Electronic Notes in Theoretical Computer Science 18 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel8.html 13 pages

Projectable semantics for Statecharts®

Andrea Maggiolo-Schettini and Simone Tini

Dipartimento di Informatica, Universita di Pisa, Corso Italia 40,
56125 Pisa, Italy.

Abstract

It has been proved that it is impossible to combine in one semantics for reactive
systems the notions of modularity, causality and synchronous hypothesis. This lim-
its bottom-up development of specifications. In this paper we introduce the notion
of projectability, which is weaker than modularity, we define a non global consistent
semantics for Statecharts that enforces projectability, causality and synchronous
hypothesis, and we prove that no global consistent semantics for Statecharts can
enforce these three notions.

1 Introduction

Synchronous languages [2,4] have been developed for the specification of re-
active systems [7], namely systems that maintain an ongoing interaction with
their environment at a rate controlled by this. Reactions to prompts from the
environment are expected to happen in a bounded amount of time.

Synchronous languages are based on the synchronous hypothesis [3], namely
the assumption that systems are able to react instantaneously to prompts from
their environment. As a consequence, inputs from the environment and out-
puts of a system happen instantaneously.

In [10] properties of causality and modularity for formalisms that enforce
the synchronous hypothesis, have been investigated. Causality means that
for each event generated by a system at a particular moment there must
be an event generated by its environment that directly or indirectly causes it.
Causality ensures that reactive systems are really driven by their environment.
Modularity means, firstly, that if two systems are put together to form a
new one, they see each other behaviors as sequences of input-output pairs
exactly as the environment sees them. No inner details of the execution of

I Research partially supported by CNR Progetto Strategico “Modelli e Metodi per la
Matematica e I’Ingegneria” and by MURST Progetto “Tecniche Formali per la Specifica,
I’Analisi, la Verifica, la Sintesi e la Trasformazione di Sistemi Software”.

(© 1998 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

a system can be seen by the other. A second aspect is the uniformity of
the view every subsystem has, namely that when an event is generated it is
broadcast all around, and every subsystem has the same view at any moment.
Finally, a reaction of the compound system is a combination of reactions of its
subsystems. This means that the possible behaviors of a system are defined
once and for all, and one can freely insert this in whatsoever context, being
sure that it maintains its behaviors. This is needed to develop bottom-up
specifications. Unfortunately, in [10] it is proved that synchronous hypothesis,
causality and modularity cannot be combined in one semantics.

In this paper we introduce a notion weaker than that of modularity, the
notion of projectability. Projectability does not require that the composition
of subsystems is defined by abstracting from causality of their internal events,
so one may combine synchronous hypothesis, projectability and causality. We
investigate how these properties can be combined in the semantics of the
synchronous formalism Statecharts [5].

2 Statecharts

Statecharts extend state-transitions diagrams with a tree-like structuring of
states, explicit representation of parallelism, and broadcast communications
among components. States at the bottom of the structure are basic states,
states at intermediate levels are or-states and and-states. Or-states are states
consisting of substates connected by directed edges, which represent activities
to be performed in sequence. And-states are states representing activities to
be performed in parallel. (In the diagram a dashed line separates the parallel
substates.) The state at the top of the hierarchy is called the root-state. Let
us consider the statechart in Fig. 1. The root-state C'entral is an and-state
consisting in two direct substates: Left and Right. Both Left and Right are
or-states. State Left has the basic states L_Ready, L_Lock and L_Unlock as
direct substates. Among the substates of an or-state, there is the default state,
denoted with a dangling arrow. A transition between two states is labeled by
a set of positive and negative signals, the trigger of the transition, and a set of
positive signals, the action of the transition. Transition ¢; in Fig. 1 has both
the positive signal lock and the negative signal unlock as trigger and signal
[_lock as action. Here we assume that source and target state of a transition
are both immediate substates (in the tree-like structure) of the same or-state,
namely transitions cannot cross borders of states.
Formally, a statechart z is a tuple

<Sza Pz, ¢za 5Za T,,in,,out,, 11, Xz>
where:

(i) S, is the non-empty, finite set of states.

