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Abstract 

In the last decades, natural disasters have been affecting the human life of millions of people. The impressive scale of these 
disasters has pointed out the need for an effective management of the relief supply operations. One of the crucial issues in this 
context is the routing of vehicles carrying critical supplies and help to disaster victims. This problem poses unique logistics 
challenges, including damaged transportation infrastructure and limited knowledge on the road travel times. In such 
circumstances, selecting more reliable paths could help the rescue team to provide fast services to those in needs. The classic 
cost-minimizing routing problems do not properly reflect the relevant issue of the arrival time, which clearly has a serious impact 
on the survival rate of the affected community. In this paper, we focus specifically on the arrival time objective function in a 
multi-vehicle routing problem where stochastic travel times are taken into account. The considered problem should be solved 
promptly in the aftermath of a disaster, hence we propose a fast heuristic that could be applied to solve the problem. 
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1. Introduction 

Throughout the world, many countries have faced a series of unpredictable natural disasters such as the earthquake 
in Japan, the Southeast Asian floods in 2011, the Hurricane Irma in the United States in 2017, to mention a few. These 
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disasters caused thousand deaths and affected millions of people with substantial social and environmental damages. 
Humanitarian logistic operations play a critical role in minimizing loss of lives and alleviating human suffering after 
disasters by providing relief supplies such as water, food and medical services. These logistic activities should be 
effective and efficient to provide timely response and quick recovery activities after a catastrophe. Given the lack of 
precise information regarding the affected population, the limitations in transportation resources and the damaged 
infrastructure, it is challenging to plan these operations very carefully. Considering the uncertain features of disaster 
relief operations, and in particular, the realistic scenario that a disaster can damage the roads of the relief regions, we 
propose, in this paper, a fast heuristic for the post-disaster relief routing under uncertain travel times. 

Our problem can be classified as a selective multi-vehicle cumulative routing problem with stochastic travel times. 
While vehicle routing problems are generally a very well-researched class of decision problems, the contributions into 
the class of cumulative vehicle routing problems are scarce and rarely applied to actual real-world settings. Research 
efforts have been devoted to design efficient metaheuristic methods for solving the problem and its variants. 
Salehipour et al. (2011) and Silva et al. (2012) proposed heuristic approaches for the single vehicle problem. In 
(Mladenovic et al., 2013), the authors presented a general variable neighborhood search metaheuristic for the traveling 
deliveryman problem. Ngueveu et al. (2012) presented a memetic heuristic for the cumulative capacitated vehicle 
routing problem aimed at visiting a set of customers with a homogenous capacitated vehicle fleet. Ribeiro and Laporte 
(2012) presented an adaptive large neighborhood metaheuristic for the capacitated problem, applying different repair 
and destroy procedures. In a recent paper, Sze et al. (2017) proposed a hybrid metaheuristic algorithm in which a two-
stage adaptive variable neighborhood search algorithm is proposed. More recently, an efficient new formulation, 
defined on a multi-level network has been presented in (Nucamendi-Guillén et al., 2016), for the deterministic k-
traveling repairman problem without profits enhanced by a metaheuristic approach. 

The literature on the selective variant (also named in the literature as the traveling repairman problem with profits) 
is relatively scarce, even in the deterministic case, for which Dewilde et al. (2013) first presented an integer linear 
programming formulation in which the number of visited nodes, or equivalently the path length, is an input parameter. 
When uncertainty is considered, the literature on the traveling repairman problem is completely absent, whilst the 
literature on other vehicle routing problems with stochastic components is quite rich (Oyola et al., 2017). The two 
major approaches proposed to deal with this more involved case are represented by the Stochastic Programming 
(Beraldi et al., 2017b, Perboli et al., 2017) and the Robust Optimization paradigms (Bruni et al., 2014). The former 
can be applied when uncertainty can be described by known distributions, whereas the latter is preferred when only 
partial information is available. Restricting the attention to uncertainty in travel times, we mention the risk-based 
model proposed in (Lecluyse et al., 2009), for a time-dependent routing problem, the probabilistic chance-constraint 
model for a capacitated time-dependent vehicle routing proposed by Nahum and Hadas (2009) and the vehicle routing 
problem with time-dependent and stochastic travel times studied by Taṣ  ̧et al. (2014). A model for minimizing the 
total costs incorporating the uncertainty of link travel times with the early arrival and delay penalty at customers who 
set up designated time windows has been presented in (Ando and Taniguchi, 2006), whereas Musolino et al. (2016) 
presented a procedure for the solution of the vehicle routing problem based on reliable link travel times. This paper 
deals with the challenging task of estimating travel times on a road network by taking into account spatially aggregated 
traffic conditions estimated by means of a network fundamental diagram (Musolino et al., 2014; Musolino and Vitetta, 
2014), as well as disaggregated data concerning the congested link travel times. The model is then solved by using a 
genetic algorithm (Polimeni and Vitetta, 2014). 

Even though in the last decade, the scientific community has devoted an increasing attention on the application of 
operations research techniques for the emergency and post-disaster management (Aringhieri et al., 2017; Khodaparasti 
et al., 2016; Hoyos et al., 2015; Huang et al., 2012), only a few papers address relief routing decisions, and among 
them, only (Ahmadi et al., 2015) incorporates the stochasticity of travel times by means of scenarios. The model, by 
adopting a risk neutral approach, aims at determining the locations of local shelters and routing for last mile 
distribution after an earthquake. Pourrahmani et al. (2015) presented a routing model for relief evacuation after 
earthquake in which the variations of travel times over different time intervals is handled using a multi-period routing 
model and the number of evacuees is a fuzzy number. In (Shahparvari et al., 2017), the authors addressed the case in 
which the shelter and the vehicle capacity as well as the evacuation time window are fuzzy numbers. In another paper, 
they considered the case in which the randomness of the uncertain parameters are handled by robust programming 
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disasters caused thousand deaths and affected millions of people with substantial social and environmental damages. 
Humanitarian logistic operations play a critical role in minimizing loss of lives and alleviating human suffering after 
disasters by providing relief supplies such as water, food and medical services. These logistic activities should be 
effective and efficient to provide timely response and quick recovery activities after a catastrophe. Given the lack of 
precise information regarding the affected population, the limitations in transportation resources and the damaged 
infrastructure, it is challenging to plan these operations very carefully. Considering the uncertain features of disaster 
relief operations, and in particular, the realistic scenario that a disaster can damage the roads of the relief regions, we 
propose, in this paper, a fast heuristic for the post-disaster relief routing under uncertain travel times. 

Our problem can be classified as a selective multi-vehicle cumulative routing problem with stochastic travel times. 
While vehicle routing problems are generally a very well-researched class of decision problems, the contributions into 
the class of cumulative vehicle routing problems are scarce and rarely applied to actual real-world settings. Research 
efforts have been devoted to design efficient metaheuristic methods for solving the problem and its variants. 
Salehipour et al. (2011) and Silva et al. (2012) proposed heuristic approaches for the single vehicle problem. In 
(Mladenovic et al., 2013), the authors presented a general variable neighborhood search metaheuristic for the traveling 
deliveryman problem. Ngueveu et al. (2012) presented a memetic heuristic for the cumulative capacitated vehicle 
routing problem aimed at visiting a set of customers with a homogenous capacitated vehicle fleet. Ribeiro and Laporte 
(2012) presented an adaptive large neighborhood metaheuristic for the capacitated problem, applying different repair 
and destroy procedures. In a recent paper, Sze et al. (2017) proposed a hybrid metaheuristic algorithm in which a two-
stage adaptive variable neighborhood search algorithm is proposed. More recently, an efficient new formulation, 
defined on a multi-level network has been presented in (Nucamendi-Guillén et al., 2016), for the deterministic k-
traveling repairman problem without profits enhanced by a metaheuristic approach. 

