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Abstract 

Regulation exerted by the iron status of the plant on the iron deficiency responses was 

investigated in cucumber roots (Cucumis sativus L.) both at the biochemical and 

molecular level. Absence of iron induced the expression of the CsFRO1, CsIRT1, 

CsHA1 and the Cspepc1 transcripts that was followed by an increase in the 

corresponding enzymatic activities. Supply of iron repressed gene expression, in 

particular those of the Fe(III)-chelate reductase and for the high affinity iron transporter 

and reduce the enzymatic activities. Our results confirm and extend the hypothesis of a 

coordinate regulation of these responses. Besides  these two activities strictly correlated 

with iron deficiency adaptation, we considered also the H+-ATPase and the 

phosphoenolpyruvate carboxylase, that have been shown to be involved in this 

response.  
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Abbreviations: BPDS, bathophenanthrolinedisulphonate; BTP, 1,3-

bis[tris(hydroxymethyl)-methylamino]-propane); MES, 2[N-

morpholino]ethanesulphonic acid); MOPS, 3-(N-morpholino)propanesulfonic acid; 

PMSF, phenylmethylsulphonyl fluoride; PPFD, photosynthetic photon density flux 

 

Introduction 

Plants require iron to complete their life cycle. The importance of iron is due to the 

existence of two stable, but convertible forms, Fe(III), ferric, and Fe(II), ferrous, which 

take part in fundamental processes involving electron transfer reactions, mainly 

requested in both the oxidative (respiration) and biosynthetic (photosynthesis) pathways 

(Curie & Briat, 2003; Hell & Stephan, 2003). On the contrary, excess of iron can 

produce toxic oxygen compounds, for instance O2
-, H2O2 and above all free hydroxyl 

radicals, produced by the Fenton reaction (Halliwell & Gutteridge, 1999; Briat, 2002). 

Consequently, balanced iron acquisition by the roots and control of the homeostatic 

mechanisms are necessary to prevent suffering or excess of this transition metal. 

There is generally a high quantity of iron in the soil, but, in aerobic and sub-alkaline 

pH environment it is present mainly as Fe(III)-oxide and -hydroxide and its solubility is 

strongly restricted (Guerinot & Yi, 1994). To cope with this problem and to enhance the 

metal bioavailability, plants have evolved developmental and biochemical adaptation 

(Strategy I and Strategy II) to low iron concentration in the environment (Römheld & 

Marschner, 1986). Concerning Strategy I plants, evident responses reside at the root-soil 

interface involving morphological changes in the root architecture by increasing the 

number of secondary roots, root hair density and the formation of transfer cells at the 

root apex in order to enhance the absorbing root surface. In the meantime, primary 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

65
8.

1 
: P

os
te

d 
12

 J
ul

 2
01

0



 3 

biochemical and molecular responses serve one main function: increase the 

rhizhosphere iron availability and its uptake (Schmidt, 1999; Curie & Briat, 2003; Hell 

& Stephan, 2003). 

Strategy I plants (dicotyledonous and non-graminaceous plants) are able to respond 

to lack of iron mainly by increasing the reduction, the acidification and the uptake 

activities by inducing trans-plasma membrane proteins present in the rhizhodermal root 

cells {i.e. Fe(III)-chelate reductase [FC-R], H+-ATPase and iron regulated transporters 

(IRT), respectively} directly involved in the iron uptake system (Curie & Briat, 2003). 

Extrusion of electrons and protons leads to an enhancement of soluble form of iron in 

the rhizosphere. It has been observed in Strategy I plants, that in response to iron 

starvation, there was an induction of the genes encoding for the Fe(III)-chelate 

reductase (AtFRO2, PsFRO1 and LeFRO1) which were already characterized (Robinson 

et al., 1999; Waters et al., 2002; Li et al., 2004). Enhancement of H+ efflux, due to an 

increase in a P-type H+-ATPase activity in response to iron deprivation, was 

demonstrated in many Strategy I plants (Schmidt, 1999; Zocchi, 2006). A multigene 

family encoding different isoforms for H+-ATPase and tissue specific expression 

patterns have been demonstrated (Palmgren, 2001; Dell’Orto et al., 2002; Santi et al., 

2005). After mobilization and reduction, the ferrous form, the unique form to be 

absorbed by these plants, needs to be taken up across the plasma membrane by a 

specific iron transporter (IRT1) that has been characterized in A. thaliana (Eide et al., 

1996) and successively in pea and tomato (Cohen et al., 1998; Eckhardt et al., 2001). 

