
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 6 pages

An overview of Boxed Ambients
(Abstract)

Giuseppe Castagna 1

Département d’Informatique, École Normale Supérieure, Paris, France

Lecture on joint work with

Michele Bugliesi and Silvia Crafa 2

Dipartimento d’Informatica, Università Ca’ Foscari, Venezia, Italy

In this lecture we present some work we published in [2,3] and hint at some
new current lines of research on information flow and security.

More precisely, we describe the calculus of Boxed Ambients a variant of
Cardelli and Gordon’s Mobile Ambients [4] a calculus of mobile and dynam-
ically reconfigurable agents. Boxed Ambients inherit from Mobile Ambients
(part of) the mobility primitives but rely on a completely different model
of communication. The new communication primitives fit nicely the design
principles of Mobile Ambients, and complement the existing constructs for
ambient mobility with finer-grained, and more effective, mechanisms for am-
bient interaction. As a result Boxed Ambients retain the expressive power and
the computational flavor of Ambient Calculus, as well as the elegance of its
formal presentation. In addition, they enhance the flexibility of typed commu-
nications over Mobile Ambients, and provide new insight into the relationship
between synchronous and asynchronous input-output.

1. Mobile Ambients

Ambients are named process of the form a[[P]] where a is a name and P a
process. Processes can be composed in parallel, as in P | Q, exercise a capa-
bility, as in M.P , declare local names as in (νx)P , or simply do nothing as in
0. Ambients may be nested to form a tree structure that can be dynamically
reconfigured by exercising the capabilities in, out and open. In addition, am-
bients and processes may communicate. Communication is anonymous, and
happens inside ambients. The configuration (x)P | 〈M〉 represents the parallel
composition of two processes, the output process 〈M〉 “dropping” the mes-
sage M , and the input process (x)P reading the message M and continuing

1 Email: Giuseppe.Castagna@ens.fr
2 Email: {michele,silvia}@dsi.unive.it

c©2002 Published by Elsevier Science B. V.

Castagna et al.

as P{x := M}. The open capability has a fundamental interplay with com-
munication: in fact, communication results from a combination of mobility
and opening control. To exemplify, consider two ambients running in parallel
as in the following configuration a[[(x)P | Q]] | b[[〈M〉 | R]] . The exchange
of the value M from b to the process P enclosed in a happens as a result of,
say, first b moving inside a, and then a opening b. Thus, if Q is the process
open b, and R is in a, communication is the result of the following sequence of
reductions:

a[[(x)P | open b]] | b[[〈M〉 | in a]]

➞ a[[(x)P | open b | b[[〈M〉]]]] by exercising in a

➞ a[[(x)P | 〈M〉]] by open b, unleashing M

➞ a[[P{x := M}]] by local communication

2. A case against ambient opening

While fundamental to the Ambient Calculus for the reasons just illustrated, an
unrestricted use of the open capability appears to bring about serious security
concerns in wide-area distributed applications.

Consider a scenario where a client agent c wants to access some infor-
mation M in a resource r on a remote host h. This situation can be mod-
eled by the configuration c[[in h.P]] | h[[r [[〈M〉 | Q]]]] . As a result of c ex-
ercising the capability in h, the system evolves into the new configuration
h[[a[[P]] | r [[〈M〉 | Q]]]] . Now how can the client access the resource? A
first solution is that the r enters c and once there it is opened; but it seems
strange that in order to access a resource an agent must dissolve it. A second
solution is that the client enters the resource and then it is opened; but it is
even stranger that in order to access a resource an agent has in some sense to
commit a suicide. The only reasonable solution is then that the resource and
the client use some protocol relying on exchanges of some temporary agents;
but in that case it becomes difficult to determine whether it is c that accesses
r or vice-versa.

Static or dynamic analysis of incoming code are often advocated as solu-
tions to the above problem but these solutions may not be always possible,
or feasible, in practice. This is not meant to dismiss the role of static anal-
ysis. To the contrary, it should be taken as a motivation to seek new design
principles enabling a more effective use of static analysis. One such principle
for Mobile Ambients, which leaded to the definition of Boxed Ambients is
that resource access should not rely on some kind of protocol but instead be
already accounted for at the level of communication primitives.

