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Abstract

We present two new families of Wilson loop operators in N = 6 supersymmetric Chern-Simons theory. The
first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembo’s
construction in N = 4 SYM. The second one involves arbitrary curves on the two dimensional sphere.
In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at
least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class,
but we point out more special cases which were not known before. They could provide further tests of
the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by
localization techniques.
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1. Introduction and results

Three-dimensionalN = 6 supersymmetric Chern-Simons-matter theories with gauge group U(N)×U(M)
[1, 2] provide an exciting arena where studying the duality between string theories on asymptotically AdS
spaces and conformal field theories. The gravity dual of this theory is M-theory on AdS4 × S7/Zk, where k
is the level of the Chern-Simons term, or, for large enough k, type IIA string theory on AdS4 × CP

3.
Like in more familiar gauge theories, it is possible to define Wilson loop operators, which in the dual string

theory are given by semi-classical string surfaces [3, 4]. The most symmetric string of this type preserves
half of the supercharges of the vacuum (as well as an U(1)× SL(2,R)× SU(3) bosonic symmetry) and its
dual operator in the field theory has been ingeniously derived in [5] (see [6] for an alternative derivation
in terms of potential between heavy W -bosons). Other Wilson loop operators, previously constructed in
[7, 8, 9], preserve only 1/6 of the supercharges and are therefore not viable candidates to be the dual of this
classical string. The construction of the 1/2 BPS operator uses in an essential way the quiver structure of the
theory. In addition to the gauge fields, the Wilson loop couples to bilinears of the scalar fields and, crucially,
also to the fermionic fields transforming in the bi-fundamental representation of the two gauge groups. The
operator is classified by representations of the supergroup U(N |M) and is defined in terms of the holonomy
of a superconnection of this supergroup: the analysis presented in [5] considers loops supported along an
infinite straight line and along a circle.

For the 1/6 BPS Wilson loop a matrix model, describing its vacuum expectation value, has been derived
in [10] and this result carries over to the 1/2 BPS case. The calculation of [10] uses localization with respect
to a specific supercharge which is also shared by the 1/2 BPS operator. This Wilson loop is cohomologically
equivalent to a very specific choice of the 1/6 BPS loop, constructed with bosonic couplings only, and is
therefore also given by a matrix model. Happily it can be calculated for all values of the coupling also beyond
the planar approximation [11, 12, 13] and, in the strong coupling regime, it matches string computations.
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In four-dimensional N = 4 super Yang-Mills theory the original examples of 1/2 BPS Wilson loops (the
straight line and the circle [14, 15]) can be embedded into whole families preserving between 2 and 16 super-
charges. The straight line has been generalized by Zarembo [16], the amount of conserved supersymmetry
being related to the dimension of the subspace containing the contour. An interesting property of those
loops is that their expectation values seem to be trivial. The circular Wilson loop, that can be computed
exactly through localization [17], has been instead generalized in [18] to a class of contours living in an S3

(also called DGRT loops). A subset of those operators, preserving 1/8 of the original supersymmetry, are
contained in a S2 and their quantum behavior is described by perturbative [19] two-dimensional Yang-Mills
theory [18, 20, 21, 22] (a property that is also shared by loop correlators [23, 24, 25]). We remark that in
N = 4 SYM a general classification of supersymmetric Wilson loops does exist [26, 27].

In this letter we present two new families of BPSWilson loops operators in ABJ(M) theories, generalizing
respectively the straight line and the circle constructed in [5]: they can be considered the analogous of the
Zarembo and DGRT loops in three dimensional N = 6 super Chern-Simons-matter theories. Remarkably
we recover within our analysis some BPS configurations that we have introduced in [28], where a generalized
cusped Wilson loop has been carefully studied at classical and quantum level (see also [29] for a discussion
at strong coupling). Our results might be useful in studying the connection, originally proposed in D = 4
by [30], between quark-antiquark potential and cusp anomalous dimension [31, 32]. Potentially they could
also play a role in the exact computation of the elusive function h(λ) [33, 34, 35], as suggested in [36].

