covariance matrix of ROI1 and the functional mapping is exactly the same as in 

Example 1. The only difference to Example 1 is that the mapping has an extra nonlinearity that is applied after the 
linear transformation (taking the absolute value). Only dCor can detect MD-relationships in this case. 
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4.6 Structured noise in ROI2 

In Figure 9, the functional mapping matrix (Figure 9B) is identical to that in Example 2. However, 

additional structured noise has been added to ROI2, which is identical across voxels (producing the 

coherent, vertical-bar pattern in Figure 9D). This reduces performance of dCor (Figure 9F), which uses a 

Euclidean measure of similarity between time points (trials), but e.g. not (the current version of) RCA, 

which uses a correlational measure that is invariant to any constant offsets in the voxel-patterns. 

Structured noise (that affects all voxels) can be present in real data due to various reasons, such as 

subject movement or change in the subject’s alertness/vigilance across time points. Another way to 

eliminate this would be to normalize (z-score) the activity patterns in each time point (across voxels) 

before computing connectivity measures. 

 

Figure 9. The presence of structured noise in ROI2 (identical across voxels but changing across time points) causes 

1D-connectivity measures and dCor and MVPD to perform poorly, though Pearson-RCA and LPRD can still 
successfully detect the connectivity of the two ROIs. 
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4.7 Multi-dimensional lagged interaction  

Whereas the previous six examples showed some advantages and disadvantages of connectivity 

methods in capturing the presence of instantaneous interaction between multidimensional signals, here 

we focus on lagged interactions (e.g. when time point N in ROI2 depends on time point N-1 in ROI1). As 

explained in Section 2.2, coherency can capture such lagged interactions, of which imaginary coherency 

(ImCoh) and lagged coherence (LagCoh) are two frequency-dependent measures that do not lead 

to artifactual phase-coupling due to zero-lag interactions (or more precisely, signals in phase or anti-

phase) between sensors or sources in MEG/EEG data. However, these two methods were originally 

defined for pairs of single time series; the multivariate interaction measure (MIM) and multivariate 

lagged coherence (MVLagCoh) are their extensions that can capture multi-dimensional dependencies. 

For this example, the time series in ROI2 is a lagged function of ROI1, i.e for each time point  , 

we have that   ( )    (   )  . Here,   denotes the time delay in the interaction, which we set to 

     (which e.g. corresponds to  40ms when the sampling frequency is set to 256Hz). To reduce 

computation time, we assume 12 voxels for ROI1 and 10 voxels for ROI2, each with 2 runs of 15,360 

time points (typical for MEG/EEG). The elements of the transformation matrix   were again drawn 

randomly from a Gaussian distribution (like in examples 3-4 above). Finally, the zero-mean Gaussian 

additive measurement noise   ( ) was assumed independent across voxels with a standard deviation 

equal to     (note that results similar to those described below can also be obtained by using spatially-

correlated noise, such as the one induced by field spread/volume conduction in MEG/EEG). 

We compared MIM and MVLagCoh measures with ImCoh and LagCoh, with the latter applied to 

the first temporal modes of each ROI (labelled ImCoh-SVD and LagCOh-SVD in Figure 10). Unlike the MD-

connectivity methods, both 1D-connectivity methods perform close to chance. This is because projecting 

the time series onto a single dimension results in smaller, and thus less detectable, phase differences. 

Conversely, MIM and MVLagCoh do not require the application of the dimensionality reduction and 

consider all the dimensions, thus resulting in higher performance. In this specific example, MVLagCoh 

performance overcomes the one obtained by MIM. However, it is possible that this difference is due to 

the specific simulation settings (e.g. type of noise and delay in the coupling). 
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Figure 10. The simulated multi-dimensional lagged interaction between ROIs means that the 1D-connectivity 

methods perform poorly. On the contrary, both MD-connectivity methods show good performance. 

 

5 Empirical examples 

 We compared 1D and MD measures of connectivity on real fMRI and MEG resting-state data. 

These data came from the 20 youngest participants (aged 18-21) in the CamCAN cohort (www.cam-

can.org) and from 100 randomly-chosen subjects in the Human Connectome Project (HCP) dataset 

(http://www.humanconnectome.org). The CamCAN participants only have 1 run (of fMRI and of MEG 

data), so are only used below for metrics that do not require cross-validation; the HCP participants have 

4 runs (of fMRI data), so are used to test the cross-validated metrics. 