3. Boxed Ambients: overview and main results

Boxed Ambients result from Cardelli and Gordon’s Mobile Ambients essen-
tially by dropping the open capability while retaining the in and out capabili-

2

Castagna et al.

ties for mobility. Disallowing open represents a rather drastic departure from
the Ambient Calculus, and requires new primitives for process communication.

As in the Ambient Calculus, processes in the new calculus communicate
via anonymous channels, inside ambients. This is a formal parsimony that
simplifies the definition of the new calculus while not involving any loss of
expressive power: in fact, named communication channels can be coded in
faithful ways using the existing primitives. In addition, to compensate for the
absence of open, Boxed Ambients are equipped with primitives for communi-
cation across ambient boundaries, between parent and children. Syntactically,
this is obtained by means of tags specifying the location where the commu-
nication has to take place: for instance, (x)nP indicates an input from child
ambient n, while 〈M〉↑ is an output to the parent ambient.

The choice of these primitives, and the resulting model of communica-
tion is inspired to Castagna and Vitek’s Seal Calculus [7], from which Boxed
Ambients also inherit the two principles of mediation and locality. Media-
tion implies that remote communication, i.e., between sibling ambients, is not
possible: it either requires mobility, or intervention by the ambients’ parent.
Locality means that communication resources are local to ambients, and mes-
sage exchanges result from explicit read and write requests on those resources.
To exemplify, consider the following nested configuration:

n[[(x)pP | p[[〈M〉 | (x)Q | q[[〈N〉↑]]]]]]
Ambient n makes a downward request to read p’s local value M , while am-
bient q makes an upward write request to communicate its value N to its
parent. The downward input request (x)pP may only synchronize with the
output 〈M〉 local to p. Instead, (x)Q may non-deterministically synchronize
with either output: of course, type safety requires that M and N be of the
same type. Interestingly, however, exchanges of different types may take place
within the same ambient without type confusion:

n[[(x)pP | (x)qQ | p[[〈M〉]] | q[[〈N〉]]]]
The two values M and N are local to p and q, respectively, and may very well
have different types: there is no risk of type confusion, as (x)pP requests a
read from p, while (x)qQ requests a read from q.

The ressource access case of previous section can thus be handled by the
definition in the host h of a monitor process R that manages the accesses to
the ressource (for example h[[a[[P]] | !((x)r〈x〉a) | r [[Q]]]] where !((x)r〈x〉a)
is the monitor process).

This flexibility of communication results from the combination of two de-
sign choices: directed input/output operations, and resource locality. In fact,
these choices have other interesting consequences.

• They provide the calculus with fine-grained primitives for ambient interac-
tion, and with clear notions of resource ownership and access request. Based
on that, Boxed Ambients enable a rather direct formalization of classical
security policies for resource protection and access control: this is not easy
(if at all possible) with Mobile Ambients (see [3]).

3

Castagna et al.

• They ease the design of type systems providing precise accounts of ambient
behavior. As we show in [2], a rather simple structure of types suffices for
that purpose. Ambient and process types are defined simply as two-place
constructors describing the types of exchanges that may take place locally,
and with the enclosing context. Interestingly, this simple type structure
is all that is needed to give a full account of ambient interaction. This
is a consequence of (i) there being no way for ambients to communicate
directly across more than one boundary, and (ii) communication being the
only means for ambient to interact. Based on that, the typing of Boxed
Ambients provides for more flexibility of communication and mobility than
existing type systems for Mobile Ambients.

• Finally, resource locality and directed input/output provide new insight into
the relation between the synchronous and asynchronous models of commu-
nication. Specifically, the classic π-calculus relations between synchronous
and asynchronous output, as stated by Boudol in [1], no longer hold as a
result of combining remote communications, resource locality and mobility.
More precisely asynchronous output may no longer be viewed as a special
case of synchronous output with null continuation, neither can it be en-
coded by structural equivalence, by stipulating that 〈M〉P ≡ 〈M〉 | P . As
we show in [2] these two solutions, which are equivalent in the π-calculus,
have rather different consequences in Boxed Ambients.