The literature on the selective variant (also named in the literature as the traveling repairman problem with profits) 
is relatively scarce, even in the deterministic case, for which Dewilde et al. (2013) first presented an integer linear 
programming formulation in which the number of visited nodes, or equivalently the path length, is an input parameter. 
When uncertainty is considered, the literature on the traveling repairman problem is completely absent, whilst the 
literature on other vehicle routing problems with stochastic components is quite rich (Oyola et al., 2017). The two 
major approaches proposed to deal with this more involved case are represented by the Stochastic Programming 
(Beraldi et al., 2017b, Perboli et al., 2017) and the Robust Optimization paradigms (Bruni et al., 2014). The former 
can be applied when uncertainty can be described by known distributions, whereas the latter is preferred when only 
partial information is available. Restricting the attention to uncertainty in travel times, we mention the risk-based 
model proposed in (Lecluyse et al., 2009), for a time-dependent routing problem, the probabilistic chance-constraint 
model for a capacitated time-dependent vehicle routing proposed by Nahum and Hadas (2009) and the vehicle routing 
problem with time-dependent and stochastic travel times studied by Taṣ  ̧et al. (2014). A model for minimizing the 
total costs incorporating the uncertainty of link travel times with the early arrival and delay penalty at customers who 
set up designated time windows has been presented in (Ando and Taniguchi, 2006), whereas Musolino et al. (2016) 
presented a procedure for the solution of the vehicle routing problem based on reliable link travel times. This paper 
deals with the challenging task of estimating travel times on a road network by taking into account spatially aggregated 
traffic conditions estimated by means of a network fundamental diagram (Musolino et al., 2014; Musolino and Vitetta, 
2014), as well as disaggregated data concerning the congested link travel times. The model is then solved by using a 
genetic algorithm (Polimeni and Vitetta, 2014). 

Even though in the last decade, the scientific community has devoted an increasing attention on the application of 
operations research techniques for the emergency and post-disaster management (Aringhieri et al., 2017; Khodaparasti 
et al., 2016; Hoyos et al., 2015; Huang et al., 2012), only a few papers address relief routing decisions, and among 
them, only (Ahmadi et al., 2015) incorporates the stochasticity of travel times by means of scenarios. The model, by 
adopting a risk neutral approach, aims at determining the locations of local shelters and routing for last mile 
distribution after an earthquake. Pourrahmani et al. (2015) presented a routing model for relief evacuation after 
earthquake in which the variations of travel times over different time intervals is handled using a multi-period routing 
model and the number of evacuees is a fuzzy number. In (Shahparvari et al., 2017), the authors addressed the case in 
which the shelter and the vehicle capacity as well as the evacuation time window are fuzzy numbers. In another paper, 
they considered the case in which the randomness of the uncertain parameters are handled by robust programming 
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and presented a stochastic robust model, then solved by a genetic algorithm (Shahparvari and Abbasi, 2017). We 
should mention that evacuation is the process of transferring people from affected areas or local shelters to open spaces 
equipped with emergency facilities (such as supplies of electricity, water and sanitary facilities). Hence, evacuation 
problem can not be directly cast into our problem, which seeks instead routes from a central depot to different affected 
areas. 

It is interesting to note that, still many studies in disaster response context, even those we mentioned, promote cost-
based functions expressed as the total traveled time or the total unmet demands. It is worthwhile remarking that the 
biggest difference between routing in post-disaster and other kinds of routing problems is that the arrival time at 
victims’ locations, rather than the total travel time, is the most important objective function. This paper contributes to 
the relief routing literature by recognizing the customer-centric nature of the problem focusing on the arrival time of 
a fleet of vehicles to the areas affected by the disaster. Moreover, since in different locations a different number of 
disaster victims may be found, we consider a utility of servicing each location, as a proxy of the number of people in 
need. Hence, the affected areas are prioritized according to the utility level, that is proportional to the disaster severity 
and the population size. The goal is to find the optimal plan to service a subset of the affected areas, with a limited 
fleet of vehicles. We mention that Balcik (2017) very recently proposed an efficient tabu search heuristic for solving 
a problem for post-disaster needs assessment that involves site selection decisions in addition to the routing decisions. 
This paper is closely related to our approach, but it shows also significant differences. First of all, the objective 
function is different, since in (Balcik, 2017) the maximum coverage ratio is minimized. It is well-recognized that 
considering the arrival time as an objective function in routing problems poses severe computational issue, even in 
the deterministic case. Secondly, the mentioned paper does not consider uncertainty in travel times. Moreover, in this 
paper, we address risk-averse route decisions in the aftermath of a disaster, considering different risk attitudes of the 
decision maker. The remainder of the paper is organized as follows. 

In Section 2, we introduce the problem. The heuristic framework is presented in Section 3. Section 4 is devoted to 
the computational results obtained by implementing the proposed heuristic on a set of instances, and concluding 
remarks are discussed in Section 5. 

2.  Problem definition 

Let us consider an affected area and a pre-specified central depot (denoted with 0). Potential victims after a disaster 
are assumed to be concentrated into some demand points 𝑖𝑖 ∈ 𝒩𝒩. A limited fleet of 𝑉𝑉 vehicles with unlimited capacity 
is available to serve the locations. A feasible solution consists of a set of disjoint paths 𝜋𝜋! = [0, 𝑙𝑙[#], … , 𝑙𝑙[%,]], 𝑣𝑣 =
1, … , 𝑉𝑉 defined by an ordered set of links indexed by 𝑙𝑙 (here 𝐿𝐿! denotes the length of path 𝑣𝑣). The notation [⋅] denotes 
the position of the link in the path. We denote by 𝜋𝜋&! ⊆ 𝜋𝜋! the subpath connecting the depot to the node 𝑖𝑖 and by 𝒩𝒩!, 
the set of nodes visited by the vehicle 𝑣𝑣, which are the endpoints of the links 𝑙𝑙 ∈ 𝜋𝜋!. 

The objective is to identify a set of feasible vehicle paths (each visiting a different subset of nodes) that maximizes 
the utility of relief distribution amongst beneficiaries. Utility is expressed as a decreasing function of the arrival times 
and it assumes the maximum value (the absolute utility score 𝑝𝑝&) when the arrival time at node 𝑖𝑖 (𝑡𝑡&) is zero. If we 
express at each node 𝑖𝑖 the utility as 𝑝𝑝& − 𝑡𝑡&, the total utility function 𝒰𝒰ℱ associated to a given solution (set of vehicle 
paths) 𝑅𝑅 = [𝜋𝜋!]!'#(  is then  

 𝒰𝒰ℱ(𝑅𝑅) = ∑(
!'# ∑&∈𝒩𝒩, (𝑝𝑝& − 𝑡𝑡&). 

Since transport infrastructures in affected areas might be partially damaged, each road may experience a given travel 
time variability. The travel time 𝑑𝑑+ of each edge 𝑙𝑙 of the network is represented by a random variable with mean 𝐸𝐸(𝑑𝑑?+) 
and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). We assume, in this paper for ease of exposition, that the travel times are independent, which 
might be not the case, especially in emergency situations. We should mention that, even though the following 
derivation is presented for the uncorrelated case, the approach proposed is general and can be applied also when the 
travel times are dependent. As a consequence, the arrival time of the server at node 𝑖𝑖 is itself a random variable 
(denoted with 𝑡̃𝑡&). We incorporate a risk measure in our problem, by combining the mean travel time with some 
measure of the dispersion. The standard deviation is a very intuitive measure of variability, which is also related to 
the value-at-risk objective (Beraldi et al., 2012,  2017a, 2018) and that can be used whenever the first and the second 
moments of the distribution function of the travel times are known (Beraldi et al., 2015). The mean-risk function 
associated to a set of paths 𝑅𝑅 under uncertain travel times is then  
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where the parameter 𝜆𝜆 ∈ (0,1) plays the role of the trade-off weight in mean-risk models (Lecluyse et al., 2009). By 
decreasing its value more weight is put on the non-linear part of the objective function, reflecting a risk-averse 
behavior of the decision maker. We note that 𝑡̃𝑡&-# depends on 𝑡̃𝑡& since we can rewrite 𝑡̃𝑡&-# = 𝑡̃𝑡& + 𝑑𝑑?(&,&-#). Hence, in 
evaluating the variance of the utility function we should also account for the covariance term between the arrival times 
at two generic nodes 𝑖𝑖, 𝑗𝑗 ∈ 𝒩𝒩!. Note that, even though the arrival times are dependent, it turns out that the total 
variance can be computed independently for each vehicle as the paths cover disjoint subsets of nodes.  In particular,  
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⎟
⎞
. 

