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ABSTRACT ARTICLE HISTORY

The ultimate goal of neuroscience is to ultimately understand Received 23 October 2019
how the brain functions. The advancement of brain imaging Accepted 27 March 2020
shows us how the brain continuously alternates complex

activity patterns aqd experimentally revga!s how th'ese Hopfield neural network;
patterns are responsible for memory, association, reasoning, recurrent neural network:
and countless other tasks. Two fundamental parameters, hippocampus; neocortex;
dilution (the number of connections per node), and maximum memory storage;
symmetry (the number of bidirectional connections of the limit behaviour storage
same weight) characterise two fundamental features

underlying the networks that connect the single neurons in

the brain and generate these patterns. Mammalian brains

show large variations of dilution, and mostly asymmetric

connectivity, unfortunately the advantages which drove

evolution to these state of network dilution and asymmetry

are still unknown. Here, we studied the effects of symmetry

and dilution on a discrete-time recurrent neural network

with McCulloch-Pitts neurons. We use an exhaustive

approach, in which we probe all possible inputs for several

randomly connected neuron networks with different

degrees of dilution and symmetry. We find an optimum

value for the synaptic dilution and symmetry, which turns

out to be in striking quantitative agreement with what

previous researchers have found in the brain cortex,

neocortex and hippocampus. The diluted asymmetric brain

shows high memory capacity and pattern recognition

speed, but most of all it is the less energy-consumptive

with respect to fully connected and symmetric network

topologies.

KEYWORDS

1. Introduction

The human brain contains billions of neurons connected with more than a
hundred trillion synapses which build countless structures forming anatomically
distinguishable regions. Brain imaging allows us to observe the complex
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dynamical patterns of neural activation which occur while mental processes are
executed. In this complex dynamical system perspective [1-6], each cell deter-
mines his activation state depending on its internal state, and on the activation
state of the cells to which it is connected through synapses. Consequently, the
single neuron activities collectively give rise to dynamical patterns. These dyna-
mical patterns are universally acknowledged to be responsible for how the brain
functions [3]. Several models [7,8] disregard the collective nature of brain func-
tions, and give quantitative descriptions of single neuron behaviour based on
patch-clamp voltage measurements [9]. However, many critical functions such
as memory, pattern recognition and mathematical operations are carried out
by one (or more than one) circuit rather than individual neurons. Even if it is
still mostly unknown how the brain, or any distributed hierarchical-less compu-
tational system collective, carries out these complex functions [10,11], Hopfield
developed a simplified approach to model how a circuit may store memories and
associative behaviours [5,6]. This model demonstrates that discrete-time Recur-
rent Neural Networks (RNN) with randomly connected networks and McCul-
loch-Pitts neurons possess attractors (states that periodically repeat) which
represent the stored memories or network stored behavioural patterns [12,13].
It is easy to demonstrate that discrete-time RNN with completely connected
symmetric networks converge fast and possess many attractors [14]: unfortu-
nately, these networks are efficient but far from a real biological system.

To represent realistic biological systems, however, one has to model asym-
metric (mono-directional) connections: i.e. if a neuron A is connected to B,
then B is not necessarily connected to A. Unfortunately, completely connected
networks with asymmetric connections lead to exponentially long convergence
time (inefficient computation) in which the network spends most of its time in a
transient state before reaching the attractor [15], and for this reason these net-
works require enormous computational performance to be simulated. For this
reason, standard modelling with asymmetric McCulloch-Pitts approaches fail
to represent the cortex and hippocampus which performs pattern recognition
in a few milliseconds.