 The raw and preprocessed CamCan data are available on request here: (https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/), while the final ROI-based time series are available here 

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/MDcon/CamCAN. The fMRI data and MEG data were 

recorded (in separate sessions) while subjects rested with their eyes closed for approximately 8.5mins. 

We used the fMRI data to test the non-lagged (time-domain) connectivity metrics, and the MEG data to 

test the lagged (frequency-domain) metrics. Since we do not know the ground truth when dealing with 

real data, we chose a measure of quality as the difference between connectivity estimates for 

homologous versus non-homologous connections between cortical ROIs: one generally expects higher 

connectivity between homologous ROIs. More precisely, for each ROI in the left hemisphere, we 

compared its connectivity to its homologous ROI in the right hemisphere, with the average of 
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connectivity estimates to all other right hemisphere ROIs (note that, because all our metrics are 

symmetrical, this is equivalent to comparing each right hemisphere ROI with all corresponding left 

hemisphere ROIs). We refer to this as the “homology score”, with higher scores assumed to be better. 

More precisely, for the CamCAN data, we used this approach for the 48 cortical, anatomical ROIs in the 

Harvard-Oxford Atlas (HOA atlas, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). For the HCP data, given 

their much larger size, we focused (for computational reasons) on the connectivity between two, sub-

cortical ROIs: left and right hippocampus, given that functional heterogeneity has been proposed within 

the hippocampus (particularly along its anterior-posterior extent, Ranganath & Ritchey, 2012). 

 

5.1 fMRI (zero-lag, time-domain) analyses 

5.1.1 Non-cross-validated (single run) CamCAN results  

 The CamCAN fMRI data consisted of 261 scans (time points) every 1.97s. The original images 

were corrected for motion and slice-timing, warped to a standard MNI space and wavelet de-spiked (see 

Taylor et al., 2017, for fuller description of acquisition details and preprocessing). Time series were then 

extracted for each 3x3x3mm voxel within each of the 96 cortical ROIs in the HOA, which typically varied 

from 25 to 1643 voxels (median = 230). The script for estimating the fMRI connectivity metrics is called 

“test_fmri.m” in the GitHub directory.  

 In order to compare across metrics, each metric was normalised by 20 phase-scrambled versions 

of the data, producing a Z-score (similar to what was done for simulations, though unlike the random 

permuting of time points done there, here the scrambling of phases preserved the power spectrum, 

using the phase_rand.m function available in the GitHub directory).  The difference between (noise-

normalised) homologous versus non-homologous connectivity estimates was calculated for each 

participant. These homology scores were averaged over all 48 connections, and divided by the standard 

deviation across subjects, as shown in Figure 11A. As can be seen, all the metrics show a positive 

homology effect, as predicted, though the 1D Pearson correlation did best, with the MD dCor metric 

doing next best. Pearson-CCA did worst, which is likely to reflect the relatively low number of time 

points, or more specifically, the low mean ratio across ROIs (0.57) of time points (261) to voxels (2x230); 

see Figure 6B. 

 Figure 11A only shows average performance across ROIs. To further explore these findings, 

instead of averaging over connections, we averaged over subjects, and calculated the connectivity 
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metric that produced the best (normalised) homology score for each of the 48 connections. The results 

are shown in Figure 11B, which reveal a somewhat different pattern. The left axis shows the count of 

the number of ROIs for which that metric showed the highest normalised homology effect. As can be 

seen, Pearson-RCA had the highest score for the largest number of ROIs, suggesting that, even if they do 

not do much better on average over connections, MD methods are better for an appreciable proportion 

of ROIs in this fMRI dataset. The right axis shows the mean number of dimensions required by a SVD to 

explain 95% of the variance in the (left-hemisphere) ROIs associated with the set of connections for 

which that metric does best. As expected, the ROIs for which the MD Pearson-RCA (and dCor) metric did 

best tended to have higher dimensionality than those for which 1D Pearson did best.  