The arrival time at each node is the sum of the travel times associated to the links 𝑙𝑙 ∈ 𝜋𝜋&! i.e. belonging to the subpath 
connecting the depot to the node 𝑖𝑖. Hence,  

 𝐸𝐸(𝑡̃𝑡&) = 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+V = ∑+∈3U

, 𝐸𝐸(𝑑𝑑?+)		and		𝑉𝑉𝑉𝑉𝑉𝑉(𝑡̃𝑡&) = 𝑉𝑉𝑉𝑉𝑉𝑉 [∑+∈3U
, 𝑑𝑑?+\ = ∑+∈3U

, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 
The covariance between 𝑡𝑡& and 𝑡𝑡1  can be be evaluated as follows:  

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡̃𝑡&, 𝑡̃𝑡1) = 𝐸𝐸[𝑡̃𝑡&𝑡̃𝑡1] − 𝐸𝐸[𝑡̃𝑡&]𝐸𝐸[𝑡̃𝑡1] = 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+ × ∑+4∈3^

, 𝑑𝑑?+4V − 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+V 𝐸𝐸 T∑+4∈3^

, 𝑑𝑑?+4V = 
 

= 𝐸𝐸 _ J
+∈3U

,∩3^
,

𝑑𝑑?+6 + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝑑𝑑?+𝑑𝑑?+4` − _J
+∈3U

,

𝐸𝐸(𝑑𝑑?+)` _J
+4∈3^

,

𝐸𝐸(𝑑𝑑?+4)` = 

 

= 𝐸𝐸 _ J
+∈3U

,∩3^
,

𝑑𝑑?+6` + 𝐸𝐸 _ J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝑑𝑑?+𝑑𝑑?+4` − J
+∈3U

,∩3^
,

𝐸𝐸6(𝑑𝑑?+) − J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+)I𝐸𝐸(𝑑𝑑?+4) = 

 
= J

+∈3U
,∩3^

,

𝐸𝐸(𝑑𝑑?+6) − J
+∈3U

,∩3^
,

𝐸𝐸6(𝑑𝑑?+) + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+𝑑𝑑?+4) − J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+)𝐸𝐸(𝑑𝑑?+4) = 

 
= J

+∈3U
,∩3^

,

[𝐸𝐸(𝑑𝑑?+6) − 𝐸𝐸6(𝑑𝑑?+)] + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

[𝐸𝐸(𝑑𝑑?+𝑑𝑑?+4) − I𝐸𝐸(𝑑𝑑?+)𝐸𝐸(𝑑𝑑?+4)] = J
+∈3U

,∩3^
,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) 

since the second term is the covariance between the links 𝑙𝑙 and 𝑙𝑙′ which is zero, for hypothesis.  
Proposition    
Let 𝑞𝑞 be the position of the link ℓ ∈ 𝜋𝜋! assuming value in the interval [1,… , 𝐿𝐿!]. For each vehicle, 𝑣𝑣 ∈ 𝑉𝑉  

  

VAR IJ
&∈𝒩𝒩,

𝑡̃𝑡&K =J
%,

8'#

(𝐿𝐿! − 𝑞𝑞 + 1)6𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]). 

 
Proof 		

VAR IJ
&∈𝒩𝒩,

𝑡̃𝑡&K = J
&∈𝒩𝒩,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑡̃𝑡&) + J
&∈𝒩𝒩,

J
1∈𝒩𝒩,,&21

𝐶𝐶𝐶𝐶𝐶𝐶(𝑡̃𝑡&, 𝑡̃𝑡1) = J
&∈𝒩𝒩,

J
+∈3U

,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) + J
&∈𝒩𝒩,

J
1∈𝒩𝒩,,&21

J
+∈3U

,∩3^
,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 

In the first term, we count 𝐿𝐿! − 𝑞𝑞 + 1 times the variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]) for each	𝑞𝑞 = 1, …𝐿𝐿!.  
As far as the second term is concerned, we observe that we count 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) a number of times equal to  

2 f
𝐿𝐿! − 𝑞𝑞 + 1

2
g =

(𝐿𝐿! − 𝑞𝑞 + 1)!
(𝐿𝐿! − 𝑞𝑞 + 1 − 2)! 2! 
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and presented a stochastic robust model, then solved by a genetic algorithm (Shahparvari and Abbasi, 2017). We 
should mention that evacuation is the process of transferring people from affected areas or local shelters to open spaces 
equipped with emergency facilities (such as supplies of electricity, water and sanitary facilities). Hence, evacuation 
problem can not be directly cast into our problem, which seeks instead routes from a central depot to different affected 
areas. 

It is interesting to note that, still many studies in disaster response context, even those we mentioned, promote cost-
based functions expressed as the total traveled time or the total unmet demands. It is worthwhile remarking that the 
biggest difference between routing in post-disaster and other kinds of routing problems is that the arrival time at 
victims’ locations, rather than the total travel time, is the most important objective function. This paper contributes to 
the relief routing literature by recognizing the customer-centric nature of the problem focusing on the arrival time of 
a fleet of vehicles to the areas affected by the disaster. Moreover, since in different locations a different number of 
disaster victims may be found, we consider a utility of servicing each location, as a proxy of the number of people in 
need. Hence, the affected areas are prioritized according to the utility level, that is proportional to the disaster severity 
and the population size. The goal is to find the optimal plan to service a subset of the affected areas, with a limited 
fleet of vehicles. We mention that Balcik (2017) very recently proposed an efficient tabu search heuristic for solving 
a problem for post-disaster needs assessment that involves site selection decisions in addition to the routing decisions. 
This paper is closely related to our approach, but it shows also significant differences. First of all, the objective 
function is different, since in (Balcik, 2017) the maximum coverage ratio is minimized. It is well-recognized that 
considering the arrival time as an objective function in routing problems poses severe computational issue, even in 
the deterministic case. Secondly, the mentioned paper does not consider uncertainty in travel times. Moreover, in this 
paper, we address risk-averse route decisions in the aftermath of a disaster, considering different risk attitudes of the 
decision maker. The remainder of the paper is organized as follows. 

In Section 2, we introduce the problem. The heuristic framework is presented in Section 3. Section 4 is devoted to 
the computational results obtained by implementing the proposed heuristic on a set of instances, and concluding 
remarks are discussed in Section 5. 

2.  Problem definition 

Let us consider an affected area and a pre-specified central depot (denoted with 0). Potential victims after a disaster 
are assumed to be concentrated into some demand points 𝑖𝑖 ∈ 𝒩𝒩. A limited fleet of 𝑉𝑉 vehicles with unlimited capacity 
is available to serve the locations. A feasible solution consists of a set of disjoint paths 𝜋𝜋! = [0, 𝑙𝑙[#], … , 𝑙𝑙[%,]], 𝑣𝑣 =
1, … , 𝑉𝑉 defined by an ordered set of links indexed by 𝑙𝑙 (here 𝐿𝐿! denotes the length of path 𝑣𝑣). The notation [⋅] denotes 
the position of the link in the path. We denote by 𝜋𝜋&! ⊆ 𝜋𝜋! the subpath connecting the depot to the node 𝑖𝑖 and by 𝒩𝒩!, 
the set of nodes visited by the vehicle 𝑣𝑣, which are the endpoints of the links 𝑙𝑙 ∈ 𝜋𝜋!. 

The objective is to identify a set of feasible vehicle paths (each visiting a different subset of nodes) that maximizes 
the utility of relief distribution amongst beneficiaries. Utility is expressed as a decreasing function of the arrival times 
and it assumes the maximum value (the absolute utility score 𝑝𝑝&) when the arrival time at node 𝑖𝑖 (𝑡𝑡&) is zero. If we 
express at each node 𝑖𝑖 the utility as 𝑝𝑝& − 𝑡𝑡&, the total utility function 𝒰𝒰ℱ associated to a given solution (set of vehicle 
paths) 𝑅𝑅 = [𝜋𝜋!]!'#(  is then  

 𝒰𝒰ℱ(𝑅𝑅) = ∑(
!'# ∑&∈𝒩𝒩, (𝑝𝑝& − 𝑡𝑡&). 