The hippocampus is one of the brain regions responsible for memory, where
the elaborated sensory input is driven to internal memory states enabling flexible
and context-dependent decisions to be made, rather than simple reflexive
actions in response to isolated stimuli. It is surprising that such processes, at
the basis of any form of long-term programming and thinking, are located in
areas of lower connectivity, if compared for example to the motor cortex and
the cerebellum. The probability that anyone hippocampal CA3 neuron will
contact another is approximately 0.04 (0.96 dilution) ([16,17]). Moreover, the
neocortex has diluted connectivity and the probability that a neocortical pyrami-
dal cell will contact a nearby one is in the order of 0.1 (0.9 dilutions) [18]. Similar
values of the dilution are also found in monkey and mouse visual cortex [19,20],
and in human cortex [21]: the reason for which evolution selected asymmetric
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and diluted connectivity for these areas is still today an open question, which has
been so far nearly unexplored [22-24]. In our previous research [25], we found
that a discrete-time RNN with McCulloch-Pitts neurons possess two network
conditions with optimal memory storage, a completely connected and sym-
metric condition and a diluted asymmetric condition. Furthermore, we show
that the optimal RNN condition of dilution and asymmetry corresponds to
the dilution and asymmetry values found in the hippocampus and the neocortex.
We propose that evolution selected this condition among the two possible,
because it requires the formation of fewer neuron connections, and it is therefore
more feasible from a structure-development point of view. A completely con-
nected network would be biologically unfeasible because the high number of
connections it would require could not be accommodated in a realistic living
brain since the number of connections would grow as the square of the
number of neurons.

Here, we propose a numerical model, which, given arbitrary values of dilution
and symmetry, allows us to simulate several networks and for each of them to
retrieve all the attractors representing memory states. With this approach, we
are able to analyse three main cortex properties: memory capacity, association
speed, and energy consumption. We study four regions of dilution and sym-
metry: a complete-connected symmetric network, a complete-connected asym-
metric network, a diluted symmetric network, and a dilute asymmetric network.
In this paper, we call a complete-connected symmetric network the Hopfield
network, and diluted symmetric network the diluted Hopfield network. We
reproduce the fact that the Hopfield networks and the diluted asymmetric net-
works have optimal storage properties and memory retrieval. Moreover, we find
that the diluted asymmetric networks have the unexpected characteristic of
being more energy-efficient. Although our model is very general, we demon-
strate that there exists an optimum degree of connectivity (number of synapses
per neuron) for which the circuitry performance is drastically improved. The
striking feature is that the optimum connectivity we retrieve both for symmetric
and asymmetric networks have a diluted degree of connectivity which is very
close to what is found in the mammalian visual cortex, neocortex, and
hippocampus.

2. Recurrent neural network model

In this paper, we assume a discrete-time RNN composed of McCulloch-Pitts
neurons [3,26] which is one of the most synthetic and minimal models
capable of capturing the essential properties of a real cortical neuron network.
Monte et al. [27] and Carnevale et al. [28] showed how RNNs can be used to
model real cognitive processes, respectively, Monte et al. [27] presented a
model that discusses how the prefrontal cortex integrates context information,
and Carnevale et al. [28] presented a model that describes the response
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modulation of the premotor cortex. This simple model incorporates the notion
of multiple inputs (postsynaptic potentials), a threshold, and a single output
(action potential). In such model, the state of the ith neuron o;(t) is described
mathematically by a discrete, two valued variable (0, 1), and the dynamic of
the system is given by the discrete-time difference equation

N

hi(t) =Y Jijorj(t), (1a)
j=1

ai(t +1) = O[hi(t) > 7], (1b)

where

h;(t) is the total postsynaptic potential of the ith neuron at time ¢.

o(t) is the state of the jth neuron at time ¢, 0 (resting state) or 1 (firing state).
©® = 1if h;i(t) > m and 0 otherwise, # can be viewed as a threshold.

Jij is the connectivity matrix and represents the stored connections.

In such a model, a state of a N neurons neural network is a binary N-dimen-
sional vector which can be regarded as a N digit binary number o, and each
neuron may be in a firing state (0;(t) = 1) or in a resting state (o;(¢) = 0). Con-
sequently, the total number of possible network states is 2V. The evolution
Equation (1) determines the network dynamics connecting any state at time ¢
to the following at time ¢+ 1. Given a connectivity matrix J;; and a threshold
1, we get a deterministic dynamics, thus any state o(t) evolves in only a single
state o(t + 1). Consequently, there are three types of states: transient, recurring,
and fixed points. Transient states are visited once by the dynamical system and
never recur. Given an initial state that is transient the system travels through a
sequence of transient state until it gets to a steady solution (the attractor): one or
more states in a sequence that repeats at a specific period. If this steady solution
is composed by a single state it is called a fixed point, otherwise we address it as a
limit cycle of length L, where L is the number of states composing the period.
The states in a limit cycle are recurrent states. Due to the fact that the space
that is composed of all network states is discrete and finite, the evolution
always brings to a fixed point or a limit cycle. A fixed point can be regarded
as a limit cycle with L=1.