 

            A                                                                                B 

 

Figure 11. Performance of the non-cross-validated, zero-lag (time-domain) metrics on the single run of fMRI data 
from 20 subjects in the CamCAN dataset. Panel A shows mean and standard deviation across subjects of the noise-
normalized connectivity values (left axis) and corresponding Z-score across subjects (right axis). The left axis of 
Panel B shows the number of connections (out of 48) for which each metric produced the highest noise-normalised 
value (on average across subjects), while the right axis shows the average number of dimensions needed to capture 
95% of the variance in the left hemisphere ROI associated with each connection. 

 

5.1.2 Cross-validated (multiple runs) HCP results 

 The HCP fMRI data consisted of 1200 scans acquired every 0.72s (Glasser et al., 2016, for more 

details of acquisition and preprocessing). The data were extracted from left and right hippocampus 

parcels (Glasser et al., 2016). Voxel sizes were 2mm isotropic and there were on average 230 (left) and 

213 (right) voxels within the hippocampal ROIs. These data were used to test the MVPD metric that 

requires between-run cross-validation (which was done four-fold across the four runs, i.e. leave-one-

out), though non-cross-validated metrics were also included, and their within-run results just averaged 
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over runs. Note that the LPRD metric was not included because our implementation additionally 

requires leave-one (stimulus/time point)-out cross-validation within-runs, which is difficult when time 

points within a run are highly auto-correlated (in this case it is preferable to use other within-run cross-

validation approaches that take into account the temporal auto-correlation). While we do not know the 

relative SNR of the CamCAN and HCP datasets, it is worth noting (in relation to Figure 6B) that the ratio 

of time points to voxels in the HCP dataset (1200/443 = 2.71) is higher than in the CamCAN dataset 

(median value of 0.57 across ROIs). 

 The HCP results are shown in Figure 12, normalized by 20 phase-scrambled versions and 

averaged across subjects, as described for Figure 11A in the CamCAN data above. The results are similar 

to those Figure 11A, though in this case, the MD method dCor actually did better than 1D Pearson. 

Pearson-RCA (MD) and Pearson-SVD (1D) did reasonably well, but MVPD and Pearson-CCA did not do 

better than chance. The chance-performance of MVPD is similar to what was shown in simulation 

Example 3, where the mapping T varies between runs. It is possible that the HCP data also entail a 

mapping that changes across runs (e.g. owing to residual motion-related differences). Pearson-CCA does 

not perform well, perhaps because the ratio of time points to total number of voxels is still relatively 

small, even in the HCP dataset (Figure 6B). 
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Figure 12. Performance of the time-domain metrics across 4 runs of fMRI data from 100 subjects in the HCP 
dataset. See Figure 11A legend for more details. 

  

5.2 MEG (lagged, frequency-domain) analyses 

 The MEG data were acquired from 102 magnetometers and 204 planar gradiometers, sampled 

at 1kHz. Details of the preprocessing can again be found in Taylor et al. (2017), but in brief, 

environmental noise was removed using signal-space separation, bad (outlying) 2s epochs were 

excluded, and the data bandpass-filtered from 1-48Hz. A single-shell head model was constructed from 

each subject’s structural MRI and a scalar beamformer used to project the sensor data to approximately 

8000 points on a 6mm grid within the brain. Time series (scaled by beamformer weights to adjust for 

depth) were then extracted for each grid point within each of the 96 cortical HOA ROIs, which typically 

varied from 2 to 339 “voxels” (median = 41; note these 6x6x6mm voxels are considerably larger than the 

fMRI ones above). To make the data size more manageable (e.g, keep the file size below 2MB), data 

were then downsampled to 100Hz, and only the middle half (260s) of the data extracted. The resulting 

time series therefore contained 26,000 time points every 10ms (100Hz). The script for estimating the 

fMRI connectivity metrics is called “test_meg.m” in the GitHub directory. 