Since transport infrastructures in affected areas might be partially damaged, each road may experience a given travel 
time variability. The travel time 𝑑𝑑+ of each edge 𝑙𝑙 of the network is represented by a random variable with mean 𝐸𝐸(𝑑𝑑?+) 
and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). We assume, in this paper for ease of exposition, that the travel times are independent, which 
might be not the case, especially in emergency situations. We should mention that, even though the following 
derivation is presented for the uncorrelated case, the approach proposed is general and can be applied also when the 
travel times are dependent. As a consequence, the arrival time of the server at node 𝑖𝑖 is itself a random variable 
(denoted with 𝑡̃𝑡&). We incorporate a risk measure in our problem, by combining the mean travel time with some 
measure of the dispersion. The standard deviation is a very intuitive measure of variability, which is also related to 
the value-at-risk objective (Beraldi et al., 2012,  2017a, 2018) and that can be used whenever the first and the second 
moments of the distribution function of the travel times are known (Beraldi et al., 2015). The mean-risk function 
associated to a set of paths 𝑅𝑅 under uncertain travel times is then  
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 𝒰𝒰ℱ(𝑅𝑅) = 𝜆𝜆𝜆𝜆[∑(
		!'# ∑&∈𝒩𝒩, (𝑝𝑝& − 𝑡̃𝑡&)] + (1 − 𝜆𝜆)DVAR[∑(

		!'# ∑&∈𝒩𝒩, (𝑝𝑝& − 𝑡̃𝑡&)] 
where the parameter 𝜆𝜆 ∈ (0,1) plays the role of the trade-off weight in mean-risk models (Lecluyse et al., 2009). By 
decreasing its value more weight is put on the non-linear part of the objective function, reflecting a risk-averse 
behavior of the decision maker. We note that 𝑡̃𝑡&-# depends on 𝑡̃𝑡& since we can rewrite 𝑡̃𝑡&-# = 𝑡̃𝑡& + 𝑑𝑑?(&,&-#). Hence, in 
evaluating the variance of the utility function we should also account for the covariance term between the arrival times 
at two generic nodes 𝑖𝑖, 𝑗𝑗 ∈ 𝒩𝒩!. Note that, even though the arrival times are dependent, it turns out that the total 
variance can be computed independently for each vehicle as the paths cover disjoint subsets of nodes.  In particular,  

VAR IJ
(

!'#

J
&∈𝒩𝒩,

(𝑝𝑝& − 𝑡̃𝑡&)K = J
(

!'#

VAR IJ
&∈𝒩𝒩,

𝑡̃𝑡&K = J
(

!'#

⎝

⎜
⎛
J
&∈𝒩𝒩,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑡̃𝑡&) + J
&∈𝒩𝒩,

J
1∈𝒩𝒩,

&21

𝐶𝐶𝐶𝐶𝐶𝐶(𝑡̃𝑡&, 𝑡̃𝑡1)

⎠

⎟
⎞
. 

The arrival time at each node is the sum of the travel times associated to the links 𝑙𝑙 ∈ 𝜋𝜋&! i.e. belonging to the subpath 
connecting the depot to the node 𝑖𝑖. Hence,  

 𝐸𝐸(𝑡̃𝑡&) = 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+V = ∑+∈3U

, 𝐸𝐸(𝑑𝑑?+)		and		𝑉𝑉𝑉𝑉𝑉𝑉(𝑡̃𝑡&) = 𝑉𝑉𝑉𝑉𝑉𝑉 [∑+∈3U
, 𝑑𝑑?+\ = ∑+∈3U

, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 
The covariance between 𝑡𝑡& and 𝑡𝑡1  can be be evaluated as follows:  

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡̃𝑡&, 𝑡̃𝑡1) = 𝐸𝐸[𝑡̃𝑡&𝑡̃𝑡1] − 𝐸𝐸[𝑡̃𝑡&]𝐸𝐸[𝑡̃𝑡1] = 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+ × ∑+4∈3^

, 𝑑𝑑?+4V − 𝐸𝐸 T∑+∈3U
, 𝑑𝑑?+V 𝐸𝐸 T∑+4∈3^

, 𝑑𝑑?+4V = 
 

= 𝐸𝐸 _ J
+∈3U

,∩3^
,

𝑑𝑑?+6 + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝑑𝑑?+𝑑𝑑?+4` − _J
+∈3U

,

𝐸𝐸(𝑑𝑑?+)` _J
+4∈3^

,

𝐸𝐸(𝑑𝑑?+4)` = 

 

= 𝐸𝐸 _ J
+∈3U

,∩3^
,

𝑑𝑑?+6` + 𝐸𝐸 _ J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝑑𝑑?+𝑑𝑑?+4` − J
+∈3U

,∩3^
,

𝐸𝐸6(𝑑𝑑?+) − J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+)I𝐸𝐸(𝑑𝑑?+4) = 

 
= J

+∈3U
,∩3^

,

𝐸𝐸(𝑑𝑑?+6) − J
+∈3U

,∩3^
,

𝐸𝐸6(𝑑𝑑?+) + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+𝑑𝑑?+4) − J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

𝐸𝐸(𝑑𝑑?+)𝐸𝐸(𝑑𝑑?+4) = 

 
= J

+∈3U
,∩3^

,

[𝐸𝐸(𝑑𝑑?+6) − 𝐸𝐸6(𝑑𝑑?+)] + J
+∈3U

,,∉3^
,

J
+4∈3^

,,∉3U
,

[𝐸𝐸(𝑑𝑑?+𝑑𝑑?+4) − I𝐸𝐸(𝑑𝑑?+)𝐸𝐸(𝑑𝑑?+4)] = J
+∈3U

,∩3^
,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) 

since the second term is the covariance between the links 𝑙𝑙 and 𝑙𝑙′ which is zero, for hypothesis.  
Proposition    
Let 𝑞𝑞 be the position of the link ℓ ∈ 𝜋𝜋! assuming value in the interval [1,… , 𝐿𝐿!]. For each vehicle, 𝑣𝑣 ∈ 𝑉𝑉  

  

VAR IJ
&∈𝒩𝒩,

𝑡̃𝑡&K = J
%,

8'#

(𝐿𝐿! − 𝑞𝑞 + 1)6𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]). 

 
Proof 		

VAR IJ
&∈𝒩𝒩,

𝑡̃𝑡&K = J
&∈𝒩𝒩,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑡̃𝑡&) + J
&∈𝒩𝒩,

J
1∈𝒩𝒩,,&21

𝐶𝐶𝐶𝐶𝐶𝐶(𝑡̃𝑡&, 𝑡̃𝑡1) = J
&∈𝒩𝒩,

J
+∈3U

,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) + J
&∈𝒩𝒩,

J
1∈𝒩𝒩,,&21

J
+∈3U

,∩3^
,

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 

In the first term, we count 𝐿𝐿! − 𝑞𝑞 + 1 times the variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]) for each	𝑞𝑞 = 1, …𝐿𝐿!.  
As far as the second term is concerned, we observe that we count 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+) a number of times equal to  

2 f
𝐿𝐿! − 𝑞𝑞 + 1

2
g =

(𝐿𝐿! − 𝑞𝑞 + 1)!
(𝐿𝐿! − 𝑞𝑞 + 1 − 2)! 2! 
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since it is considered for each non ordered pair of nodes (𝑖𝑖, 𝑗𝑗). But  
(𝐿𝐿! − 𝑞𝑞 + 1)!

(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!2! =
(𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞 + 1 − 1)(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!

(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!2! =
(𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞)

2  

Then  
 VAR[∑&∈𝒩𝒩, 𝑡̃𝑡&] = ∑%,

8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]) T(𝐿𝐿! − 𝑞𝑞 + 1) + 2 (%,98-#)(%,98)
6

V = 
 

 = ∑%,
8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8])[(𝐿𝐿! − 𝑞𝑞 + 1) + (𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞)] = 

 
 = ∑%,

8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8])[𝐿𝐿! − 𝑞𝑞 + 1](1 + (𝐿𝐿! − 𝑞𝑞))] = ∑%,
8'# (𝐿𝐿! − 𝑞𝑞 + 1)6𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 

  
In the Appendix A, we report a mathematical formulation based on position-dependent variables.  

3.  The iterated greedy heuristic 

   The iterated greedy method alternates between constructive and destructive phases. The greedy constructive method 
builds a solution 𝑅𝑅:;<< involving a subset 𝑆𝑆 of the node set 𝒩𝒩. Additionally, an adaptive local search phase is applied 
to 𝑅𝑅:;<< and a new solution 𝑅𝑅j is obtained. Then, during the destructive phase, a percentage of the nodes (10%|𝑁𝑁|) 
are removed randomly from the current solution and put in temporary blacklist 𝑇𝑇𝑇𝑇𝑇𝑇. The list is emptied at the end of 
the successive iteration. Next, the constructive phase is applied on the set set 𝑆𝑆\𝑇𝑇𝑇𝑇𝑇𝑇 again to rebuild the solution. The 
method iterates this pattern until a given number of iteration 𝐼𝐼𝑡𝑡=>? is reached. The best solution 𝑅𝑅 ∗ and the best value 
of the 𝒰𝒰ℱ(𝑅𝑅 ∗) are stored and returned at the end of the algorithm. The pseudocode of the iterated greedy heuristic 
proposed to solve the problem is presented in Algorithm 1. 