There are two general perspectives that try to explain how memories are
stored in the brain. The first is the Hebbian perspective in which memories
are stored by rewiring the neural network until each neural pattern associated
with a memory becomes a stable attractor [29]. The second is the innate frame-
work in which memories are stored associating to each memory a pre-existing
attractor [25] or several lego-like pre-existing attractors [30]. In both perspec-
tives, given an input, a neural network evolves until it reaches the relative
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attractor, thus associating an input state (stimulus) to an output attractor
(memory). Consequently, the number of attractors can be considered as an
upper bound of the number of memories that can be stored [25]. Given this
observation, it is reasonable to infer that neural networks with a single or few
attractors may be considered to be inefficient memory devices with poor
storing capability. On the other hand, neural networks with many attractors
are able to classify inputs in many sub-categories. The number of attractors
gives us an upper bound estimate of the memory capacity of the network.

We use an exhaustive numerical approach: it enables to retrieve how all the
2N possible network states are driven to their specific attractors. Practically
speaking, we account numerically for all the possible networks dynamics. Differ-
ently from previous theoretical approaches, which have focused on the study of
fixed points of the network [31], our approach considers all the network attrac-
tors including periodic oscillations (limit cycles), which have a relevant role in
brain activity [32,33].

In each numerical experiment, we generate the J;; connectivity matrix ran-
domly and then we retrieve all the network’s attractors, by numerically iterating
equation (1) for each possible input. An example of the result obtained by our
numerical tool is reported in Figure 1 which represents the organisation of
the states from a small neural network (N=6, 2° = 64 possible states) with a
transition graph. The states in the transition graph are represented with three

Limit Cycle
Starting State
Transient State
Cluster Border

>OO

=6.

, 64 states

N
C=4

M‘I—‘
T

Figure 1. Schematic representation of the dynamic landscape of an asymmetric network. The 64
states of the network are subdivided into their basin (circled areas), each one with its attractor.
These are labelled as starting (circles), transient (triangles), and attractors (squares) states. Arrows
represent the transitions from any state oft) to of(t + 1).
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geometrical markers: limit cycle states (squares), transient states (triangles and
circles). The links in the graph represent the transitions from each state o(t)
to o(t 4 1) that are given by the deterministic dynamics of the RNN. This par-
ticular realisation of the synaptic matrix produces four limit cycles (C=4). Of
these limit cycles one is of length L=4, the other is of length L=3, and last two
limit cycles are fixed points, L=1. The set of all transient states that converge
to a given attractor is the basin of attraction of that particular attractor. The
case in the figure illustrates the attractors’ basins that have, respectively, sizes
§=20,24,19 and 1. In this realisation, the maximum convergence time is 4 evol-
ution steps; the minimum is 0. The dynamical evolution that associates the
initial state to the attractor, models a system association process, in which we
can assume that the association time is proportional to the number of transient
states needed to recover the attractor [12,13]. The number of the attractors C
represents an upper bound of the memory capacity of the network, while the
number of the transient states represent the time needed to associate the
sensory input to the associated limit behaviour.

We consider two major properties of the connectivity of a recurrent neural
network symmetry ¢, and dilution p. Symmetry expresses the degree to which
any couple of neurons i and j with edges, J;; and J;; connecting them, have
the same strength. Meanwhile, the dilution expresses the fraction of edges J;;
that are missing, J;; = 0. As in [25], to obtain a random network with a
certain dilution value p and symmetry ¢, we perform a convex sum over the
matrix elements of a random symmetric matrix Sj;, and a random anti-sym-

metric matrix A,-j,

where the random symmetric and anti-symmetric matrices are generated in
four steps. First, the upper diagonal elements are randomly generated with
values from a uniform distribution defined in the closed interval
[ — 1, + 1]. Second, these randomly drawn elements are set to zero with prob-
ability p. Third, the lower diagonal elements are set either as S;; = S; for the
symmetric matrices, or as A;j = —A; otherwise. Forth the diagonal elements
are set to zero.