We start from the Wilson loop defined as the holonomy of the super-connection introduced by Drukker
and Trancanelli [5], parameterized by a certain number of path-dependent functionsM I

J (τ), M̂ I
J (τ), ηαI (τ)

and η̄Iα(τ) that specify the local couplings of bosons and fermions living in ABJ(M) theory. Our strategy
is to derive first a general set of algebraic and differential conditions that correspond to preserve locally a
fraction of supersymmetry, up to total derivative terms along the contour. Then we have to impose that
solutions of these constraints can be combined into a conformal Killing spinor,

Θ̄IJ = θ̄IJ − (x · γ)ǭIJ . (1)

where θ̄IJ and ǭIJ are constant spinors. The actual realization of the program relies of course on some
educated guess on the structure of the couplings. We discuss here the main ideas and show the explicit
form of the relevant couplings. The structure of these loops and their quantum properties will be studied
in greater detail in a future publication [37].

2. Supersymmetry conditions for an arbitrary contour

The key idea exploited in [5] to construct 1/2 BPS lines and circles is to embed the natural U(N)×U(M)
gauge connection present in ABJ(M) theories into a super-connection1

iL(τ) ≡


 iA

√
2π
k
|ẋ|ηI ψ̄I

√
2π
k
|ẋ|ψI η̄

I iÂ


 with





A ≡ Aµẋ
µ − 2πi

k
|ẋ|M I

J CI C̄
J

Â ≡ Âµẋ
µ − 2πi

k
|ẋ|M̂ I

J C̄JCI ,

(2)

belonging to the super-algebra of U(N |M). In (2) the coordinates xµ(τ) describe the contour along which the
loop operator is defined, while the quantities M I

J (τ), M̂ I
J (τ), ηαI (τ) and η̄

I
α(τ) parameterize the possible

local couplings. The latter two, in particular, are taken to be Grassmann even quantities even though they
transform in the spinor representation of the Lorentz group. We shall focus on operators that possess a
local U(1)× SU(3) R−symmetry invariance, since they are those described by semiclassical string surfaces
in the dual picture. The R−symmetry structure of the couplings in (2) is therefore described by a vector

1In Minkowski space-time, where ψ and ψ̄ are related by complex conjugation, L(τ) belongs to u(N |M) if η̄ = i(η)†. In
Euclidean space, where the reality condition among spinors are lost, we shall deal with the complexification of this group
sl(N |M).
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nI(τ) (and its complex conjugate n̄I), that specifies the local embedding of the unbroken SU(3) subgroup
into SU(4)2:

ηαI (τ) = nI(τ)η
α(τ), η̄Iα(τ) = n̄I(τ)η̄α(τ),

M I
J (τ) = p1(τ)δ

I
J−2p2(τ)nJ (τ)n̄

I(τ), M̂ I
J (τ) = q1(τ)δ

I
J − 2q2(τ)nJ (τ)n̄

I (τ).
(3)

By rescaling the Grassmann even spinors ηα and η̄α, we can always choose nI n̄
I = 1. The functions pi(τ) and

qi(τ) appearing in the definition of M and M̂ instead control the eigenvalues of the two matrices. The next
step is to constrain the form of the free functions present in (3) by requiring that the Wilson loop defined
by (2) is globally supersymmetric. This part of the construction is quite different from its four-dimensional
analog. The usual condition δsusyL(τ) = 0 is here too strong and it does not yield any solution for the
couplings (3). To obtain non trivial results, we must replace δsusyL(τ) = 0 with the weaker requirement
[5, 6]

δsusyL(τ) = DτG ≡ ∂τG+ i{L, G], (4)

where the r.h.s. is the super-covariant derivative constructed out of the connection L(τ) acting on a super-
matrix G in u(N |M). The condition (4) guarantees that the action of the supersymmetry charge translates
into an infinitesimal U(N |M) super-gauge transformation for L(τ) and thus the traced loop operator is
invariant3.

Since the supersymmetry transformations of the bosonic fields do not contain derivatives, the super-
matrix G in (4) cannot have an arbitrary structure but it has to be anti-diagonal, i.e.