  In the following, we discuss the main steps of the proposed heuristic in more detail. During the constructive phase, 
the Construction Procedure is called to build an initial solution. Nodes 𝒊𝒊 ∈ 𝑺𝑺 are sorted in ascending order with 
respect to the following criterion 

𝝀𝝀𝑬𝑬w𝒅𝒅y(𝟎𝟎,𝒊𝒊)z + (𝟏𝟏 − 𝝀𝝀)|𝑽𝑽𝑽𝑽𝑽𝑽w𝒅𝒅y(𝟎𝟎,𝒊𝒊)z

𝝀𝝀	𝒑𝒑𝒊𝒊
 

which accounts for both the distance from the depot and the utility. One seed node is then inserted into each vehicle 
route, following a greedy ordering criterion (Guerriero et al., 2013). Then, each unvisited node is inserted one at a 
time, in the best position in the best route (on the basis of the increment of the utility value). There are many different 
alternatives that can be considered for the local search. Among them, we opted for a self-adaptive mechanism 
implemented in the Adaptive local search procedure. The idea is to randomly select one neighborhood in the set of 
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neighborhoods {𝟏𝟏, … ,𝑲𝑲}, accordingly to the associated selection probability. The set of neighborhoods {𝟏𝟏,… , 𝑲𝑲} is 
the following;    

  1.  Intra-route exchange operation: exchanges the position of a pair of non-adjacent nodes over a path.  

  2.  2 −opt operation: deletes two non-adjacent edges along the path and add two other edges such that the direction 
of middle unchanged edges in the new path are reversed.  

   3.  Or−opt operation: deletes any triple of non-adjacent edges within the path and reconnects them by adding three 
new edges such that the order of middle unchanged edges over the path is preserved.  

  4.  Inter-route exchange operation: exchanges a pair of nodes belonging to two different paths.  

   5.  Delete-insert operation: deletes a node from a path and adds it to the other one.  

Within the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢 period, a roulette wheel mechanism is applied to determine which neighborhood to explore. 
The selection probability is the same for all the neighborhoods and set to 1/𝐾𝐾. After the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢 period, the 
neighborhood selection is performed using the self-adaptive mechanism considering the success and the failure of the 
neighborhoods in the past. In particular, the selection probability of the neighborhoods is updated every 𝑁𝑁> iterations 
using the following formula 𝑝𝑝B =

C̅‹
∑Œ‹çŽ C̅‹

 where 𝑠̅𝑠B =
C‹

C‹-F‹
+ 𝜀𝜀.  

Here, 𝑠𝑠B and 𝑓𝑓B  count the number of times the neighborhood 𝑘𝑘 was successful or unsuccessful, respectively, and 𝜀𝜀 is 
a small value added to provide all the neighborhoods (even the unsuccessful ones) with a chance. When the local 
search is not able to improve the solution within a given number of iterations it is stopped and the destruction phase 
is applied again. The proposed Destroy procedure generates a subset of randomly selected nodes in the current 
solution to be banned from being present in the solution of next iteration. This kind of diversification mechanism 
allows us to extensively search the solution space in order to find near-optimal solutions. A scheme of the local search 
heuristic is shown in Algorithm 2.  

4. Computational results 

This section shows the performance of the proposed heuristic on different test cases. The code was implemented 
in C++ and the experiments performed on an Intel CoreTM i7 2.90 GHz, with 8.0 GB of RAM memory, running 
under Windows operating system. In order to have an idea of the quality of the solution obtained, the corresponding 
mathematical model (reported in Appendix A) was solved using SCIP.  We have tested the heuristic on two sets of 
instances, including the 𝑃𝑃 −instances and the 𝐸𝐸 −instances used as benchmark in routing problems (Nucamendi-
Guillén et al., 2016). The number of customers (vehicles) in the data sets vary from 15 − 75 (2 − 15) and 21 − 75 
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since it is considered for each non ordered pair of nodes (𝑖𝑖, 𝑗𝑗). But  
(𝐿𝐿! − 𝑞𝑞 + 1)!

(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!2! =
(𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞 + 1 − 1)(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!

(𝐿𝐿! − 𝑞𝑞 + 1 − 2)!2! =
(𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞)

2  

Then  
 VAR[∑&∈𝒩𝒩, 𝑡̃𝑡&] = ∑%,

8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8]) T(𝐿𝐿! − 𝑞𝑞 + 1) + 2 (%,98-#)(%,98)
6

V = 
 

 = ∑%,
8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8])[(𝐿𝐿! − 𝑞𝑞 + 1) + (𝐿𝐿! − 𝑞𝑞 + 1)(𝐿𝐿! − 𝑞𝑞)] = 

 
 = ∑%,

8'# 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?[8])[𝐿𝐿! − 𝑞𝑞 + 1](1 + (𝐿𝐿! − 𝑞𝑞))] = ∑%,
8'# (𝐿𝐿! − 𝑞𝑞 + 1)6𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?+). 

  
In the Appendix A, we report a mathematical formulation based on position-dependent variables.  

3.  The iterated greedy heuristic 

   The iterated greedy method alternates between constructive and destructive phases. The greedy constructive method 
builds a solution 𝑅𝑅:;<< involving a subset 𝑆𝑆 of the node set 𝒩𝒩. Additionally, an adaptive local search phase is applied 
to 𝑅𝑅:;<< and a new solution 𝑅𝑅j is obtained. Then, during the destructive phase, a percentage of the nodes (10%|𝑁𝑁|) 
are removed randomly from the current solution and put in temporary blacklist 𝑇𝑇𝑇𝑇𝑇𝑇. The list is emptied at the end of 
the successive iteration. Next, the constructive phase is applied on the set set 𝑆𝑆\𝑇𝑇𝑇𝑇𝑇𝑇 again to rebuild the solution. The 
method iterates this pattern until a given number of iteration 𝐼𝐼𝑡𝑡=>? is reached. The best solution 𝑅𝑅 ∗ and the best value 
of the 𝒰𝒰ℱ(𝑅𝑅 ∗) are stored and returned at the end of the algorithm. The pseudocode of the iterated greedy heuristic 
proposed to solve the problem is presented in Algorithm 1. 

  In the following, we discuss the main steps of the proposed heuristic in more detail. During the constructive phase, 
the Construction Procedure is called to build an initial solution. Nodes 𝒊𝒊 ∈ 𝑺𝑺 are sorted in ascending order with 
respect to the following criterion 

𝝀𝝀𝑬𝑬w𝒅𝒅y(𝟎𝟎,𝒊𝒊)z + (𝟏𝟏 − 𝝀𝝀)|𝑽𝑽𝑽𝑽𝑽𝑽w𝒅𝒅y(𝟎𝟎,𝒊𝒊)z

𝝀𝝀	𝒑𝒑𝒊𝒊
 

which accounts for both the distance from the depot and the utility. One seed node is then inserted into each vehicle 
route, following a greedy ordering criterion (Guerriero et al., 2013). Then, each unvisited node is inserted one at a 
time, in the best position in the best route (on the basis of the increment of the utility value). There are many different 
alternatives that can be considered for the local search. Among them, we opted for a self-adaptive mechanism 
implemented in the Adaptive local search procedure. The idea is to randomly select one neighborhood in the set of 
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neighborhoods {𝟏𝟏, … ,𝑲𝑲}, accordingly to the associated selection probability. The set of neighborhoods {𝟏𝟏,… , 𝑲𝑲} is 
the following;    

  1.  Intra-route exchange operation: exchanges the position of a pair of non-adjacent nodes over a path.  

  2.  2 −opt operation: deletes two non-adjacent edges along the path and add two other edges such that the direction 
of middle unchanged edges in the new path are reversed.  

   3.  Or−opt operation: deletes any triple of non-adjacent edges within the path and reconnects them by adding three 
new edges such that the order of middle unchanged edges over the path is preserved.  

  4.  Inter-route exchange operation: exchanges a pair of nodes belonging to two different paths.  

   5.  Delete-insert operation: deletes a node from a path and adds it to the other one.  

Within the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢 period, a roulette wheel mechanism is applied to determine which neighborhood to explore. 
The selection probability is the same for all the neighborhoods and set to 1/𝐾𝐾. After the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢 period, the 
neighborhood selection is performed using the self-adaptive mechanism considering the success and the failure of the 
neighborhoods in the past. In particular, the selection probability of the neighborhoods is updated every 𝑁𝑁> iterations 
using the following formula 𝑝𝑝B =

C̅‹
∑Œ‹çŽ C̅‹

 where 𝑠̅𝑠B =
C‹

C‹-F‹
+ 𝜀𝜀.  

Here, 𝑠𝑠B and 𝑓𝑓B  count the number of times the neighborhood 𝑘𝑘 was successful or unsuccessful, respectively, and 𝜀𝜀 is 
a small value added to provide all the neighborhoods (even the unsuccessful ones) with a chance. When the local 
search is not able to improve the solution within a given number of iterations it is stopped and the destruction phase 
is applied again. The proposed Destroy procedure generates a subset of randomly selected nodes in the current 
solution to be banned from being present in the solution of next iteration. This kind of diversification mechanism 
allows us to extensively search the solution space in order to find near-optimal solutions. A scheme of the local search 
heuristic is shown in Algorithm 2.  