This model has been extensively studied in the symmetric, € = 0, and com-
pletely connected, p = 0, case, that is for all (i, j), Jij =J;; and J;; > 0). In
this case, one retrieves only fixed points and limit cycles with L=2, and the
number of the attractors C (which grows exponentially with N). The opposite
is true for asymmetric, € = 1 and completely connected, p = 0, networks, that
is for all (4, j), Jij # Jji and J;; > 0. These networks produce large average L
(longer limit cycles) and store less information (smaller average C), for this
reason, they have been disregarded in the majority of previous papers.
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3. Results

Here, we present an extensive study of randomly sampled McCulloch-Pitts dis-
crete-time RNN with given symmetry ¢ and dilution p. That is, for each sampled
network, we probe all the 2N states which allow us to reconstruct the full tran-
sition graph and to find all the transient states, the attractors, and the attractors’
basins. This approach allows the direct comparison of the network properties
given different symmetry € and dilution p. Until [25], only completely connected
McCulloch-Pitts discrete-time recurrent neural networks were considered, thus
only networks that shared synaptic connection between all neurons were con-
sidered. Clearly, the assumption that any pair of neurons are connected by a
synapse is not realistic if we consider brain regions with several neurons,
because there would not be sufficient space for all the required connections.

In Figure 2, we report the number of steady states (C) (() indicate the
average over different random synaptic realisations) as a function of the synaptic
dilution p in the asymmetric case, € = 1. The connection generated by real
neurons are usually asymmetric. Consider, that the parameter p is approximately
the ratio W,/ W, where W is the total number of possible network edges that are
not loops, e.g. the number of matrix elements excluded the diagonal terms, and
Wy is the number of missing edges, e.g. the J;; matrix elements set to 0 excluded
the diagonal elements. Thus, p determines the percentage of neurons which are
not connected. A value of p close to 1 represents a set of neurons with no con-
nections. The striking feature is the presence of a peak in C for a value of dilution

Cortex and Hippocampus

Memory capacity <C>

p

Figure 2. Memory capacity (C) as a function of the network dilution p for a N=12 neurons
network and for a N=18 neurons network (exhaustive sampling), given asymmetric networks,
€ = 1. The grey shaded area marks the dilution of cortex and hippocampus. The inset shows
the scaling of (C) as a function of N for four paradigmatic kinds of network: the Hopfield
network (€ =0 p =0, open circles), the diluted Hopfield network (e =0 p = 0.9, open
squares), the diluted asymmetric network (e = 1 p = 0.9, full squares), the glassy completely
connected asymmetric (e = 1 p = 0, open triangles).
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p of about 0.90: in that region (we name it peak region) every neuron is con-
nected just with the 10% of the total number of neurons N. This number is
very close to what found in mammalian cortex and hippocampus. The
amount of information that may be stored by this neural circuit increases as
2™ with y equal to 0.26 (full square markers). This value is higher than what
is found in non-diluted asymmetric matrices, y equal to 0.03 (triangle
markes). Moreover, if we call Hopfield neural networks completely connected
symmetric neural networks, diluted Hopfield networks diluted symmetric net-
works, then in the diluted asymmetric networks the number of information
increases at a lower rate than the Hopfield network and at a higher rate than
the diluted Hopfield network (in the inset of the Figure 2, with circle and
open square markers, respectively). When p is close to 1 the connectivity
matrix results entirely filled with zeros, thus at any input follows the ‘shutdown
state’: all neurons are 0 (not firing).