 The frequency-domain methods were applied to a broad frequency range (4-48Hz), which 

encompasses the dominant brain oscillations and because cross-hemisphere coupling has been 

observed across many such frequencies (Vidaurre et al 2018). When normalising by 20 phase-scrambled 

versions, none of the MEG lagged measures (1D or MD) showed a homology effect that was significantly 

above 0. This may reflect the lower SNR of MEG data than fMRI data. While this might be resolved by 

running many more phase-scrambled versions, this becomes computationally prohibitive. Therefore, we 

examined the non-normalised results. Although these do not allow direct comparison across metrics, 

because we are subtracting non-homologous connections from homologous ones, the expected chance 

value of the homology score for each metric is still zero. These non-normalised results, averaged over 

the 48 connections, are shown in Figure 13. Importantly, the two MD metrics (MIM and MVLagCoh) 

both did better than their 1D equivalents (ImCoh and LagCoh respectively). In addition, the Lagged 

Coherence metrics did better than the Imaginary Coherence metrics (possibly due to the fact that 

LagCoh and MVLagCoh are better at partialling out the zero-lag contributions, which might increase the 

number of false negatives, than are ImCoh and MIM).   
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Figure 13. Performance of the non-cross-validated, lagged frequency-domain metrics on the single run of source-
reconstructed MEG data from 20 subjects in the CamCAN dataset. See Figure 11A legend for more details. 

 

6 Discussion 

Neuroscience research benefits from constant advances in brain measurement and analysis 

techniques. For example, recent developments in machine learning and pattern analysis in particular 

have helped researchers gain insight into the information that is carried by populations of neurons, or 

that is distributed across many response channels (e.g. EEG electrodes, fMRI voxels, etc). While pattern 

analysis is now commonly used for information mapping for individual ROIs in the brain, research on 

functional connectivity between ROIs has not benefitted to the same extent. The main premise of 

pattern information analysis is that a region’s response cannot be characterized by a one-dimensional 

(1D) response (e.g. average response) but can be thought of as points in high-dimensional response 

spaces. Recently, a number of methods have been proposed that bridge from classical 1D-functional 

connectivity analysis to multi-dimensional (MD) pattern analysis, which capture the shared information 

in two regions. In this paper, we reviewed a number of MD-connectivity methods, in a manner that we 

hope is helpful to both those who want an intuitive introduction and those who want a formal 

characterisation. We also simulated special cases that were constructed in order to illustrate the main 

strengths and weaknesses of each approach. The take home messages from our simulations are 

summarised in Table 1.    
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Table 1. Summary of characteristics of different functional connectivity measures tested here. 

Method 1D/MD Provide a 

model of 

transformation 

Require 

more 

than one 

run 

Handle run-

specific MD-

mapping (see 

example 4) 

Able to detect 

nonlinear 

coupling (see 

example 5) 

Sensitive to 

structured 

noise (see 

example 6) 

Dim. 

reduction 

Time or 

frequency 

domain 

(sensitive to 

lagged coupling) 

Pearson 1D No No No No Yes Yes Time (No) 

Pearson-

SVD 

1D No No No No Yes Yes Time (No) 

Pearson-

CCA 

MD No No Yes No Yes Yes Time (No) 

MVPD MD Yes Yes No No Yes Yes/No Time (No) 

dCor MD No No Yes Yes Yes No Time (No) 

Pearson-

RCA 

MD No No Yes No No No Time (No) 

LPRD MD Yes Yes/No Yes/No No No Yes/No Time (No) 

ImCoh-

SVD 

1D No No No No Yes Yes Frequency (Yes) 

LagCoh-

SVD 

1D No No No No Yes Yes Frequency (Yes) 

MIM MD No No Yes No Yes No Frequency (Yes) 

MVLagCoh MD No No Yes No Yes No Frequency (Yes) 

 

The main messages in Table 1 include the fact that multivariate pattern dependence (MVPD, 

Anzellotti et al. 2017b) and linearly predicted representational dissimilarity (LPRD, Basti et al. 2019) have 

the advantage that they provide a generative model of regional interactions (also at the level of 

subspaces corresponding to the dominant principal components), whereas distance correlation (Geerligs 

et al. 2016) and representational connectivity analysis (Kriegeskorte et al. 2008) quantify shared 

information without providing a model (i.e. a MD-mapping from one region to another). However, 

estimating this mapping requires that MVPD is given multiple datasets (runs) with which to cross-

validate the mapping. This is problematic for MVPD if the mapping changes across runs (e.g. due to head 

motion in fMRI). LPRD (as it is implemented here) overcomes this issue by estimating the transformation 

in a within-run cross-validated framework, at the expense of potential biased estimates of the mapping 

if the noise is correlated. Also, these mappings are normally assumed to be linear, and while nonlinear 

mappings could be trained (e.g. using neural networks, Anzellotti et al. 2017a), this would generally 

require more data.  
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By contrast, distance-based approaches like dCor and RCA can more easily handle nonlinear 

mappings, e.g. through using Euclidean or other metrics of dissimilarity between patterns (indeed, dCor 

can be seen as a special case of RCA that uses a Euclidean metric). However, a downside of metrics like 