(i) p,: S, — 2% is the hierarchy function; for s € S,, p%(s) denotes the least
S C S, such that s € S and p,(s") C S for all &' € S, and p; (s) denotes

2

Central

Left
lock unlock / 1_lock N unlock [l_unlock
t1 t3
L_Lock ack | L_Ready ack | L _Unlock
to ta
Right
lock unlock / r_lock N unlock [r_unlock
R_Lock t5 R_Ready i R_Unlock
ack / ack /
lg lg
Fig. 1.

pi(s) — {s}; p. describes a tree-like structure, namely:
(a) There exists a unique s € S,, denoted root,, s.t. pi(s) =5,.
(b) s ¢& pf(s), for s € S,.
(c) If pi(s)Npi(s") # 0, then either s’ € pi(s) or s € pi(s'), for s,¢" € S,.
A state s is basic iff p,(s) = 0.

(iii) ¢, : S. — {OR, AND} is the (partial) state type function defined only
for all non-basic states. States with type OR are called or-states, states
with type AND are called and-states.

(iv) 9, : S, — S, is the (partial) default function defined only for or-states,
so that s" = ¢,(s) implies that s € p,(s). For s € S,, ¢}(s) denotes the
least S C S, s.t. s € S, for each s’ € S of type AND p,(s") C S and for
each s’ € S of type OR 6,(s') € S.

(v) T, is the finite set of transitions.

(vi) iny,out, : T, — S, — {root,} are the target and the source functions.
It is required that for each ¢ € T, there exists a state s € S, such that
¢.(s) = OR and in,(t), out,(t) € p.(s).

(vii) II, is the finite set of signals. For each a € I1,, @ denotes the negation of
a. For each Y C II,, YV is the set {ala € Y'}.

(viii) x, : T, — U=V 5 91l ig the labeling function; the first component of
X:(t) is denoted by trigger(t) and is the trigger of t, the second component
of x,(t) is denoted by action(t) and is the action of t.

Given states s1, s9 of a statechart z, lca, (s1, s2) denotes the lowest common
ancestor of s; and sy, namely the state s such that s1, se € p%(s), and for each
s' # s fulfilling the same requirement, s € p}(s').

The limiting assumption that transitions do not cross borders of states

3

seems to be natural if one wants bottom-up development of specifications.

Given a state s, we denote by trans(s) the set of all the transitions ¢ such
that both the source state and the target state of ¢ are substates of s.

A transition is triggered by a set of broadcast signals if all positive signals
of its trigger are broadcast and no signal appearing negated in the trigger is
broadcast. A triggered transition may fire and broadcasts the signals in its
action. Consider transitions ¢; and t3 in Fig. 1. If signal lock is broadcast
and signal unlock is not broadcast by the environment then ¢, is triggered, if
unlock is broadcast then t3 is triggered. The firing of ¢; (resp. t3) implies the
broadcasting of signal [_lock (resp. [_unlock).

The semantics of a statechart is given in terms of steps that take the
statechart from a configuration to another.

A configuration of a statechart is a maximal set of states fulfilling the
requirement that if an and-state is in the configuration then all its substates are
in it, and if an or-state is in the configuration then exactly one of its substates
is in it. The default configuration is the configuration such that for each or-
state in it, its default-state is in the configuration. As an example, the set of
states {Central, Left, L_Ready, Right, R_Ready} is the default configuration
of the statechart in Fig. 1. States in a configuration are said to be active in
the configuration.

At each instant of time the environment prompts the statechart with a
set of signals. Signals are assumed to be broadcast. The statechart reacts to
a prompt from the environment by performing a set of transitions, called a
step. According to the synchronous hypothesis principle a step is performed
without consuming time. When a step 7T is performed from a configuration C,
a new configuration C' = (C' — U,c7 pi(out(t))) U U, 05 ((in,(t)) is entered.
Configuration C’ does not contain the source states of the transitions in 7
and contains the target states of the transitions in 7. In order to have finite
reactions, it is required that for each pair of transitions ¢,¢ in a step 7, ¢t and
t" are consistent, namely that there exist states s and s' with ¢ € trans(s),
t" € trans(s’) and ¢(lca(s,s")) = AND. So, for each sequential component, at
most one transition is in 7.

Now, since the introduction of the formalism, various semantics for Stat-
echarts have been proposed. In [1] most of them are compared and related.
The semantics proposed are either non global consistent (see the semantics in
[8]) or global consistent (see the semantics in [15], [12], [13]), depending on the
interpretation of negative signals.