Micro-array analysis using A. thaliana grown under iron deficiency (Thimm et al., 

2001) has revealed that there were significant changes in the transcription of different 

genes, therefore reflecting the complexity of the molecular and metabolic response. 
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Many genes involved in Fe-starvation responses have been cloned and Fe 

responsiveness has demonstrated the importance of transcriptional control in the 

regulation of Strategy I mechanisms (Curie & Briat, 2003). To promote and sustain the 

increase in the release of electrons and protons in the rhizhosphere it has been shown 

that significant metabolic changes occurred in roots: enhancement of glycolitic pathway 

rate, cytosolic dehydrogenase activities, as well as respiration rate (Rabotti et al., 1995; 

Espen et al., 2000). Moreover, organic acid synthesis and CO2 dark fixation increase 

under Fe-starvation during which phosphoenolpyruvate carboxylase (PEPC) activity 

was shown to increase by four times or more (Rabotti et al., 1995; De Nisi & Zocchi, 

2000; Lopez-Millan et al., 2000). The anaplerotic role of root PEPC has been 

characterized in root of cucumber grown under Fe- deficiency (De Nisi & Zocchi, 2000) 

and in other Strategy I species, both herbaceous and arboreous (Lopez-Millan et al., 

2000; Ollat et al., 2003), which showed also an enhanced H+-ATPase activity. So it is 

possible to consider the inducible enhancement of PEPC activity as one of the more 

important markers regarding metabolic responses to Fe deficiency.  

In this work we were interested in identifying the coordination of biochemical and 

molecular responses in Strategy I plants, which are, more likely, the result of tightly 

controlled homeostatic mechanisms.  

 

Materials and Methods 

Plant material and growth conditions  

Seeds of cucumber (Cucumis sativus L. cv Marketer) were surface sterilized and sown 

in Agriperlite, watered with 0.1 mM CaSO4, allowed to germinate in the dark at 26°C 
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for 3 d, and then transferred to a nutrient solution of the following composition: 2 mM 

Ca(NO)3, 0.75 mM K2SO4, 0.65 mM MgSO4, 0.5 mM KH2PO4, 10 µM H3BO3, 1 µM 

MnSO4, 0.5 µM CuSO4, 0.5 µM ZnSO4, 0.05 µM (NH4)Mo7O24 and 100 µM Fe(III)-

EDTA (when added). The pH was adjusted to 6.0-6.2 with NaOH. Aerated hydroponic 

cultures were maintained in a growth chamber with a day/night regime of 16/8 h and a 

PPFD of 200 µmol m-2 s-1 at the plant level. The temperature was 18°C in the dark and 

24°C in the light. Plants showed chlorotic symptoms after approximately seven days of 

culture in the absence of Fe.  

 

In vivo measurement and localisation of the acidification and reduction capacities  

Medium acidification capacity was measured directly in the nutrient solution by 

measuring the pH every day with a pHM64 (Radiometer, Copenhagen) pHmeter. 

Fe(III)-reductase activity was measured by using the bathophenantrolinedisulfonate 

(BPDS) reagent (Chaney et al., 1972). Ten apical root segments about 2 cm long were 

incubated in 10 ml of a solution containing 0.5 mM CaSO4 and 0.5 mM K2SO4 pH 6.0, 

in the dark at 26°C under shaking. After 1 h incubation the solution was replaced with 5 

ml of a solution with the following composition: 0.5 mM CaSO4, 0.5 mM K2SO4, 0.1 

mM Fe(III)-EDTA and 0.25 mM BPDS  pH 6.0. After 3 h, 2 mL of the solution were 

withdrawn and the absorbance at 535 nm determined with a spectrophotometer. BPDS 

forms a stable, water soluble, red complex with Fe2+ and only a weak complex with 

Fe3+. The amount of reduced Fe was calculated by the concentration of the formed Fe2+ 

(BPDS)3 complex ( of BPDS is 22.1 mM-1 cm-1). 
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Visualization and localization of proton release and Fe(III) reduction was performed by 

embedding the roots in a agar medium as described in Marschner et al. (1982) in the 

presence of the pH indicator Bromocresole Purple and BPDS, respectively. 