4. Computational results 

This section shows the performance of the proposed heuristic on different test cases. The code was implemented 
in C++ and the experiments performed on an Intel CoreTM i7 2.90 GHz, with 8.0 GB of RAM memory, running 
under Windows operating system. In order to have an idea of the quality of the solution obtained, the corresponding 
mathematical model (reported in Appendix A) was solved using SCIP.  We have tested the heuristic on two sets of 
instances, including the 𝑃𝑃 −instances and the 𝐸𝐸 −instances used as benchmark in routing problems (Nucamendi-
Guillén et al., 2016). The number of customers (vehicles) in the data sets vary from 15 − 75 (2 − 15) and 21 − 75 
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(3 − 14), respectively. The expected travel time over each link (𝑖𝑖, 𝑗𝑗) is set to the Euclidean distance between node 𝑖𝑖 
and 𝑗𝑗 and its variance is computed as ™(𝑟𝑟𝑟𝑟(𝑑𝑑?(&,1)))6š, where 𝑟𝑟 is a random number uniformly distributed in the interval 
[0.1,0.32). In order to randomly generate utility values, we have used the following formula 𝑝𝑝&~𝑈𝑈((𝑙𝑙, 𝑢𝑢]) where 𝑙𝑙 =

min&'#G Ÿ𝐸𝐸(𝑑𝑑?(H,&)) − 𝛼𝛼|𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?(H,&))¡  and 𝑢𝑢 = G
6
max&'#G Ÿ𝐸𝐸(𝑑𝑑?(H,&)) + 𝛽𝛽|𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?(H,&))¡ . Here 𝛼𝛼, 𝛽𝛽  are deviation 

parameters within interval [0,1] which are determined by the decision maker. 
The number of iterations 𝐼𝐼𝑡𝑡=>? and 𝑇𝑇 have been set to 20 and 1200, respectively. The 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

has been set to 100 iterations and the local search is stopped after experiencing 20 inner iterations without any 
improvement. Also, the trade-off parameter 𝜆𝜆 is taken from the set {0.1, 0.5, 0.9} and the probabilities are updated 
every 𝑁𝑁> = 10 iterations. Tables 1 and 2 summarize the obtained results. 

    
Table  1: Results for the 𝑃𝑃 −Instances 

   
 λ = 0.1 λ = 0.5 λ = 0.9  

Instance |N| 
|V| 

Iterated greedy SCIP Iterated greedy SCIP Iterated greedy SCIP 

   ∆Time ∆Gap Opt ∆Time ∆Gap Opt ∆Time ∆Gap Opt 

Pn16k8 15 5 0.56 0.09 0.00 1.01 0 0.00 1.02 0.12 0.00 
Pn19k2 18 2 0.05 0.06 0.00 1.18 0 0.00 1.19 0 0.00 
Pn20k2 19 2 0.05 1.13 0.00 0.75 2.61 0.00 1.43 0 0.00 
Pn21k2 20 2 0.03 3.65 0.00 0.86 0.76 0.00 1.12 0.71 0.00 
Pn22k2 21 2 0.79 3.09 0.00 0.81 0.27 0.00 1.43 2.01 0.00 
Pn22k8 21 8 0.35 0.84 0.00 0.46 0 0.00 0.56 0.33 0.00 
Pn23k8 22 8 0.74 1.25 0.00 0.92 0.33 0.00 1.16 0.15 0.00 
Pn40k5 39 5 0.03 0.39 7.87 0.15 0.53 0.00 0.84 1.17 0.00 
Pn44k5 44 5 0.06 1.27 5.35 0.06 1.28 0.56 0.59 1.17 0.00 
Pn50k7 49 7 0.07 1.78 10.19 0.07 1.27 0.75 0.81 0.86 0.00 
Pn50k8 49 8 0.06 1.04 9.49 0.40 0.93 0.00 1.13 1.32 0.00 

Pn50k10 49 10 0.26 1.41 0.00 0.06 0.4 0.14 3.01 0.43 0.00 
Pn51k10 50 10 0.06 0.75 2.15 1.91 0.48 0.00 1.66 0.32 0.00 

Pn55k7 54 7 0.09 4.06 9.36 0.09 1.87 0.66 0.81 2.77 0.00 
Pn55k8 54 8 0.08 2.94 10.03 0.09 2.17 0.53 1.02 1.62 0.00 
Pn55k10 54 10 1.15 3.81 0.00 0.97 2.82 0.00 2.18 2 0.00 
Pn55k15 54 15 0.02 2.82 7.82 1.32 2.47 0.00 1.25 2.15 0.00 
Pn60k10 59 10 0.58 0.92 0.00 0.11 0.72 0.42 2.48 0.8 0.00 
Pn65k10 64 10 0.13 0.74 8.02 0.15 1.94 0.45 0.65 1.34 0.00 
Pn70k10 69 10 0.18 0.62 7.58 0.20 1.32 0.46 0.95 1.21 0.00 

Pn76k4 75 4 0.60 − ∞ 0.59 -56.23 58.49 0.58 -107.59 110.28 
Pn76k5 75 5 0.51 − ∞ 0.54 − ∞ 0.54  − ∞ 

average 0.29 1.63 4.343 0.58 -1.62 2.97 1.20 -4.15 5.25 
 
The performance of the heuristic has been evaluated by comparing the solution with the one obtained by SCIP within 
a time limit of one hour. Columns 1, 2, and 3 refer to the name of instances, the number of nodes and the number of 
vehicles, respectively. Then, for each value of 𝜆𝜆 the speed up (in percentage) in the solution time (evaluated as 
Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = IJK¨©ª

IJK«¬­®
∗ 100) and the percentage gap of the heuristic solution with respect to the solution provided by 

SCIP (evaluated as Δ𝐺𝐺𝐺𝐺𝐺𝐺 = LM«¬­®9LM¨©ª
LM«¬­®

∗ 100) are reported together with the percentage optimality gap (𝑂𝑂𝑂𝑂𝑂𝑂) of 
the SCIP solution. By looking at the results in Tables 1-2, we observe that the heuristic provides quite satisfying 
solutions with the average gap limited to 1.63% for the 𝑃𝑃 −instances. Moreover, we observe that for the most 
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challenging instances of 𝑃𝑃𝑃𝑃76𝑘𝑘4 and 𝑃𝑃𝑃𝑃76𝑘𝑘5, either SCIP could not provide any feasible solution (verified by 𝑂𝑂𝑂𝑂𝑂𝑂 
of ∞) or provided low quality feasible solutions compared with the heuristic solutions (verified by the negative Δ𝐺𝐺𝐺𝐺𝐺𝐺 
values). In terms of solution time, the average speed-up (Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is around 0.29% for the most complex case with 
𝜆𝜆 = 0.1. The decrease in the value of 𝜆𝜆, reflects a risk-averse behavior of the decision maker and exacerbate the 
complexity of the problem, since more weight is put on the non-linear part of the objective function. In the case of the 
𝐸𝐸 −instances, the average gap is limited to 1.16% and SCIP was not able to find any feasible solution for the most 
challenging instance 𝐸𝐸𝐸𝐸76𝑘𝑘7  with 𝜆𝜆 = 0.1 , whereas for five out of eight remaining instances the heuristic 
outperformed SCIP in terms of solution quality (see column 5 of Table 2). In what follows we also discuss about other 
findings which are not directly reported in the Tables. For instance, the proposed heuristic provides satisfying solutions 
with an average gap (evaluated over all the 𝜆𝜆 values) limited to 0.83 for the 𝐸𝐸 −instances and to -1.43% for the 
𝑃𝑃 −instances, respectively. In addition, the proposed heuristic outperforms SCIP in terms of solution time, which is 
less than 20 seconds and on average around 4 seconds, for the 𝑃𝑃 −Instances. The average solution time for the 
𝐸𝐸 −instances is around 24 seconds with a maximum value of less than 59 seconds for the instance 𝐸𝐸𝐸𝐸76𝑘𝑘7.   