In non global consistent semantics negation is interpreted as “not yet”.
Steps are computed as sequences of sets of transitions (microsteps) 7 =
13, ...,1x. Note that all microsteps are performed in the same instant of
time. This means that the sequence of microsteps does not correspond to
a timing sequencing. Given a step 7 = Ti,..., T}, it is required that tran-
sitions in 7 are pairwise consistent and transitions in 7;,; are triggered by
signals broadcast by either the environment or by transitions in 77, ..., 7;, for

4

1 <1 < k. Now, transition ¢ having @ in its trigger and transition ¢’ having a
in its action can be in a step T =T, ..., T}, provided that ¢ is in a microstep
T; and t' is in a microstep 1}, with 7 < j.

In global consistent semantics negation is interpreted as “never”. Steps
are computed as fixpoints of some equations and in a step there are never a
transition ¢ with @ in its trigger and a transition ¢’ broadcasting a.

In [9] it is argued that non global consistent semantics allow to distinguish
clearly a cause from its effect, and therefore are more intuitive. The idea is
that a sequence of microsteps defines a partial order among transitions, and
this order reflects causality.

On the contrary, global consistent semantics allow to have a logical view
of signals. Signals can be interpreted as boolean variables, and steps can be
computed as solutions of sets of boolean equations. Causality is enforced by
considering only minimal solutions. This approach needs rejecting programs
giving rise to equation systems having no solution for some input.

We consider now the semantics in [8] and we explain the behavior of the
statechart in Fig. 1. This statechart, which elaborates on a specification
proposed in [14], describes a central locking system of a two-door car.

States Left and Right are the controllers of the left door and of the right
door, respectively, and are active in parallel. We require that either both doors
are locked or both doors are unlocked. Having one door locked and the other
unlocked is considered to be an erroneous situation.

We explain the behavior of state Le ft. The behavior of Right is analogous.
Signals lock and unlock from the environment represent the request to lock
and unlock doors, respectively. At the first instant of time states L_Ready and
R_Ready are active. If signal unlock is broadcast from the environment then
transition t3 is triggered and fires, so that signal [_unlock is broadcast and state
L _Unlock is activated. We assume that [_unlock can be sensed by a motor that
starts the unlocking operation of the left door. When this operation has been
completed by the motor, then the motor broadcasts signal ack which triggers
transition t,. The firing of ¢4 reactivates state L_Ready. Analogously, when
L_ready is active, if signal lock is broadcast by the environment and signal
unlock is not broadcast then transition ¢; fires and signal [_lock is broadcast.
The motor can sense such signal and starts the locking operation of the left
door.

We assume that the motor broadcast the signal ack only when it has
completed all requested operations. This means that if the motor receives the
request to lock both doors, then it will broadcast signal ack only when both
doors have been locked.

Now, in the initial configuration, C'entral can have only three possible
reactions.

o If signal unlock is broadcast, then both ¢3 and ¢; fire, so that both doors
are unlocked. Transitions t4 and tg will be performed to react to the broad-

LockSys

Key Central Button
l_key / lock : : [but [lock
129 E E (381
S Key S_Button
t1o tyo
u-key / unlock u-but | unlock
Fig. 2.

casting of signal ack by the motor, so that L_Ready and R_Ready will be
reactivated in the same instant of time.

 If signal [ock is broadcast and unlock is not broadcast, then both ¢; and ¢
fire, so that both doors are locked.

o If neither lock nor unlock is broadcast, then no transition fires.

Therefore we are sure that at each instant of time either both doors are locked
or both doors are unlocked. It is reasonable requiring that this safety property
is maintained when the statechart in Fig. 1 isinserted in a larger specification.

Let us consider the statechart in Fig. 2 obtained by composing in parallel
the state C'entral in Fig. 1, state Key and state Button.

We assume here that doors can be locked and unlocked either from outside
the car with a key or from inside the car by pushing a button. An attempt
to lock (resp. unlock) the doors with the key implies the broadcasting of
signal [_key (resp. u_key). Analogously, an attempt to lock (resp. unlock) the
doors with the button implies the broadcasting of signal [_but (resp. u_but).
States Key and Button are able to sense signals [_key, u_key and [_but, u_but,
respectively, and to broadcast signals lock and unlock.