 

Isolation of plasma membrane vesicles  

Enriched plasma membrane (PM) vesicles were purified using the two-phase 

partitioning procedure as previously described (Rabotti & Zocchi, 1994). Final pellets 

were resuspended in a medium containing 2 mM MES (2[N-

morpholino]ethanesulphonic acid)-BTP (1,3-bis[tris(hydroxymethyl)-methylamino]-

propane), pH 7.0, 1 mM PMSF and 330mM sucrose. 

 

Assay of H+-ATPase and FC-R activities in plasmalemma-enriched vesicles 

H+-ATPase activity was assayed with a spectrophotometric method (as described by 

Palmgren et al., 1990), coupling ATP hydrolysis to NADH oxidation, at 25°C as 

already reported (Rabotti & Zocchi, 1994). The reaction was started by the addition of 

20-50l of PM preparation and NADH oxidation was followed spectrophotometrically 

at 340 nm in a V550 spectrophotometer (Jasco,Tokyo, Japan) as already described 

(Rabotti & Zocchi, 1994). 

The NADH-dependent Fe(III)-reductase (FC-R) activity was assayed in the dark at 

25°C in 1 ml volume containing 250 mM sucrose, 15 mM MOPS-BTP (pH 6.0), 0.25 

mM FeEDTA, 0.25 mM NADH, 0.01% Lubrol. The reaction was started by the 

addition of 20-50l of PM preparation and NADH oxidation was followed 
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spectrophotometrically at 340 nm in a V550 spectrophotometer (Jasco,Tokyo, Japan) as 

already described (Rabotti & Zocchi, 1994). 

 

PEPCase assay 

The PEPCase, soluble cytosolic enzyme, was extracted from roots of plants grown in 

the presence or in the absence of Fe as reported by De Nisi & Zocchi (2000). Reaction 

was started by adding aliquots of protein extracts and the enzymatic assays were 

performed at 25° C in 1.5 ml final volume. Oxidation of NADH was followed 

spectrophotometrically at 340 nm in a V550 spectrophotometer (Jasco,Tokyo, Japan) as 

already described (De Nisi & Zocchi, 2000). 

 

Semiquantitative RT-PCR  

Root and leaf tissues were pulverised in liquid nitrogen using mortar and pestle and 

total RNA was extracted using Trizol® reagent (Invitrogen), and first strand cDNA 

synthesis was carried out using iScriptTMcDNA Synthesis Kit (Bio-Rad) according to 

the manufacturer’s instructions. The gene-specific primers used to amplify: CsFRO1 

(accession No. AY590765) were 5’-GTATCACATATGCTTGGC-3’(forward) and 5’-

CTACGAATGCGAGGAATAG-3’(reverse); CsIRT1 (accession No. AY590764) 

primers used were 5’-CGCAGCAGGTATCATTCTCG-3’ (forward) and 5’-

TCTGCCTGAAGAATACAGCC-3’ (reverse); Cspepc1 (accession No. AJ417435) the 

primers used were 5’-GGACACAGACGAGATTCCATC-3’ (forward) and 5’-

CCAGTGTTCTGCATTCCCGC-3’ (reverse); the primers used to amplify actin 

(accession No.AB010922) were 5’-GCCTGCTATGTATGTTGCCATC-3’ (forward) 
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and 5’-CAAGAGCAACATATGCCAGCT-3’ (reverse). To amplify CsHA1 (accession 

No. AJ703810) the primers used were 113F2 (5’-CTCCAACCAGCACCAGAAA-3’) 

and 113R1 (5’-TCCTTCATCTCTTTCTGCAACA-3’) (Santi at al., 2005). The thermal 

cycle program was: one initial cycle of 94°C  5 min, followed by cycles of 94°C  30 sec; 

56°-60°C 1 min (as annealing temperature we used 56°C for CsFRO1 and 60°C for 

Cspepc, CsIRT1, CsHA1, and Csactin), 72°C 1 min, with 28 cycles for CsFRO1, 

CsIRT1, CsHA1, Cspepc and 26 cycles for actin, all followed by a final 72°C elongation 

cycle for 5 min. RT-PCR was carried out on the first-strand cDNA using Taq DNA 

polymerase (Promega) and the identity of the amplified fragments were verified by 

sequencing both the strands. 