G =

(
0 g1
ḡ2 0

)
⇒ DτG =



√

2π
k
|ẋ|(ηI ψ̄

I ḡ2 − g1ψI η̄
I) Dτg1

Dτ ḡ2

√
2π
k
|ẋ|(−ḡ2ηI ψ̄I + ψI η̄

Ig1)


 . (5)

Here the covariant derivative Dτ in (5) is constructed out of the dressed bosonic connections A and Â and
given by

Dτg1 = ∂τg1 + i(A g1 − g1 Â) , Dτ ḡ2 = ∂τ ḡ2 − i(ḡ2 A− Â ḡ2). (6)

Supersymmetry is preserved if there exist two functions g1 and ḡ2 such that

(I) : −i

√
2π

k
|ẋ|ηIδΨ̄

I = Dτg1 (II) : −i

√
2π

k
|ẋ|δΨI η̄

I = Dτ ḡ2, (7a)

(III) :

√
2π

k
|ẋ|(ηI ψ̄

I ḡ2 − g1ψI η̄
I) = δA, (IV) :

√
2π

k
|ẋ|(−ḡ2ηI ψ̄

I + ψI η̄
Ig1) = δĀ, (7b)

for a suitable form of the couplings, taking into account the superconformal transformation of the ABJ(M)
fields (see Appendix A). The analysis can be performed in full generality and it will be presented in details
in a forthcoming paper [37]: here we just state the main results, keeping track of their origin.

First of all, the reduced spinor couplings ηα and η̄β introduced in (3) are determined by the contour xµ

through the relations

(A) : δβα =
1

2i
(ηβ η̄α − ηαη̄

β) and (B) : (ẋµγµ)
β

α =
ℓ

2i
|ẋ|(ηβ η̄α + ηαη̄

β). (8)

These conditions originate from (I) and (II) in (7a), basically representing the request that derivative terms

are taken along the contour. The matrices M and M̂ have the form

2In the internal R−symmetry space nI identifies the direction preserved by the action of the SU(3) subgroup.
3The stronger condition δsusyL(τ) = 0 would imply that both the super-holonomy and its trace are invariant. Here and in

the text we are using the term trace loosely: it might mean the actual trace, or the super-trace or something more exotic. The
exact meaning will depend on the specific family of Wilson loops we are considering.
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M I
J (τ) = M̂ I

J (τ) = ℓ(δJK − 2nK n̄
J). (9)

The constant parameter ℓ can only take two values, ±1, and the choice specifies the eigenvalues of the
matrices M I

J (τ) and M̂ I
J (τ): (−1, 1, 1, 1) [ℓ = 1] and (1,−1,−1,−1) [ℓ = −1]. The invariance of (8)

under the replacement (η, η̄) 7→ (uη, u−1η̄) is instead related to (III) and (IV) in (7b), simply determining
the relative scale of the reduced spinor couplings.

The SU(4) tensor structure of the preserved supercharge Θ̄IJ is controlled by a couple of constraints,
consisting of the following algebraic relations

(A) : ǫIJKL(ηΘ̄
IJ)n̄K = 0 and (B) : nI(η̄Θ̄

IJ) = 0, (10)

where the vectors nK and n̄K are defined in (3). Finally there are two sets of differential conditions

(A) : Θ̄IJ∂τ η̄
KǫIJKL = 0 and (B) : Θ̄IJ∂τηI = 0. (11)

They ensure that the derivative term in the supersymmetry variation takes the correct form without leaving
any unwanted remnant.