Now, let us suppose to have an attempt to lock the doors with the key and
an attempt to unlock the doors with the button. In this case signals [_key and
u_but are broadcast by the environment and are sensed by the statechart. One
of the possible steps is the sequence of microsteps {to}, {t1}, {t12}, {t-}. The
set {to} can be the first microstep as [_key is broadcast by the environment.
Now, as transition ?y9 broadcasts signal lock, transition t; is triggered and
{t1} may be the second microstep. As u_but is in the environment, the third
microstep may be {t;5}. The broadcasting of unlock by t1 triggers t7, so that
{t7} may be the last microstep. Therefore C'entral performs transitions t; and
t7, which means that the left door is locked and the right door is unlocked.
Note that this is possible because signal unlock is broadcast by transition ¢,
during the computation of the step. If C'entral is considered in isolation, the
fact cannot happen.

The example shows that we are not sure that when a statechart is inserted
in a context, its behaviors are preserved. For the development of specifications

6

in a bottom-up fashion, one reasonably requires that subsystems perform the
tasks for which they have been designed, and only these, when inserted in
whatsoever context. If this requirement is satisfied, properties of safety proved
for components are guaranteed to hold when such components are inserted into
larger specifications. In the next section we formalize this idea by introducing
the notion of projectability.

3 Projectability

Let us consider now the notions of causality and modularity of a reactive

system, introduced in [10]. Let S Y9 ' denote the fact that the reactive
system S reacts instantaneously to input I by responding with output O, and
by rewriting itself into S’. We denote by S || So the parallel composition of
Sl and Sg.

.. . . 1,0 . .
A semantics is causal if for every reaction S <—>> S’ there exists a partial
order < over I U O such that:

eif I #0 # O and S </I,’—O>> for some I' C I, then there is at least one
dependency between I and O, i.e. da € I — I',b € O with a < b'

o the ordering respects the composition of systems, i.e. if Sy || Sz S’ | S5
with causal order <, then there exist systems 77,...,7,, with n > 2 and
causal orders <q,..., <, such that:

I N

< (L;UOy) =<,

B P (1;,0;)
S || Sa.

Causality means that for each event generated by the system there is a causal
chain of events leading to it. The partial order < that can be associated to a

T! for some T}, and the union of these reactions is the reaction of

. ,0 . . .
reaction S <I—>> S’ gives this causal chain.
A semantics is modular iff the following condition holds:

(1) (S, SIA S, Sh) & Sy || Sy UL

When S; and S, are composed in parallel, they see each other as a sequence of
pairs (I, O), exactly as the environment sees them. The parallel composition of
S and S, is defined by considering only their input-output interface, namely
both S; and S, are viewed as “black boxes”, and no inner details of the
execution of one of them is known by the other. Moreover, the output of
a system is immediately available as input to the other. This implies the
uniformity of the view every subsystem has of what is going on.

In [10] it is proved that modularity and causality cannot be combined with
synchronous hypothesis. To see this fact, let us consider systems S; and Sy

such that S; Rdalky 1 Slm’{b >, So Whigh S} and S;g’{i;). If causality holds
7

IUOZ,Ol IUOlon

Sl || Sl

then there must be partial orders <; and <, such that a <; b, b <5 a and
<; is associated to the reaction of S;, 1 < i < 2. By modularity we must

have S} || Sz Odegh S1 || S5 and for this reaction no causal order exists that
respects <; and <y. Modularity implies a causal loop between a and b.

The semantics of Esterel [3] and Argos [11] are modular, and programs in
which causality loops may occur are rejected.

Another aspect of modularity is that each reaction of the system S; || So
is the union of a reaction of S; and a reaction of S,. The consequence is that
the semantics of Sy (resp. Ss) viewed as a complete system is preserved when
it runs in parallel with Sy (resp. Si). In this case we are sure that S; (resp.
Sy) reaches configurations that are reachable also when it runs as a complete
system.

The notion of projectability coincides with this aspect of modularity. For-
mally, a semantics is projectable iff the following condition holds:

(which means, obviously, that a modular semantics is projectable but not
viceversa).

In the case of Statecharts, we must take care of the hierarchy when defining
the notion of projectability.

Definition 3.1 A semantics for Statecharts is projectable iff given a state-
chart z and a step T from configuration C to configuration C', then for each
state s € C'NC', the set of transitions T Ntrans(s) is a step of the statechart
having s as root-state.

The definition above states that a step of a statechart consists in the union of
steps of its components. According to this definition, the semantics in [8] is
not projectable, as demonstrated with the example in Fig. 1 and Fig. 2.