 

Protein determination 

Protein was determined by the using dye-binding method of Bradford (1976), using –

globulin as a standard. 

 

Results 

Effect of iron availability on acidification and reduction activities  

To investigate the control exerted by the iron status on the Strategy I plant responses, 

we started with the induction of Fe deficiency at the whole plant level. Plants were 

grown for 8 days in the absence of iron to induce all the deficiency responses (Rabotti 

& Zocchi, 1994) and after this period iron was supplied at a concentration of 100 M as 

FeEDTA . The time course of acidification before and after iron supply is reported in 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

65
8.

1 
: P

os
te

d 
12

 J
ul

 2
01

0



 9 

Figure 1A. After 7d in the absence of iron, roots sharply decrease the pH of the medium 

by almost two pH units, while the control roots do not show any acidification capacity. 

After iron supply, roots still retain the capacity to decrease the pH for the first 24 h and 

then the pH raises to higher values. We have assayed  the H+-ATPase activity during 

this time course on a PM-enriched fraction isolated from the roots. The results are 

reported in Table 1. The H+-ATPase activity measured confirms  previous results 

(Rabotti & Zocchi, 1994; Dell’Orto et al., 2000) showing a 50% increase under iron 

deficiency. After iron supply the this activity still remains higher for 48 h followed by a 

decrease, more or less, to the control level. This difference can also be visually 

appreciated in Figure 2A where roots are embedded in an agar containing the pH-

sensitive dye Bromocresol Purple; the yellow colour around the – Fe roots denotes a 

decrease in the pH value (lower than 5.0). 

Figure 1B shows the time course of  the Fe3+ reduction before and after iron supply. 

Also in this case, the reduction activity is sharply increased under iron deficiency 

reaching the maximum after 7d of iron starvation, then the activity slowly decreases. 

After iron supply there is an second peak of increase in the reducing capacity of Fe3+ 

even greater with respect to the previous one. This sharp increase last for 24 h and is 

followed by a rapid decrease in the reduction capacity down to the value of the control. 

As for the H+-ATPase activity, we have measured the Fe3+-chelate reductase (FC-R) 

activity on a PM-enriched fraction. The results are reported in Table 1. This in vitro 

result confirms what was demonstrated in the time course experiment with a second 

peak of activity greater than that obtained in the -Fe roots. The increase in the reduction 

activity after Fe supply to Fe-starved roots, is a well known response and is referred to 

as a substrate induction effect, i.e. iron acts as a local inducer (Vert et al, 2003). This 
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 10 

difference in the activity of Fe(III) reduction is well visible in Figure 2B where the roots 

are embedded in an agar containing Fe3+-EDTA and BPDS as a chelating Fe2+ agent 

[(the red colour is due to the formation of the complex Fe2+(BPDS)3]. Fig. 2 also shows 

the morphological changes occurring at the root level under Fe deficiency; starved 

plants show an increase in the amount of lateral roots and swollen tips (left part of each 

plate). 

In previous papers we have demonstrated the implication of the PEPC in the 

response to Fe deficiency and several hypothesis were proposed to explain the strict 

correlation existing between the induction of iron deficiency responses and the PEPC 

activation (Rabotti et al., 1995; De Nisi & Zocchi, 2000). Table 1 show the results of 

the time course of the  PEPC activity. Under Fe deficiency the PEPC activity is 

increased by 4 time and also in this case there is an increase 24 h after Fe supply, 

consistent with those shown by the H+-ATPase and FC-R activities.  

 

Expression of iron deficiency response genes in cucumber plants 

Gene expression analysis was performed using CsFRO1, CsIRT1, CsHA1 and Cspepc1 

sequences. CsFRO1 and  CsIRT1 were recently characterised by Waters et al. (2007) 

and shown to encode the ferric reductase and the iron transporter proteins, respectively. 