We remark that all the above conditions are strictly local. To construct an actual supersymmetric
Wilson loop, we must provide a family of couplings (η, η̄, nI , n̄

I) so that the solution of the eqs. (10) and
(11) takes the form of a conformal Killing spinor, i.e. the form (1). The relations (8), (10) and (11) provide
a complete set of supersymmetry conditions, but their form is not unique. For instance the requirement (10)
is equivalent to the following expansion for the preserved supercharge in terms of the couplings ηK and η̄K :

Θ̄IJ
α =

ℓ

2i

[
η̄Iαh̄

J − η̄Jαh̄
I − 1

2ǫ
IJKLηKαmL

]
, (12)

where the Grassmann odd vectors mI and h̄I are defined from

ηγµΘ̄KL nK =
ẋµ

|ẋ|
h̄L, −ǫIJKLn̄

KΘ̄IJγµη̄ =
ẋµ

|ẋ|
mL (13)

and they obey the orthonormality relations: nI n̄
I = 1, nI h̄

I = n̄ImI = 0. The explicit form of the gauge
functions g1 and ḡ2 can be nicely written using these vectors

g1 ≡ 2

√
2π

k
(h̄LCL), ḡ2 ≡

√
2π

k
(mLC̄

L). (14)

3. Supersymmetric Wilson loops on R3

Our first explicit construction concerns a family of Wilson loops of arbitrary shape, which preserve at
least a supercharge of the Poincarè type, i.e. a supercharge with ǭIJ = 0. In this sense these operators can
be viewed as the three dimensional companion of the loops discussed by Zarembo in [16]. They can be also
considered a generalization of the BPS straight-line constructed by Drukker and Trancanelli in [5], which is
the simplest example enjoying this property.

We start by considering the differential constraints (11), written in a way which is easier to solve:

∂τ h̄
L + |ẋ|ηǭKL nK = 0, ∂τmL + |ẋ|n̄K(ǭIJ η̄)ǫIJKL = 0. (15)

For ǭIJ = 0 the vectors mI and h̄I are seen independent of the contour parameter τ . To further proceed we
contract (12) and its dual with ηα

ηΘ̄IJ = ℓ(n̄I h̄J − n̄J h̄I) and ǫIJKL(η̄Θ̄
IJ) = ℓ(nKmL − nLmK) (16)
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and we observe that, for a generic contour, these expansions are compatible with a constant Θ̄IJ if we
choose, for instance, the following ansatz for nI and n̄I :

n̄I = (ηs̄I) and nI = (sI η̄). (17)

Here s̄Iα are four τ−independent spinors and η and η̄ are determined by (8). The normalisation condition
n̄In

I = 1 is equivalent to the following completeness relation on the spinors sαI and s̄Iα

s̄Iβs
α
I =

1

2i
δαβ . (18)

We plug our ansatz into the algebraic conditions (10) and, after some work, we can show that for a generic
contour they are equivalent to the linear system of equations

ǫIJKL(θ̄
IJγµs̄

K) = 0 and (sIγµθ̄
IJ) = 0. (19)

The relations (19) also ensure that the remaining differential constraints (11) are identically satisfied in
the case of Poincarè charges. The general solution of the supersymmetry conditions (19) can be written as
follows

Θ̄IJρ = θ̄IJρ = v̄J s̄Iρ − v̄I s̄Jρ, with v̄IsIβ = 0. (20)

It is straightforward to check that the above ansatz solve the conditions (19), in fact

(sIγµθ̄
IJ) = (sIγµs̄

I)v̄J−v̄I(sIγµs̄
J) =

1

2i
Tr(γµ)v̄

J = 0 ǫIJKL(θ̄
IJγµs̄

K) = 2ǫIJKL v̄
J (s̄Iγµs̄

K) = 0. (21)

The first result follows from the completeness relation (18), while the property (s̄Iγµs̄
K) = (s̄Kγµs̄

I), which
holds for bosonic spinors, is responsible for the second one. To show that any solution of (19) can be cast
into the form (20) requires some more work and the detail of the proof will be given in [37]. From (??) it
also follows that these loop are generically 1/12-BPS.

Summarizing we have constructed a family of supersymmetric Wilson loops of arbitrary shape, whose
coupling are

ηαI = nIη
α =sβI η̄βη

α = isβI

(
1+ ℓ

ẋ · γ

|ẋ|

) α

β

, η̄Iα = n̄I η̄α = η̄αη
β s̄Iβ = i

(
1+ ℓ

ẋ · γ

|ẋ|

) β

α

s̄Iβ , (22a)

M J
K = M̂ J

K = ℓ
(
δJK − 2nKn̄

J
)
= ℓ

(
δJK − 2isK s̄

J − 2iℓ
ẋµ

|ẋ|
sKγµs̄

J

)
, (22b)

and which are invariant under the Poincarè supercharges (20).