4 Non global consistent semantics

In this section we define a non global consistent semantics for Statecharts
enforcing projectability.
First of all we give our definition of microstep.
Definition 4.1 For a statechart z in a configuration C, a sequence of (al-
ready) fired sets of transitions T = Ti,...,Ty and a set of signals o 2
U,er action(t), a set T is a microstep iff:
(i) for each t € T, t is triggered by o;
(ii) for each t,t' € TUT, t andt' are consistent;
(iii) for each state s € C, it holds that if trans(s) N (T UT) # O then there
does not exist any transition t such that:

(a) t € TUT andt,t' are consistent for each t' € T UT;
(b) t is triggered by the set of signals 1L, 0 (Uerrprans(s (trigger(t) U

8

actlon(t)) U UtETﬁtrans(s) tmgger(t)),
(c) Ja €11, | (@ € trigger(t) A 3t' € T Ntrans(s) s.t. a € trigger(t’) A
A" € (TUT) — trans(s) s.t. a € action(t"));

(iv) for each state s € C, it holds that if t' € T Ntrans(s), t € T Ntrans(s),
a € I, Ntrigger(t), a € trigger(t’), then there exists t" € T Ntrans(s)
with a € action(t").

Configuration C' = C — {pi(out,(t)) |t € T} U {0}(in,(t)) |t € T} is reached
from C by means of T.

Condition #ii ensures that given transitions ¢,t" € trans(s), both having @ €

I1, in their trigger, t' € TUT,t & T UT, t triggered by the set of signals
(UteTntmm(S) (trigger(t) Uaction(t))U UteTﬁtmns(s) trigger(t)) NII,, then there
does not exist any transition t” ¢ trans(s) with ¢" € TUT and a € action(t").
The reason is that if the statechart having s as root-state performs t' and
transition ¢ is triggered, then either a transition in trans(s) broadcasts a signal
that disallows ¢ or ¢ is performed. Condition v ensures that given transitions
t,t" € trans(s) with t € T and ' € T and a signal a € I, with a € trigger(t)
and @ € trigger(t'), then signal a is broadcast by another transition of s. The
reason is that if the statechart having s as root-state performs #', then it needs
to perform a transition having a in its action in order to trigger ¢.

Let us consider the statechart in Fig. 2 in its initial configuration, the set
of signals {l_key, u_but} and the sequence of microsteps {to}, {t1}. According
to Def. 4.1, {t12} cannot be a microstep, contrarily to what happens if the
semantics in [8] is assumed. The reason is that if we instantiate s,t,¢',t" a
with Central, ts, t1, t12, unlock respectively, then condition 7 is not respected.
The new microstep must contain ¢5, so that both doors are locked.

Definition 4.2 Given configurations Cy, C4,...,C,, a set of signals o, sets
of transitions T, ..., T, such that:

(i) Ti41 is a microstep for z in configuration C;, sets of transitions Ty, ..., T;,
set of signals o U {actions(t)|[te Ty U...UT;},0<i<n-—1;

(ii) Ciyq is reached from C; by means of T;11, 0 <i<n—1;

(iii) there does not exist any microstep T # O for z in configuration C,, sets
of transitions T, . .., T, set of signals o U {actions(t)|t € Ty U...UT,},

T =1Ti,...,1T, is astep for z in configuration Cy, and C,, is the configuration
reached from Cy by means of T.

In [10] it is proved that constructing steps as sequences of microsteps as
in Def. 4.1 and Def. 4.2 ensures that the semantics enforces causality.

Proposition 4.3 The semantics of definitions 4.1 and 4.2 is projectable.

Proof. Let us suppose that 7 =1T},..., T}, is a step from configuration C' of
statechart z, with s € C'. Now, let us consider the set of signals o = | J,.,{a €
(trigger(t) Uaction(t)) NIL, | #t' € T Ntrans(s).a € trigger(t')}. First of all

9

we prove that the set of transitions T} = T Ntrans(s) is a microstep for the
fired sets of transitions 7] = TiNtrans(s), ..., Tr_1Ntrans(s), for an arbitrary
1 <k < n. The set T}, satisfies condition 7 in Def. 4.1. In fact, if there exists
a transition ¢’ € 7} such that ¢’ is not triggered by o U UteTk’ action(t), then Ty
does not satisfy condition v of Def. 4.1. The fact that T} satisfies conditions
i1, 191, and ‘v of Def. 4.1 implies that T} satisfies the same conditions. Now,
assume that the sequence of microsteps 17,..., T, is not maximal. Then there
exists a transition ¢ € trans(s), t ¢ T, which is triggered by o U {a |3t €
T Ntrans(s).a € action(t)}. So there must be @ € trigger(t) N1I, such that
a € action(t') for some t' € T — trans(s). Now there can be two cases:

(i) At" € TNtrans(s) with @ € trigger(t”). In this case we put 0 = o U{a}
and reiterate the reasoning.