CsFRO1 is hortologous to AtFRO2 (Robinson et al., 1999), LeFRO1 (Li et al., 2004) 

and PsFRO1 (Waters et al. 2002), while CsIRT1 is hortologous to AtIRT1 (Eide et al., 

1996) and LeIRT1 (Eckhardt et al., 2001). Concerning to the H+-ATPase, we considered 

the differential expression level of CsHA1 gene (Santi et al., 2005). For PEPC we 

considered the Cspepc1 gene expression level. In the database 

(http://www.ncbi.nlm.nih.gov) two partial mRNAs for PEPC are present for Cucumis 
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sativus (submitted by Santi et al, unpublished): Cspepc1 (AJ417435) and Cspepc2 

(AJ417436). Preliminary phylogenetic analysis carried out on amino acidic sequences 

of cucumber and Arabidopsis PEPC isoforms [Cspepc1 (CAD10147), Cspepc2 

(CAD10148), Atppc1 (CAD58725), Atppc2 (CAD58726), Atpp3 (AAC24594), Atppc4 

(CAC86034)] showed that only the Atpcc4 was not related to all the other sequence 

considered (data not shown). For this reason, we performed the nucleotide sequence 

alignment of Cspepc1, Cspepc2 and of the genes encoding for the three PEPC isoforms 

of Arabidopsis, and namely: Atppc1 (AJ532901), Atppc2 (AJ532902), Atppc3 

(AF071788) (Sanchez & Cejudo, 2003). Cspepc1 showed 79% identity with Atppc3, 

74%, with Atppc2 and  78% with Atppc1, while Cspepc2 showed 76% identity with 

Atppc3, 73% with Atppc2 and 78% with Atppc1. We decided to use in this work the 

Cspepc1 gene because its sequence showed the highest identity value with Atppc3, 

which is almost exclusively expressed in roots (Sanchez & Cejudo, 2003). 

The presence of iron is believed to be an induction signal for the expression of the 

iron responsive genes, in particular for AtFRO2 and AtIRT1, but these transcripts are 

often hardly detectable in the presence of iron (Vert et al, 2001, Connolly et al, 2002; 

Vert et al, 2003, this paper). On the contrary, it is in the absence of iron that genes 

encoding for FRO2 and FRO1 are up regulated (Waters et al., 2002; Connolly et al., 

2003; Li et al., 2004) and it is also in this condition that IRT1 mRNA and protein 

accumulates in A. thaliana (Eide et al., 1996; Connolly et al., 2002; Vert et al., 2002).  

In this work we confirm these data in cucumber as well and we extended them also to 

the expression of the CsHA1 and the Cspepc1 transcripts. In control and starved roots 

we observe a close coordination concerning the expression of these four activities. In 

fact, all of them are increased under Fe deficiency condition (Fig. 3A) and for the 
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CsFRO1, CsIRT1 and CsHA1, in particular, the highest level of the mRNAs expression 

coincided with the maximum of their enzymatic activity (compare the –Fe lanes 5d and 

8d, Fig. 3A and Table 1). For AtFRO2 and AtIRT1 a coordinate control of the 

expression was formulated (Connolly et al, 2003; Vert et al., 2003). We may extend this 

hypothesis also to the CsFRO1, CsIRT1, CsHA1 and the Cspepc1 (Fig. 3). In fact, when 

starved roots are re-supplied with iron there is a decrease in the expression of all the 

transcripts and after 48 h they are almost undetectable (Fig. 3B). This is particularly true 

for what concern the CsFRO1 and CsIRT1, that are directly involved in iron acquisition, 

while for CsHA1 and Cspepc1 even after 48 h the transcripts are still present. On the 

other hand, these two last enzymes are not involved solely in the Fe deficiency 

responses but participate in many other cellular events. Western blot analysis of the 

protein extracted from plants grown in the same conditions had shown a similar pattern 

of accumulation for the H+-ATPase and the PEPC (Dell’Orto et al., 2000; De Nisi & 

Zocchi, 2000) and IRT1 (Connolly et al., 2002; Vert et al., 2003).  