Euclidean distance (and hence dCor) is that they can be more sensitive to structured noise (e.g. between 

runs) than are correlational metrics (like Pearson-CCA) that normalise by the variance in each time 

series. An alternative solution is to Z-transform the time series prior to estimating connectivity, though 

this can in turn miss what might be true differences in the magnitude of dissimilarity between patterns 

(which is why we did not Z-transform in our examples, although our code provides this option).  

Some MD-connectivity methods have the option of dimension reduction, such as using SVD to 

reduce to     components that capture the majority of variance within each ROI. However, a danger 

here is that there may be important covariance between ROIs (the primary focus of connectivity 

analysis) that does not represent a large proportion of the variance within one of the ROIs, and 

therefore is lost by dimension reduction. This is exactly the problem that CCA solves, by selecting one 

time series per ROI that simultaneously maximises the correlation between ROIs, rather than selecting 

one time series that summarises each ROI independently. Another solution (that could be applied to 

LPRD and MVPD) is to regularise estimation of the multi-dimensional mapping between ROIs, which 

encourages dimension reduction at the same time as capturing the important covariance between ROIs. 

In Section 4.3, we also explored the sensitivity of each metric to noise. While this plot only 

applies when   is a fixed, linear mapping and the noise is independent across voxels, it suggests that 

some measures like dCor are more robust to noise than others like RCA. This robustness will depend on 

the details of the algorithm (e.g. measure of dissimilarity used in RCA), which is beyond the current 

remit, but the simulation results suggest that one might want to consider a range of MD-connectivity 

metrics on a (held-out) dataset, to see which is most robust to the type and level of noise in that 

dataset. 

Finally, of the methods considered here, only the multivariate interaction measure (MIM, Ewald 

et al. 2012) and multivariate lagged coherence (MVLagCoh, Pascual-Marqui 2007b) can currently 

capture time-lagged, multi-dimensional phase-coupling between ROIs. We suspect this will be 

particularly important for source-reconstructed MEG/EEG data, where ROIs contain multiple time series 

from dipoles with different orientations (given that the sign of the data depends on the dipole 

orientation), which means that simple averaging will never be appropriate. 
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When applied to real data, using relatively large, anatomically-defined ROIs, we found that, 

while 1D metrics, specifically Pearson correlation, often performed as well as MD metrics like dCor and 

Pearson-RCA, when averaging across connections (ROIs), there was a significant proportion of 

connections (in the CamCAN fMRI data) for which MD metrics did better. The advantage of MD metrics 

was even clearer for the (lagged) metrics applied to source-reconstructed MEG data, where MD metrics 

also outperformed their 1D equivalents on average across all connections. This may be because the 

signal in each “voxel” in source-localised MEG depends on the dominant orientation of the underlying 

electrical currents in that voxel, which may result in a higher dimensionality of dominant signal variance 

within the ROIs. 

Note that, while we used fMRI to demonstrate non-lagged measures and MEG to demonstrate 

lagged measures, it is possible to apply lagged measures to fMRI data (e.g. after adjusting for the 

potential confound of different haemodynamic response functions in different ROIs) and non-lagged 

measures to MEG data (e.g. after adjusting for zero-lag effects of field-spread). Note also that, even with 

non-lagged measures, regional variability in the haemodynamic response function can still confound 

fMRI measures of functional connectivity (Rangaprakash et al. 2018). 

It is important to remember that one could define ROIs as ones in which their components (e.g. 

voxels) are functionally homogeneous, and therefore ones where averaging and 1D-connectivity is the 

correct approach by definition. For example, ROIs could be defined functionally by contiguous 

collections of voxels that have similar time series, or even similar 1D-connectivity (Craddock et al. 2015). 