4. Boxed Ambients and Information Flow

In [3] we describe in detail how it is possible to modify the Boxed Ambient
type system in order to use for enforcing classic mandatory access control
(MAC) security policies. However it is well know that such policies are not
enough to ensure the absence of insecure information flows. They can ensure
that a subject will never be allowed to access (either directly or indirectly)
the resources it has not the right to access, but they cannot ensure that the
subject will not get hold of the information stored in these resources. A
classical example is

h[[. . . | (x:bool)(if x then t [[]] else f [[]]) | c[[. . .]]]]
Even though c does not perform an access to the local channel of h it can
determine its value by testing (e.g., by exercising an in capability) the presence
of the t or f ambient: the value of x flowed from h to c.

In order to determine the presence of such flows one relies on some notion
of process equivalence to state a non-interference property. The rough idea is
to partition agents (and resources) into top-secret and low-secret classes, and
define as secure every system in which the behavior of top-secret processes
does not “interfere” with the behavior of low secret ones, in the sense that the
behavior of the latter does not depend on that of the former.

This needs the definition of some behavioral equivalence on processes.
While the presence of the full-fledged communication primitives of [2] is in-

4

Castagna et al.

teresting in dealing with MAC policies (as it naturally renders the complete
palette of access modes), the definition of behavioral equivalences is greatly
simplified by a reduced number of possible interaction. Moreover a tighter
control on parent-child communication offers better guarantees of the absence
of implicit information flows. Therefore we modify the semantics of Boxed
Ambients on the lines of the shared channel semantics of [5] and allow only
two (instead of four) non-local basic interactions, described by the following
reduction rules:

(input n) (x)nP | n[[〈M〉↑Q | R]] ➞ P{x := M} | n[[Q | R]]

(output n) 〈M〉nP | n[[(x)↑Q | R]] ➞ P | n[[Q{x := M} | R]]

We then establish the convention to consider the former as a read access to
n and the latter as a write access to n. This corresponds to the the view of
an ambient as having two channels: a private channel which is only available
for local exchanges, and an “upward channel” which the ambient offers to its
enclosing context for read and write access.

Based on this intuition, one then may try to adapt to our framework the
definition of non-interference first introduced in Goguen and Meseguer’s sem-
inal paper [6]. In that paper non-interference was defined as the property that
the output of low-secret subjects did not depend on the input of top-secret
subjects. In our framework subjects are ambients and their output is easily
identifiable with upward communications (being the calculus synchronous the
sole observation of the output actions may not suffice). So to study non-
interference it is reasonable to use as barbs the actions of upward commu-
nication, to define equivalence in terms of weak barbed congruence (weak,
as it does not matter “how long” to produce the ouput takes) and define as
“interference free” any process whose behavior is insensitive to operations on
top-secret names.

References

[1] G. Boudol. Asynchrony and the π-calculus. Research Report 1702, INRIA,
http://www-sop.inria.fr/mimosa/personnel/Gerard.Boudol.html, 1992.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In TACS 2001, number
2215 in LNCS, pages 38–63, Sendai, Japan, 2001. Springer.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile
ambients. In CONCUR 2001 , number 2154 in LNCS, pages 102–120, 2001.
Springer.

[4] L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of POPL ’98. ACM
Press, 1998.

[5] G. Castagna, G. Ghelli, and F. Zappa. Typing mobility in the Seal Calculus. In
CONCUR 2001 , number 2154 in LNCS, pages 82–101, 2001. Springer.

5

Castagna et al.

[6] J.A. Goguen and J. Meseguer. Security policy and security models. In
Proceedings of Symposium on Secrecy and Privacy, pages 11–20. IEEE Computer
Society, 1982.

[7] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
Internet Programming Languages, number 1686 in LNCS, pages 47–77. Springer,
1999.

6