4. Supersymmetric Wilson loops on S
2

We propose a second family of Wilson loops, that is defined for an arbitrary curve on the unit sphere S2:
xµxµ = 1. The central idea in our construction is again a judicious guess for the reduced vector couplings
nI and n̄I , which were introduced in (3). Specifically we shall consider a deformation of the ansatz (17)

n̄I = r(ηUs̄I) and nI =
1

r
(sIU

−1η̄), (23)

where sIα and s̄Iα are again four τ−independent spinors obeying the completeness relation (18). The pa-
rameter r is a function of τ and it will become useful when we have to solve the differential constraints.
The matrix U is the characterising ingredient of our ansatz: it is an element of SU(2) constructed with the
coordinates xµ(τ) of the circuit, namely

U = cosα 1+ i sinα (xµγµ), (24)
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with α free constant parameter. There is a natural connection among U in (24), the tangent vector to the
circuit and the invariant one-forms on S2. In fact if we evaluate the Lie-algebra element ∂τUU

†, we obtain

∂τUU
−1 =i sinα (cosα ẋλ − sinα ǫλµνx

µẋν)γλ, (25)

where the r.h.s. is a linear combination of the tangent vector and of the SU(2) invariant forms.
Let us first focus our attention on the algebraic conditions (A) in (10). Using the Fierz identity and the

explicit form (1) for the Killing spinor, we can rewrite it as follows

r

2
ǫIJMN (ζγµζ)(∆̄IJγµs̄

M ) = 0, (26)

where we have defined an auxiliary reduced coupling ζ = U−1η and an auxiliary super-conformal charge
∆̄IJ = Θ̄IJU . We can also rearrange the condition (B) in (10) following the same idea and we find

1

2r
(ζ̄γµζ̄)(sIγµ∆̄

IJ) = 0, (27)

where ζ̄ = U−1η̄. Now we notice that eqs. (26) and (27), for a generic contour, leads to the same conditions
(19) discussed in the previous section4

ǫIJKL(∆̄
IJγµs̄

K) = 0 and (∆̄IJγµsI) = 0. (28)

Conversely they possess the same kind of solutions5: ∆̄IJ is the constant spinor θ̄IJ defined in (20). In other
words the preserved supercharges can be parametrized as follows

Θ̄IJ = [cosα1+ i sinα (xµγµ)]θ̄
IJ = Uθ̄IJ . (29)

The above representation is very useful when we examine the derivative constraints (11): in fact it allows
us to easily recognise all the terms which automatically vanish since they are proportional to the two SUSY
conditions (19). Using this fact, the first of the two constraints (11) can be easily translated into an ordinary
differential equation for the unknown function r

ṙ + iℓr sinα cosα = 0, (30)

which determines the arbitrary function r:

r = r0 exp

(
−
i

2
ℓ(sin 2α)s

)
. (31)

Here s is the affine parameter of the curve and r0 an arbitrary constant. It is a simple exercise to show that
the second differential constraint (11) is identically satisfied.

It is straightforward to compute the couplings for this family of supersymmetric Wilson loops on S2:

ηβI =
i

r0
e

i

2
ℓ(sin 2α)s

[
sI(cosα 1− i sinα (xµγµ))

(
1+ ℓ

ẋ · γ

|ẋ|

)]β
, (32a)

η̄Iβ =ir0e
− i

2
ℓ(sin 2α)s

[(
1+ ℓ

ẋ · γ

|ẋ|

)
(cosα 1+ i sinα (xµγµ)) s̄

I

]

β

, (32b)

M J
K =M̂ J

K = ℓ

[
δJK − 2isK s̄

J − 2iℓ cos2α

(
sK

ẋ · γ

|ẋ|
s̄J

)
− 2iℓ sin 2α

(
sKγ

λs̄J
)
ǫλµνx

µẋν
]
. (32c)

4In the language of the previous section, these equation would arise for a circuit whose tangent vector is

ẏµ =
|ẋ|

2i
ζγµζ̄ =

|ẋ|

2i
ηUγµU−1η̄ = cos 2αẋµ + sin 2αǫµνλxν ẋλ.