This would negate the need for any MD-connectivity. However, in many situations, the homogeneity of 

ROIs is not known, for example when they are defined anatomically, or when their functional definition 

in one population (e.g. young people) may not generalize to another (e.g. older people; Geerligs et al. 

2017). Relatedly, it is worth noting that investigating the information content of activity patterns can 

uncover processes that are not accessible by 1D-connectivity methods. For example, while average 

single activations for Gabor patches of various orientations might be equivalent in early visual areas, 

activity patterns in those areas nonetheless demonstrate explicit information about the orientation of 

the stimuli. Therefore, it may be the case that averaging activations across response channels masks the 

fact that two regions have different response properties, even though they are called “connected” 

according to 1D analysis. This is the converse to what we show in our examples, i.e. that two regions 

might have shared information in their MD-responses but no 1D-connectivity. 
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6.1 Ten rules for multi-dimensional functional connectivity 

Below we offer ten rules for someone considering application of MD-connectivity measures: 

1. If you are confident that all your ROIs are homogeneous, then 1D-connectivity methods can be 

more sensitive than MD-connectivity methods. In this case, the mean across voxels is a sufficient 

summary (though SVD should produce very similar answers). The degree of 1D-connectivity might be 

estimated by linear methods like Pearson correlation coefficient, or Spearman rank correlation (e.g. if 

data distribution contains outliers) or nonlinear methods like mutual information or (e.g. for EEG/MEG) 

time-lagged measures like the imaginary part of coherency, imaginary part of phase locking value, 

lagged coherence or phase lag indices (Marzetti et al. 2019).   However, homogeneous ROIs are rarely 

guaranteed, and examining the singular values of a SVD can help give an idea of homogeneity.7 

2. If you are confident that a ROI can be considered as one-dimensional, but variation along that 

dimension might be captured better by some voxels than others (e.g. owing to differing noise levels) or 

even expressed differently across voxels (e.g. some may be activated and some deactivated), then 

consider applying 1D-connectivity measures based on SVD rather than those based on the mean across 

voxels. Alternatively, if you think that the connectivity between ROIs is one-dimensional, but that each 

ROI contains a lot of independent noise (which would affect a SVD performed within each ROI), then 

consider using Pearson-CCA (assuming that there is a sufficient number of time points/scans). 

3. If a ROI contains multiple dimensions of variation (e.g. SVD does not suggest a single dominant 

mode), then consider a MD-connectivity measure. if you do not care about the explicit form of the 

mapping between ROIs in fMRI, but wish to allow for nonlinear as well as linear mappings, then consider 

dCor. dCor does not require cross-validation across runs and appears quite robust to noise. Note that 

dCor is a special case of RCA; a case that uses a Euclidean measure of similarity plus some extra steps to 

centre the time series. However, be careful about structured forms of noise (noise that is correlated 

across voxels), which can reduce the sensivity of dCor. Some of the effects of this structured noise can 

be ameliorated by normalising your time series or switching to a normalised measure of similarity like a 

correlation coefficient (the most common choice in RCA). 

4. As opposed to MD-connectivity methods that only test for the presence of shared information, 

MVPD and LPRD give insight into the nature of that shared information, by providing an estimate of the 

                                                           
7
 Of course, homogeneity at the level of measurement (e.g. voxels in fMRI) does not imply functional homogeneity 

at finer spatial scales: e.g. voxels could average over many functionally different neuronal populations, effectively 
reducing a multi-dimensional neural space to one dimension of data.  
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mapping between ROIs. Thus, if you want to estimate the functional transformation between two 

regions (besides simply testing for the presence of MD-connectivity), you should consider using one of 

these two metrics. It is worth noting that the mapping estimated by MPVD is conceptually different from 

the mapping estimated by LPRD: the former method relies on a transformation between two subsets of 

temporal modes, while the latter directly relies on a MD-mapping between voxels (in particular on a 

voxel-by-voxel linear transformation). Finally, both MVPD and LPRD will only detect linear mappings 

(though nonlinear mappings could be captured by projecting the data to basis functions or using more 

advanced nonlinear estimation techniques such as neural networks, Anzellotti et al. 2017a).  