(ii) 3" € T Utrans(s) with @ € trigger(t). In this case condition #ii of Def.
4.1 is not satisfied for some microstep in 7. O

Following [16], we could easily give a compositional formalization of the
semantics of definitions 4.1 and 4.2 by means of finite Labeled Transition
Systems.

Note that in general compositionality does not imply projectability, as it is
shown by the compositional semantics in [12], where a reaction of a compound
system is obtained by combining “incomplete” reactions of its subsystems.

The non global consistent semantics in [6] can be easily shown to be pro-
jectable. However such semantics does not enforce the synchronous hypothesis
as signals broadcast by transitions in a step can be sensed only in a successive
step.

5 Global consistent semantics

In global consistent semantics a step 7 is computed as a fixpoint of an equa-
tion. We briefly explain the original global consistent semantics in [15].
Given a configuration C, let Relevant(C') denote the set of transitions having
source state in C.

Given a set of signals o, let Triggered(c) be the set of transitions triggered
by o.

For a set of transitions 7', let Consistent(T’) be the set of transitions consis-
tent with each transition ¢ € 7.

Now, given a configuration C' and a set of signals o, a step T is computed as
the least set of transitions satisfying the following equation:

(3) T = Consistent(T) N Relevant(C) N Triggered(c U U action(t)).
teT

Note that all transitions in a step 7 must be triggered by signals broadcast
by both the environment and transitions of 7.

10

21 22
Fig. 3.

As already noticed in [10] modularity lead to semantical problems if tran-
sitions can be triggered by negative signals. Assume to have systems S; and

Sy such that S; i0p 1 Sl<{a ’{b}>, Sy HMD %, and 52<M>. If we have a
modular semantics, then no reaction is defined when the compound system
S1 || Sz is prompted with the empty input. In fact, for I = (), there exist no
O and O, satisfying equation 1. In this case it is said that S; || Sz has a non
reactive behavior, in the sense that the system is not able to respond to the
environment.

Formally, we say that a semantics for reactive systems is reactive iff given a

system S and an input I there exist S’ and O such that S <I’—O>> S’. In the case
of Statecharts, reactivity means that given a statechart z in a configuration
C and a set of signals o, there exists a step from C' for o.

Esterel and Argos reject programs that may have non reactive behaviors.

The philosophy of Statecharts seems to be contrary to rejecting behav-
iors at the syntactical level. The original semantics of [15] does not enforce
reactivity. Let us consider the statechart z obtained by composing in paral-
lel statecharts z; and z in Fig. 3. Let C be the initial configuration of z.
Given the set of signals ¢ = (), there is no set of transitions satisfying equa-
tion 3. Note that statecharts having non reactive behaviors may be obtained
composing statecharts having only reactive behaviors.

Two semantics have been proposed that enforce reactivity and global con-
sistency (see [12] and [13]). According to the semantics of [12], statechart z
as above would react to the empty input by performing step 7; = {t1}. The
approach in [13] implies that z reacts to the empty input by performing step
T2 =0.

Note that transitions ¢3 and ¢, are neither in 77 nor in 75, even though 2z,
viewed in isolation must perform either ¢3 or t4. It follows that the semantics
in [12] and [13] are not projectable.

We have a general negative result.

Proposition 5.1 No global consistent semantics can enforce reactivity, causal-
ity, projectability and synchronous hypothesis.

Proof. Let us consider the statecharts z; and zy in Fig. 3. If we consider z;,
for each input set of signals either t; or ¢, is triggered and therefore performed.
Analogously, if we consider z,, for each input set of signals either ¢3 or ¢,
is triggered and therefore performed. Now, let us consider the statechart z

11

obtained by composing 2z; and 2z in parallel. Assume that z performs step 7
from its default configuration for the empty input set of signals. Projectability
implies that each step 7 must satisfy the following condition: T N{ty,t2} # 0,
TN{ts,ts} # 0. Global consistency implies that T # {t1,t3} and T # {t1, t4}.
Causality implies that T # {to,t3} and T # {to,t4}. Therefore no step 7
exists and reactivity is not enforced. O

6 Conclusions

Semantics of formalisms for the specification of reactive systems must enforce
causality, which ensures that systems are input driven, and reactivity, which
ensures that systems are able to respond to external prompts. Modularity
permits to compose systems considering only their input/output interface. As
proved in [10], modularity and causality cannot be combined in semantics of
synchronous formalisms.