 
Table  2: Results for the 𝐸𝐸 −Instances 

  λ = 0.1 λ = 0.5 λ = 0.9 
Instance |N| |V| Iterated greedy SCIP Iterated greedy SCIP Iterated greedy SCIP 
   ∆Time ∆Gap Opt ∆Time ∆Gap Opt ∆Time ∆Gap Opt 

En22k4 21 4 2 4.03 0.00 4.44 0.45 0.00 4.32 2.49 0.00 
En23k3 22 3 3.93 6.04 0.00 5.72 2.84 0.00 4.43 3.76 0.00 
En30k3 29 3 0.07 -1.6 17.45 0.16 0.57 0.00 2.42 1.49 0.00 
En33k4 32 4 0.1 -0.63 14.04 0.12 0.63 0.88 3.4 0.84 0.00 
En51k5 50 5 0.38 -0.5 6.61 0.41 0.51 0.56 2.88 0.5 0.00 
En76k7 75 7 1.63 − ∞ 1.6 0 1.11 1.61 0.51 0.38 
En76k8 75 8 1.46 -1.77 5.42 1.47 0 0.47 1.47 0.19 0.31 

En76k10 75 10 1.31 -0.13 2.56 1.28 0.34 0.26 3.08 0.33 0.00 
En76k14 75 14 0.97 0.21 1.64 0.99 0.07 0.18 1.05 0.31 0.00 
average 1.32 0.71 5.96 1.8 0.6 0.38 2.74 1.16 0.08 

5. Conclusions 

This paper introduces an important routing problem in post-disaster management, in which uncertainty affects 
travel times. Moreover, it considers the risk in a routing context, where the arrival time variability may have a severe 
impact on the benefits of a post-disaster logistic activity. 

To solve the problem, we have developed an iterated greedy heuristic, easy to implement and very effective. The 
results show that our heuristic is able to provide good solutions very quickly. Our heuristic is flexible, as it is applicable 
to various risk measures. As a future work, we can consider correlated travel times. This situation can be relevant, 
especially in disaster management applications. Second, advanced heuristics that use more destroy operators in the 
spirit of adaptive large neighborhood search heuristics may be devised. 

Appendix A. Mathematical formulation 

Sets and input parameters: 
𝒩𝒩     Set of affected areas indexed by 𝑖𝑖, 𝑗𝑗  
𝒩𝒩H     𝒩𝒩 ∪ {0}  

{1, … , 𝑉𝑉}     Set of paths indexed by 𝑣𝑣 
𝑔𝑔    possible path length 𝑔𝑔 ∈ {1,… , |𝒩𝒩| − 𝑉𝑉 + 1}  

{1, … , 𝑔𝑔}    Set of positions of traversed links indexed by 𝑞𝑞  
𝑝𝑝&     The absolute utility score assigned to affected area 𝑖𝑖 

𝑑𝑑?(&,1)     Travel time over link (𝑖𝑖, 𝑗𝑗) 
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(3 − 14), respectively. The expected travel time over each link (𝑖𝑖, 𝑗𝑗) is set to the Euclidean distance between node 𝑖𝑖 
and 𝑗𝑗 and its variance is computed as ™(𝑟𝑟𝑟𝑟(𝑑𝑑?(&,1)))6š, where 𝑟𝑟 is a random number uniformly distributed in the interval 
[0.1,0.32). In order to randomly generate utility values, we have used the following formula 𝑝𝑝&~𝑈𝑈((𝑙𝑙, 𝑢𝑢]) where 𝑙𝑙 =

min&'#G Ÿ𝐸𝐸(𝑑𝑑?(H,&)) − 𝛼𝛼|𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?(H,&))¡  and 𝑢𝑢 = G
6
max&'#G Ÿ𝐸𝐸(𝑑𝑑?(H,&)) + 𝛽𝛽|𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑?(H,&))¡ . Here 𝛼𝛼, 𝛽𝛽  are deviation 

parameters within interval [0,1] which are determined by the decision maker. 
The number of iterations 𝐼𝐼𝑡𝑡=>? and 𝑇𝑇 have been set to 20 and 1200, respectively. The 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑢𝑢𝑢𝑢	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

has been set to 100 iterations and the local search is stopped after experiencing 20 inner iterations without any 
improvement. Also, the trade-off parameter 𝜆𝜆 is taken from the set {0.1, 0.5, 0.9} and the probabilities are updated 
every 𝑁𝑁> = 10 iterations. Tables 1 and 2 summarize the obtained results. 

    
Table  1: Results for the 𝑃𝑃 −Instances 

   
 λ = 0.1 λ = 0.5 λ = 0.9  

Instance |N| 
|V| 

Iterated greedy SCIP Iterated greedy SCIP Iterated greedy SCIP 

   ∆Time ∆Gap Opt ∆Time ∆Gap Opt ∆Time ∆Gap Opt 

Pn16k8 15 5 0.56 0.09 0.00 1.01 0 0.00 1.02 0.12 0.00 
Pn19k2 18 2 0.05 0.06 0.00 1.18 0 0.00 1.19 0 0.00 
Pn20k2 19 2 0.05 1.13 0.00 0.75 2.61 0.00 1.43 0 0.00 
Pn21k2 20 2 0.03 3.65 0.00 0.86 0.76 0.00 1.12 0.71 0.00 
Pn22k2 21 2 0.79 3.09 0.00 0.81 0.27 0.00 1.43 2.01 0.00 
Pn22k8 21 8 0.35 0.84 0.00 0.46 0 0.00 0.56 0.33 0.00 
Pn23k8 22 8 0.74 1.25 0.00 0.92 0.33 0.00 1.16 0.15 0.00 
Pn40k5 39 5 0.03 0.39 7.87 0.15 0.53 0.00 0.84 1.17 0.00 
Pn44k5 44 5 0.06 1.27 5.35 0.06 1.28 0.56 0.59 1.17 0.00 
Pn50k7 49 7 0.07 1.78 10.19 0.07 1.27 0.75 0.81 0.86 0.00 
Pn50k8 49 8 0.06 1.04 9.49 0.40 0.93 0.00 1.13 1.32 0.00 

Pn50k10 49 10 0.26 1.41 0.00 0.06 0.4 0.14 3.01 0.43 0.00 
Pn51k10 50 10 0.06 0.75 2.15 1.91 0.48 0.00 1.66 0.32 0.00 

Pn55k7 54 7 0.09 4.06 9.36 0.09 1.87 0.66 0.81 2.77 0.00 
Pn55k8 54 8 0.08 2.94 10.03 0.09 2.17 0.53 1.02 1.62 0.00 
Pn55k10 54 10 1.15 3.81 0.00 0.97 2.82 0.00 2.18 2 0.00 
Pn55k15 54 15 0.02 2.82 7.82 1.32 2.47 0.00 1.25 2.15 0.00 
Pn60k10 59 10 0.58 0.92 0.00 0.11 0.72 0.42 2.48 0.8 0.00 
Pn65k10 64 10 0.13 0.74 8.02 0.15 1.94 0.45 0.65 1.34 0.00 
Pn70k10 69 10 0.18 0.62 7.58 0.20 1.32 0.46 0.95 1.21 0.00 

Pn76k4 75 4 0.60 − ∞ 0.59 -56.23 58.49 0.58 -107.59 110.28 
Pn76k5 75 5 0.51 − ∞ 0.54 − ∞ 0.54  − ∞ 

average 0.29 1.63 4.343 0.58 -1.62 2.97 1.20 -4.15 5.25 
 
The performance of the heuristic has been evaluated by comparing the solution with the one obtained by SCIP within 
a time limit of one hour. Columns 1, 2, and 3 refer to the name of instances, the number of nodes and the number of 
vehicles, respectively. Then, for each value of 𝜆𝜆 the speed up (in percentage) in the solution time (evaluated as 
Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = IJK¨©ª

IJK«¬­®
∗ 100) and the percentage gap of the heuristic solution with respect to the solution provided by 

SCIP (evaluated as Δ𝐺𝐺𝐺𝐺𝐺𝐺 = LM«¬­®9LM¨©ª
LM«¬­®

∗ 100) are reported together with the percentage optimality gap (𝑂𝑂𝑂𝑂𝑂𝑂) of 
the SCIP solution. By looking at the results in Tables 1-2, we observe that the heuristic provides quite satisfying 
solutions with the average gap limited to 1.63% for the 𝑃𝑃 −instances. Moreover, we observe that for the most 
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challenging instances of 𝑃𝑃𝑃𝑃76𝑘𝑘4 and 𝑃𝑃𝑃𝑃76𝑘𝑘5, either SCIP could not provide any feasible solution (verified by 𝑂𝑂𝑂𝑂𝑂𝑂 
of ∞) or provided low quality feasible solutions compared with the heuristic solutions (verified by the negative Δ𝐺𝐺𝐺𝐺𝐺𝐺 
values). In terms of solution time, the average speed-up (Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is around 0.29% for the most complex case with 
𝜆𝜆 = 0.1. The decrease in the value of 𝜆𝜆, reflects a risk-averse behavior of the decision maker and exacerbate the 
complexity of the problem, since more weight is put on the non-linear part of the objective function. In the case of the 
𝐸𝐸 −instances, the average gap is limited to 1.16% and SCIP was not able to find any feasible solution for the most 
challenging instance 𝐸𝐸𝐸𝐸76𝑘𝑘7  with 𝜆𝜆 = 0.1 , whereas for five out of eight remaining instances the heuristic 
outperformed SCIP in terms of solution quality (see column 5 of Table 2). In what follows we also discuss about other 
findings which are not directly reported in the Tables. For instance, the proposed heuristic provides satisfying solutions 
with an average gap (evaluated over all the 𝜆𝜆 values) limited to 0.83 for the 𝐸𝐸 −instances and to -1.43% for the 
𝑃𝑃 −instances, respectively. In addition, the proposed heuristic outperforms SCIP in terms of solution time, which is 
less than 20 seconds and on average around 4 seconds, for the 𝑃𝑃 −Instances. The average solution time for the 
𝐸𝐸 −instances is around 24 seconds with a maximum value of less than 59 seconds for the instance 𝐸𝐸𝐸𝐸76𝑘𝑘7.   