5. If you want to investigate the presence of MD phase-coupling (e.g. in MEG or EEG) between 

ROIs, then consider MIM or MVLagCoh (or multivariate phase slope index for directed multi-dimensional 

interactions, Basti et al. 2018). Instead, if you are interested in amplitude-coupling (the other main 

coupling mode, Siems and Siegel 2020, Engel et al. 2013), an extension/modification of these measures 

is needed. For instance, one strategy could be to average all the possible pairwise (orthogonalised) 

amplitude envelope correlations between either the time series or the temporal modes associated with 

the two ROIs. Instead, if you want to investigate MD directed lagged interaction without disentangling 

phase- from pure amplitude-coupling, then consider applying properly (e.g. handling of the artificial 

zero-lag contribution) a Granger-causality method to the sets of multiple time series (Barrett et al. 

2010). 

6. If you are interested in the representational geometry of ROIs (for example, if you have multiple 

stimuli across different trials for each time point), then consider RCA, specifically the explicit 

construction of a RDM for each ROI, which may reveal structure in your stimulus patterns. If you have an 

explicit hypothesis about that structure, you could estimate the degree to which each ROI’s RDM 

matches a model RDM that encapsulates that hypothesis (or use some other form of multivariate 

classifier) and correlate the degree of that match across time points (informational connectivity, 

Coutanche and Thompson-Schill 2013). 

7. If you either have only one run (or trial) or it is possible that the mapping between ROIs changes 

across runs, you cannot use either MVPD or the between-run version of LPRD (Basti et al. 2019), since 

they require cross-validation of the estimates across independent datasets. If the samples (e.g. time 

points) are independent, you could consider within-run cross-validation of LPRD. If you do have multiple 

runs, and the mapping is stable across those runs, but the presence of correlated noise cannot be 
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excluded (Henriksson et al. 2015), only MVPD (and the between-run version of LPRD) can control false 

positives, via cross-validation across the runs. 

8. If the data might be contaminated by structured noise, i.e. a global signal across all voxels that 

changes with time (e.g. artefactual differences across trials in overall activation, when using single-trial 

fMRI estimates), then among the MD-connectivity methods considered in this review, only Pearson-RCA 

and LPRD are insensitive to such noise. In order to make other metrics like MVPD able to cope with this 

issue, one may consider first normalising (e.g. Z-scoring) the multiple time series within each voxel. 

9. For all the MD-connectivity measures (e.g. dCor and RCA) for which the expected value in the 

case of no true connectivity is not zero, it is fundamental to test for significance of MD-connectivity 

values with some form of randomisation testing (e.g. phase-shuffling of time series data). 

10. In general, there is no single, best MD-connectivity measure, and we showed that each has pros 

and cons. Researchers could try all of them (or a subset according to the properties we explained here) 

and then use a nested cross-validation scheme for choosing the “right measure” for their dataset and 

choice of ROIs (or correct for multiple hypothesis testing when using multiple measures).  

 Exploring MD-connectivity is still only in its infancy. It is likely that there is a unified 

mathematical framework in which the current examples are special cases. Moreover, here we have only 

considered methods for estimating single (pairwise) connections, but there are methods (usually called 

“multivariate connectivity methods”) that simultaneously estimate all connections in a network, which is 

needed to properly account for the fact that a “direct” connection between regions X and Y needs to 

partial out the contributions of “indirect” connections via a third region Z (Sanchez-Romero and Cole 

2019, Stramaglia et al. 2014, Barrett et al. 2010;). Future work might enable a combined “multivariate, 

multi-dimensional” approach also for other types of methods (e.g. pattern-distance metrics), where 

multiple direct dependencies are estimated among multiple ROIs, where each ROI is itself represented 

by multiple response channels. 

 Finally, it is important to note that we have focused on the methods, using artificial examples, 

rather than the possible underlying neuronal truth, i.e. how neuronal populations might communicate 

via multi-dimensional interactions (or to use the terminology of Reid et al., 2019, we have also focused 

more on the “map” than the “territory”). One way to address the latter is to use sophisticated 

(generative), neurophysiological models of neuronal interactions, perhaps using meso-scale or mean-

field approximations, together with a “forward” or “observation” model” that captures the 
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measurement process (e.g. fMRI or MEG), and then investigate the extent to which the current MD 

methods capture those interactions, compared to 1D connectivity methods. If so, this would cement the 

importance of considering how best to measure MD-connectivity in the brain. 
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