5Since x2 = 1 it is straightforward to show that ∆̄IJ on S2 has still the structure of a conformal Killing spinor.
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Some general remarks are now in order. First of all we notice that for α = 0 we recover the couplings (22).
In this sense we can consider this class of loops as a deformation of those considered in the previous section.
For generic α, the situation is more intricate. Consider, for instance, the structure of the scalar couplings:
there is a universal constant sector which is not controlled by α. Then we find a term of the form R J

µK ẋµ,
which is the analog of Zarembo coupling in four dimensions. Finally we have a contribution of the type
T λ J

K ǫλµνx
µẋν describing the coupling of the scalars to the invariant forms on S2. This is reminiscent of

the Wilson loops on S3 in D = 4 discussed in [18].
In this picture the value α = 0 corresponds to the decoupling of the forms on S2. There is a second

interesting value of α, i.e. α = π
4 , for which the Zarembo-like term vanishes and the scalars couple only to

the invariant forms. For this value of α we also recover the 1/2 BPS circle discussed in [5]. One is then
tempted to identify these operators as the three dimensional companions of the so-called DGRT loops [18].

4.1. Gauge transformation and the construction of the invariant operator

In order to construct a gauge-invariant operator we have to discuss the global effect of the super-gauge
transformations related to supersymmetry: let us consider the infinitesimal super-gauge transformation that,
in this case, affects the S2 loops

G =

(
0 g1
ḡ2 0

)
with g1 ≡ 2

√
2π

k
(ηIΘ̄

ILCL) and ḡ2 ≡

√
2π

k
(ǫIJKL(η̄

KΘ̄IJ)C̄L). (33)

In general the functions g1 and ḡ2 for a closed loop are neither periodic nor anti-periodic. If we take the
range of τ to be [0, 2π] and we denote with L the perimeter of the curve, we find the following twisted
boundary conditions

g1(2π) = g1(0)e
i

2
(sin 2α)L and ḡ2(2π) = g2(0)e

− i

2
(sin 2α)L. (34)

Alternatively in matrix language we can write

G(2π) =

(
e

i

2
(sin 2α)L 0

0 e−
i

2
(sin 2α)L

)
G(0) = G(0)

(
e−

i

2
(sin 2α)L 0

0 e
i

2
(sin 2α)L

)
. (35)

If we introduce the auxiliary matrix

T =

(
e

i

4
(sin 2α)L 0

0 e−
i

4
(sin 2α)L

)
, (36)

we can easily show that the infinitesimal gauge transformation G obey the following relation G(2π) =
T G(0)T −1, which in turn implies

U(2π) = T U(0)T −1, (37)

for the finite gauge transformation, U = exp(iG). Then STr(WT ) defines a supersymmetric operator

STr(WT ) 7→ STr(U−1(0)WU(2π)T ) = STr(U−1(0)WT T −1U(2π)T ) = STr(WT ). (38)

In the case of the particular α = π
4 and for the equatorial circle (L = 2π), the twist matrix T is “iσ3” which

means that we have to take the trace, as already shown in [5]. The dependence of T on the perimeter of the
curve is not a complete surprise. In fact an hint of this result is implicitly contained in the original analysis
of [5] for the circle. They suggest to use the trace since the gauge function are anti-periodic. However if we
cover the circle twice (so doubling its length) the gauge functions are now periodic and thus we have to go
back to the super-trace.
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4.2. An example: the great α-circle

As an example, we shall consider the great circle for generic α

x1 = cos τ, x2 = sin τ, x3 = 0. (39)

In this case the vector ǫλµνx
µẋν is τ−independent and it is simply given by (0, 0, 1). In order to write

down explicitly the spinor and the scalar couplings for generic α it is convenient to introduce the following
parametrization for the constant spinors s̄Iα and sIα

s̄Iα = ūI λ̄α + v̄Iλα and sIα = uIλα − vI λ̄α, (40)

where ūIuI = v̄IvI = 1 and ūIvI = v̄IuI = 0, while λ and λ̄ span a basis and they are normalised so that