 
Table  2: Results for the 𝐸𝐸 −Instances 

  λ = 0.1 λ = 0.5 λ = 0.9 
Instance |N| |V| Iterated greedy SCIP Iterated greedy SCIP Iterated greedy SCIP 
   ∆Time ∆Gap Opt ∆Time ∆Gap Opt ∆Time ∆Gap Opt 

En22k4 21 4 2 4.03 0.00 4.44 0.45 0.00 4.32 2.49 0.00 
En23k3 22 3 3.93 6.04 0.00 5.72 2.84 0.00 4.43 3.76 0.00 
En30k3 29 3 0.07 -1.6 17.45 0.16 0.57 0.00 2.42 1.49 0.00 
En33k4 32 4 0.1 -0.63 14.04 0.12 0.63 0.88 3.4 0.84 0.00 
En51k5 50 5 0.38 -0.5 6.61 0.41 0.51 0.56 2.88 0.5 0.00 
En76k7 75 7 1.63 − ∞ 1.6 0 1.11 1.61 0.51 0.38 
En76k8 75 8 1.46 -1.77 5.42 1.47 0 0.47 1.47 0.19 0.31 

En76k10 75 10 1.31 -0.13 2.56 1.28 0.34 0.26 3.08 0.33 0.00 
En76k14 75 14 0.97 0.21 1.64 0.99 0.07 0.18 1.05 0.31 0.00 
average 1.32 0.71 5.96 1.8 0.6 0.38 2.74 1.16 0.08 

5. Conclusions 

This paper introduces an important routing problem in post-disaster management, in which uncertainty affects 
travel times. Moreover, it considers the risk in a routing context, where the arrival time variability may have a severe 
impact on the benefits of a post-disaster logistic activity. 

To solve the problem, we have developed an iterated greedy heuristic, easy to implement and very effective. The 
results show that our heuristic is able to provide good solutions very quickly. Our heuristic is flexible, as it is applicable 
to various risk measures. As a future work, we can consider correlated travel times. This situation can be relevant, 
especially in disaster management applications. Second, advanced heuristics that use more destroy operators in the 
spirit of adaptive large neighborhood search heuristics may be devised. 

Appendix A. Mathematical formulation 

Sets and input parameters: 
𝒩𝒩     Set of affected areas indexed by 𝑖𝑖, 𝑗𝑗  
𝒩𝒩H     𝒩𝒩 ∪ {0}  

{1, … , 𝑉𝑉}     Set of paths indexed by 𝑣𝑣 
𝑔𝑔    possible path length 𝑔𝑔 ∈ {1,… , |𝒩𝒩| − 𝑉𝑉 + 1}  

{1, … , 𝑔𝑔}    Set of positions of traversed links indexed by 𝑞𝑞  
𝑝𝑝&     The absolute utility score assigned to affected area 𝑖𝑖 

𝑑𝑑?(&,1)     Travel time over link (𝑖𝑖, 𝑗𝑗) 



312	 M.E. Bruni  et al. / Transportation Research Procedia 30 (2018) 304–313
 Author name / Transportation Research Procedia 00 (2018) 000–000  9 

 

Decision Variables: 

𝑥𝑥&,1,8
N,! = ·10 If  (i,j) is the qth link over the path of the vehicle  𝑣𝑣 with length 𝑞𝑞 

otherwise 
 
Here, we present a mathematical formulation based on position-dependent variables (Dewilde et al., 2013) as follows.   

max:J
(

!'#

J
|𝒩𝒩|9(-#

N'#

J
N

8'#

J
&∈𝒩𝒩¹

J
1∈𝒩𝒩
12&

𝜆𝜆	º𝑝𝑝1 − (𝑔𝑔 + 1 − 𝑞𝑞)𝐸𝐸w𝑑𝑑?(&,1)z»𝑥𝑥&,1,8
N,! − 

                                                   -(1 − 𝜆𝜆)¼∑
(
!'# ∑

|𝒩𝒩|9(-#
N'# ∑N

8'# ∑&∈𝒩𝒩¹
∑1∈𝒩𝒩

12&
VARw𝑑𝑑?(&,1)z𝑥𝑥&,1,8

N,!                              (1) 

		∑|𝒩𝒩|9(-#
N'# ∑1∈𝒩𝒩 𝑥𝑥H,1,#

N,! = 1,				𝑣𝑣 = 1, … , 𝑉𝑉                                                                                                                  (2)  
	∑&∈𝒩𝒩¹

&21
𝑥𝑥&,1,8
N,! − ∑&∈𝒩𝒩

&21
𝑥𝑥1,&,8-#
N,! = 0,				𝑗𝑗 ∈ 𝒩𝒩, 𝑔𝑔 = 2,… , |𝒩𝒩|− 𝑉𝑉 + 1,				𝑞𝑞 = 1, … , 𝑔𝑔 − 1,				𝑣𝑣 =

1, … , 𝑉𝑉																																																																																																																																																																																																	(3)
   
	∑|𝒩𝒩|9(-#

N'8 ∑&∈𝒩𝒩¹
∑1∈𝒩𝒩

12&
𝑥𝑥1,&,8
N,! ≤ 1,						𝑞𝑞 = 1,… , 𝑔𝑔,				𝑣𝑣 = 1… ,𝑉𝑉																																																																											                (4) 

	∑(
!'# ∑

|𝒩𝒩|9(-#
N'# ∑N

8'6 ∑1∈𝒩𝒩 𝑥𝑥H,1,8
N,! = 0,						 (5) 

	∑(
!'# ∑

|𝒩𝒩|9(-#
N'# ∑N

8'# ∑&∈𝒩𝒩¹
12&

𝑥𝑥&,1,8
N,! ≤ 1,						𝑗𝑗 ∈ 𝒩𝒩 (6) 

	𝑥𝑥&,1,8
N,! ∈ {0,1}, 𝑖𝑖 ∈ 𝒩𝒩H, 𝑗𝑗 ∈ 𝒩𝒩, 𝑔𝑔 = 1,… , |𝒩𝒩| − 𝑉𝑉 + 1, 𝑞𝑞 = 1, … , 𝑔𝑔, 𝑣𝑣 = 1, … , 𝑉𝑉 (7) 

   The objective (1) maximizes the total utility. The set of constraints in (2) ensure the departure of all vehicles from 
the depot. The connectivity constraints are reported in (3). Constraints (4) guarantee that each position over each path 
is assigned to at most one link. The set of constraints in (5) establish that no link starting from the depot can be used 
in any other position except the first one, over each feasible path. The set of constraints in (6) require that each affected 
area is visited at most once over all paths. The set of constraints in (7) express the binary nature of variables. 
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Decision Variables: 

𝑥𝑥&,1,8
N,! = ·10 If  (i,j) is the qth link over the path of the vehicle  𝑣𝑣 with length 𝑞𝑞 

otherwise 
 
Here, we present a mathematical formulation based on position-dependent variables (Dewilde et al., 2013) as follows.   
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   The objective (1) maximizes the total utility. The set of constraints in (2) ensure the departure of all vehicles from 
the depot. The connectivity constraints are reported in (3). Constraints (4) guarantee that each position over each path 
is assigned to at most one link. The set of constraints in (5) establish that no link starting from the depot can be used 
in any other position except the first one, over each feasible path. The set of constraints in (6) require that each affected 
area is visited at most once over all paths. The set of constraints in (7) express the binary nature of variables. 
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