 

Discussion 

Cucumber roots respond to iron deficiency by inducing acidification of the culture 

medium and reduction of Fe(III) within 7 d (Fig. 1A and 1B). Gene expression analysis 

carried out by semi-quantitative RT-PCR revealed that CsFRO1, CsIRT1, CsHA1 and 

Cspepc1 transcripts (Fig. 3A) are increased during this period accordingly with the iron 

deficiency induction of the iron uptake system. This induction is well correlated with 

the increase in the relative enzymatic activities (Table 1). This work for the first time 

put in relation the induction of specific genes for iron uptake as CsFRO1 and CsIRT1 

and that of the CsHA1 and Cspepc1. From these experiments it is clear that the whole 
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iron deficiency response is under the same gross control and that supply of iron rapidly 

de-induces the expression of these transcripts altogether (Fig. 3B), greater for the 

CsFRO1 and CsIRT1 (they serve specifically for iron uptake), which reach the level 

seen in the control roots within 48 h, than for the CsHA1 and Cspepc1, that are less 

specific and also serve for other important cellular functions (Chollet et al., 1996; 

Palmgren, 2001). A further possible explanation of this different response could relay 

on the fact that for CsFRO1 and CsIRT1 we can assume a primary coordinate 

regulation, both local and systemic in response to a direct event (presence or absence of 

iron). For what concern the CsHA1 and the Cspepc1 a kind of secondary regulation can 

be supposed in view of a less direct involvement of these two activities in the iron-

deficiency responses. It seems possible to hypothesise a sequential coupled regulation 

which involves these four genes: direct or primary for the response of CsFRO1 and 

CsIRT1, to promote iron uptake, and secondary or metabolic for CsHA1 and Cspepc1. 

What is intended for metabolic is the necessity to increase the production of NAD(P)H 

and ATP for the FC-R and the H+-ATPase activities, respectively, that brings to an 

increase in the rate of glycolysis and perhaps of the pentose phosphate pathway (Rabotti 

et al. 1995; Espen et al. 2000), along with the necessity to extrude protons which tend to 

accumulate as the glycolysis rate increases in a sort of pH-stat mechanism (Sakano, 

1998). Thus, the activation of CsHA1 and Cspepc1 transcripts should seem to be 

stimulated as a metabolic consequence of iron starvation rather than by a direct system. 

This seems to be in agreement with the microarray analysis shown by Colangelo and 

Guerinot (2004) where there is no evidence that these two last genes are targets of FIT1 

regulation. Of course, we can not ruled out the possibility that other regulatory 

mechanisms operate, such as posttranscriptional modifications, as suggested for FRO2 
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and IRT1 in Arabidopsis (Connolly et al., 2003), that could involve also the H+-ATPase 

and the PEPC. Furthermore, even the possibility of posttranslational modifications, that 

might finely regulate the activities of the enzymes correlated with the iron deficiency 

responses, can not also be ruled out. This might explain why the H+-ATPase and the 

PEPC activities can be reduced though their transcripts are still consistently presents 

(Table 1 and Fig. 3B).  

 In addition to the activity of CsFRO1 and CsIRT1, we show that also other 

activities considered to be linked to the iron deficiency response, the CsHA1 (in 

particular) and the Cspepc1, may be regulated through the same signal. A transient 

increase in both gene expression and enzymatic activities could be seen when iron 

starved roots are supplied with iron, showing a local control by substrate. In fact, when 

starved roots are supplied with iron which acts as a local inducer, all the enzyme 

activities assayed are increased in the first 24 h (Table 1); concerning the gene 

expression we could not really appreciate any substantial increase, but in any case their 

expression is not diminished within this period. A possible explanation of this apparent 

lack of induction, that has been shown at the moment mainly in Arabidopsis, could be 

ascribed to a different regulation in cucumber or to the fact that the expression, already 

high when iron is supplied, might mask a possible further increase.  

What kind of signals are involved in the response to iron deficiency is not yet 

known. We can assume that iron itself, through its movements in the xylematic and 

phloematic saps, may signal the iron status of the plant. It can act, according to the dual 

regulation model proposed by Vert et al. (2003), either as a local inducer signal and as a 

repressive systemic signal once its concentration inside the plant reaches a satisfactory 

level. Whether iron acts directly or in association with other molecules is not yet 
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known. On the other hand, iron deficiency itself cannot be considered a promotive 

systemic signal, but other molecules or mechanisms could act to induce such responses. 