In Esterel and Argos compositions of programs that may lead to non mod-
ular behaviors are rejected statically. In Statecharts modularity is sacrificed.

In this paper we have defined the property of projectability, which is weaker
than modularity, and we have demonstrated with an example that it is needed
for bottom-up development of specifications.

We have considered both global consistent and non global consistent se-
mantics for Statecharts. Prop. 5.1 states that causality and projectability can-
not be enforced by a global consistent semantics enforcing reactivity. We have
defined a non global consistent semantics enforcing causality and projectabil-
ity, as shown by Prop. 4.3. This semantics can be viewed as an improvement
of the non projectable semantics originally proposed in [8]. The non global
consistent semantics in [6], which can be proved to enforce projectability, does
not allow instantaneous communications between components and therefore
does not enforce the synchronous hypothesis.

References

[1] M. von der Beek: A Comparison of Statecharts Variants. In Proc. of FTRTFTS
’94, Lecture Notes in Computer Science 863, pp. 128-148, Springer, Berlin, 1994.

[2] A. Benveniste and G. Berry, editors: Another Look at Real-Time Systems.
Special Issue of Proceedings of the IEEE, September 1991.

[3] G. Berry and G. Gonthier: The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming 19, pp.
87-152, 1992.

[4] N. Halbwachs: Synchronous Programming of Reactive Systems. The Kluwer
International Series in Engineering and Computer Science, Kluwer Academic
Publishers, 1993.

12

[5] D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8, pp. 231-274, 1987.

[6] D. Harel and A. Naamad: The Statemate Semantics of Statecharts. ACM
Transactions on Software Engineering Methods 5:4, 1996.

[7] D. Harel and A. Pnueli: On the Development of Reactive Systems. In K.R. Apt,
editor, Logic and Models of Concurrent Systems, NATO, ASI-13, pp. 477-498,
Springer, Berlin, 1985.

[8] D. Harel, A. Pnueli, J.P. Schmidt and R. Sherman: On the formal Semantics
of Statecharts. In Proc. Second IEEE Symp. on Logic in Computer Science, pp.
54-64, IEEE Computer Society Press, 1987.

9] J.J.M. Hooman, S. Ramesh and W.P. de Roever: A Compositional
Azxiomatization of Statecharts. Theoretical Computer Science 101, pp. 289-335,
1992.

[10] C. Huizing and R. Gerth: Semantics of Reactive Systems in Abstract Time. In
Proc. of Real-Time: Theory and Practice, REX Workshop ’91, Lecture Notes
in Computer Science 600, pp. 291-314, Springer, Berlin, 1992.

[11] F. Maraninchi: Operational and Compositional Semantics of Synchronous
Automaton Composition. In Proc. of CONCUR ’92, Lecture Notes in Computer
Science 630, pp. 550-564, Springer, Berlin, 1992.

[12] A. Maggiolo-Schettini, A. Peron and S. Tini: Equivalence of Statecharts. In
Proc. of CONCUR ’96, Lecture Notes in Computer Science 1119, pp. 687-702,
Springer, Berlin, 1996.

[13] J. Philipps and P. Scholtz: Compositional Specification of Embedded Systems
with Statecharts. In Proc. of TAPSOFT '97. Lecture Notes in Computer Science
1214, pp. 637-651, Springer, Berlin, 1997.

[14] J. Philipps and P. Scholtz: Formal Verification of Statecharts with Instantaneous
Chain Reactions. In Proc. of TACAS 97, Lecture Notes is Computer Science
1217, Springer, Berlin, 1997.

[15] A. Pnueli and M. Shalev: What is in a Step: on the Semantics of Statecharts.
In Proc. of TACS 91, Lecture Notes in Computer Science 526, pp. 244-264,
Springer, Berlin, 1991.

[16] A.C. Uselton and S. A. Smolka: A Process Algebraic Semantics for Statecharts.
In Proc. of CONCUR ’94, Lecture Notes in Computer Science 836, pp. 2-17,
Springer, Berlin, 1994.

13