λαλ̄β − λβ λ̄
α =

1

2i
δαβ . (41)

For instance, we can choose λ and λ̄ to be the eigenstate of γ3 and in that case the couplings take the
following form

ηαI =
i

r0
e

i

2
ℓ(sin 2α)τ

[
cos

(
α− ℓ

π

4

)
uI − sin

(
α− ℓ

π

4

)
vIe

iτ
]
(1,−iℓe−iτ), (42a)

η̄Iα =ir0e
− i

2
ℓ(sin 2α)τ

[
ūI cos

(
α− ℓ

π

4

)
− e−iτ v̄I sin

(
α− ℓ

π

4

)]( −i
ℓeiτ

)
, (42b)

M J
K (τ) = M̂ J

K (τ) = ℓ

[
δJK − 2isK(1 + ℓ sin 2αγ3)s̄J − 2i cos 2α

(
sK

ẋ · γ

|ẋ|
s̄J

)]
= (42c)

= ℓ
[
δJK −

(
(1 + ℓ sin 2α)uK ū

J + (1− ℓ sin 2α)vK v̄
J
)
− ℓ cos 2α(uK v̄

Je−iτ + vK ū
Jeiτ )

]
.

A different choice for λ and λ̄ yields equivalent coupling, which simply differs for a redefinition of uI and
vI . For α = ±π

4 , we obtain the well-known 1/2−BPS circle of [5]. In general we find 4 supercharges, i.e.
the loops are 1/6-BPS.
If we choose xµ(τ) to be two half-latitudes of the sphere differing of an angle δ, we recover the supersymmetric
wedge discussed in [28] for α = π

4 and ℓ = 1. More examples and other features of these loops, such as their
perturbative behaviour, will be discussed in [37].
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Appendix A. Spinor and supersymmetry transformations

In Euclidean space-time we choose the usual Pauli matrices as Dirac matrices: γµ ≡ σµ. The spinor
indices are raised and lowered as follows: ψα = ǫαβψβ and ψα = ǫαβψ

β with ǫ01 = ǫ10 = 1.

In ABJ(M) theories the gauge sector consists of two gauge fields Aµ and Âµ belonging respectively to
the adjoint of U(N) and U(M). The matter sector instead contains the complex fields CI and C̄I as well as
the fermions ψI and ψ̄I . The fields (C, ψ̄) transform in the (N, M̄) of the gauge group U(N)×U(M) while
the couple (C̄, ψ) lives in the (N̄,M). The additional capitol index I = 1, 2, 3, 4 belongs to the R−symmetry
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group SU(4). Under a superconformal transformations defined by the parameter Θ̄IJ
α ≡ θ̄IJα + xµγ

µ
αβ ǭ

IJβ

these fields transform as

δAµ =
4πi

k
Θ̄IJα(γµ)

β
α

(
CIΨJβ +

1

2
ǫIJKLΨ̄

K
β C̄

L

)
δÂµ =

4πi

k
Θ̄IJα(γµ)

β
α

(
ΨJβCI +

1

2
ǫIJKLC̄

LΨ̄K
β

)

δCK =Θ̄IJαǫIJKLΨ̄
L
α δC̄K = 2Θ̄KLαΨLα

δΨβ
K =− iǭILβǫILKJ C̄

J − iΘ̄IJαǫIJKL(γ
µ) β

α DµC̄
L (A.1)

+
2πi

k
Θ̄IJβǫIJKL(C̄

LCP C̄
P − C̄PCP C̄

L) +
4πi

k
Θ̄IJβǫIJMLC̄

MCK C̄
L

δΨ̄K
β =− 2iΘ̄KLα(γµ)αβDµCL −

4πi

k
Θ̄KL

β (CLC̄
MCM − CM C̄

MCL)−
8πi

k
Θ̄IJ

β CIC̄
KCJ − 2iǭKL

β CL
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