In a study on iron deficiency responses in Arabidopsis by using microarray analysis 

(Thimm et al., 2001) it was found that in the shoot, several genes involved in the 

metabolism and export of carbohydrate, are strongly up-regulated in this condition, in 

particular the phosphate/triose phosphate translocator and the sucrose transporter, 

suggesting an increased energy requirement outside the shoot. In fact, the energy 

demand in the roots under iron stress deficiency is very high since they necessitate an 

increased amount of reducing equivalents, energy and tricarboxylic cycle intermediates 

to sustain all the processes induced by this condition (Zocchi, 2006 and reference 

therein). Indeed, an increase in the sugar concentration has been demonstrated in the 

phloem of iron deficient bean plants (De Vos et al., 1986). Whether sugars, or other 

molecules transported along with them in the phloem, are responsible for a systemic 

signal in iron deficiency response is still unknown. The promotive signal has been 

assigned to several molecules until now, such as IAA (Landsberg, 1984; Römheld & 

Marschner, 1986), ethylene (Lucena et al., 2006), sugar (Bienfait et al., 1987), iron 

complexed by a ligand (Kruger et al., 2002) and recently to nitric oxide (Graziano et al., 

2002). Regulation of the transcription factors that control the expression of genes 

involved in iron uptake and metabolism are characterized in bacteria (Escolar et al., 

1999), in yeast (Saccharomyces cerevisiae (Yamaguchi-Iwai et al., 2002) and in 

vertebrate (Papanikolaou & Pantopoulos, 2005). Recently, also in tomato and 

Arabidopsis transcription factors controlling the iron deficiency responses and the iron 

uptake has been described (Colangelo & Guerinot, 2004; Jacoby et al., 2004; 
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Brumbarova & Bauer, 2005; Yuan et al., 2005) suggesting that an analogous system 

might operate at the plant level. 
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Table I.  Effect of iron nutritional status on plasma membrane and PEPC root 
activities of plant grown in the presence or absence of iron and after iron 
resupply. 
H+-ATPase, Fe(III)-chelate reductase (FC-R) and PEPC activities were determined in 

the root apical segments of  8-day-old plants grown in iron sufficient or iron deficient 

nutrient solution and after Fe resupply to the -Fe roots. Data are the mean of three 

independent experiments. SE never exceeds 8%. Data are expressed as nmol NADH 

mg prot-1 min-1 

 Time H+-ATPase FC-R PEPC 

treatment  + Fe - Fe + Fe - Fe + Fe - Fe 

 7 d 103 157 40 142 82 235 

Iron resupply 24 h  160  196  310 

 48 h  140  151  220 

 72 h  116  96  103 
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Figure 1.  

Time courses of acidification (A) and reduction (B) capacity of cucumber roots grown 

in the presence (100 µM Fe) (closed circle) or in the absence of Fe (closed square). 

Arrow indicates the Fe resupply (open square) (100 µM Fe-EDTA). A representative 

experiment is shown. 
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A B

control - Fe control- Fe - Fecontrol - Fe

A

 

 

Figure 2. 

Visualization of medium acidification (A) and iron reduction (B) capacity along 

cucumber primary roots. Excised primary roots were incubated in 0.1% agar medium 

and the acidification was detected as pH change of the indicator Bromocresole Purple 

(yellow); the reduction was determined as the Fe2+-(BPDS)3 complex formation (red).  
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Figure 3. 

Iron deficiency-dependent expression of Strategy I responsive and PEPC genes. Total 

RNA was extracted from roots grown in the presence (+ Fe 8d) or in the absence of iron 

(-Fe 5d, 8d) and 12h, 24h and 48h after iron resupply. The transcript levels of CsFRO1, 

CsIRT1, CsHa1, Cspepc1 and actin of roots grown under different iron nutritional status 

were monitored by semi-quantitative RT-PCR. In A, expression pattern of transcripts 

after 5 and 8 days of iron deficiency respect to the control. In B, expression pattern after 

12h, 24h and 48h of iron resupply to Fe-deficient 8-day-old plants. 

 

 

 

 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

65
8.

1 
: P

os
te

d 
12

 J
ul

 2
01

0