Another important feature is the convergence speed (number of transient
states needed to reach the attractor), which is connected to the speed needed
to associate the starting state (as a sensory input) to the corresponding attractor.
The convergence time T is represented by the number of evolution steps through
transient states, needed for the network to reach a limit cycle (or a fixed point).
(T) (averaged over at least 100 of realisations of the connectivity matrix) is
reported in Figure 3. The convergence time decreases with increasing p,

(@) 10

Association time <T>

(Cq(q .’.:<
B-0=-0—0—0—0——0—QUHExH

0 0.2 0.4 0.6 0.8 1
p

Basin Size <Bs>
o N B (2] (o]

Figure 3. Association time (T) (panel a) and Basin size (B) (panel b). Lower data point is from an
RNN with N=12 and higher data points are from an RNN with N=18. The inset reports the scaling
with N for paradigmatic cases. The markers code is the same as in the inset of Figure 2. In panel
(b), the different curves are for N = [12, 13, 14, 16, 18] (from lower to higher).
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025 a) 02z B %[z c)
e=0 €=0 e=1
0.15 P=0 0.15(P=09 0.15 p=09
)
= 0.1 0.1 0.1
0.05 0.05 0.05
0 0
0 0.5 1 0 0.5 1
<E> <E>
NN s
R 0.4
L>), ™ u [ ]
502t © ) o
2
w o .

16 17 18 19 20 21 22
N

Figure 4. Average energy consumption (E) for three paradigmatic brain connectivity. The P({E))
as a function of (E) is reported for Hopfield, (panel a), diluted Hopfield (panel b), and brain (panel
). In (d), we report the average values of energy consumption as a function of N in the network
for Hopfield (triangles markes), diluted Hopfield (square markes), and brain (circle markers).

meaning that the process to associate the input to the relative limit cycle is much
faster when the neuron connection probability is reduced. For p close to 0 the
mean convergence time (T) scales with N as 2" with y = 0.13. On the other
hand, in the region of the peak (p =0.9) y = 0.08, this means that in the
peak region the brain has a fast memory recovery together with large memory
capacity. Correspondingly, we find that the attraction basins becomes smaller
in correspondence of the peak region (Figure 3).

We also calculated the energy consumption of the activated cycles. In our
model firing neurons have o0;(t) = 1 and the neurons at rest have o;(t) = 0.
The energy consumed by the system, while it is stuck in an attractor state, is pro-
portional to the number of firing neurons, the number of ‘s’ in the attractor
states. On the other hand, an attractor in which the majority of the neurons
remain silent, the ‘0s’ present in the states of the attractors, are preferable
because they correspond to lower energy consumption. Consequently, we calcu-
lated the total energy consumption, E, as the number of ones per limit cycle N;
normalised by the network size N and the attractor length: E = N;/(NxL).
Finally, we analyse how E changes as a function of ¢ and p. The probability of
retrieving a certain energy consumption is reported in panels 4(a-c) for three
paradigmatic cases: Hopfield (a, (e, p) = (0,0)), diluted Hopfield (b,
(e, p) = (0, 0.9)), diluted asymmetric (c, (€, p) = (1, 0.9)). The energy consump-
tion is independent on N (Figure 4(d)), while the more efficient form of connec-
tivity is the one of diluted and asymmetric network, reported with circles in the
figure.



10 M. LEONETTI ET AL.

4, Conclusions

We proposed an exhaustive McCulloch-Pitts network which allows us to
retrieve memory capacity and association speed given an arbitrary connectivity
matrix. We demonstrate that in an asymmetric network dilution increases the
rapidity (the steps needed to associate the input to the attractor) and the capacity
(number of attractors). Moreover, diluted networks are biologically more plaus-
ible because there would not be sufficient space for a network with links connect-
ing all possible couples of neurons. Furthermore, for asymmetric networks there
exists an optimum value for the network connectivity, which produces a
maximum in the network capacity: this value (p = 0.90, 10% probability for a
neuron to be connected with another of the same region) is in agreement
with the values of connectivity found in nature for the brain hippocampus
and cortical regions. The asymmetric-diluted network also provides a significant
advantage in terms of energy consumption: neurons fire less than half time with
respect to the Hopfield network and about 2/3 times less than the diluted
Hopfield networks. Thus providing an explanation for the dilution and asymme-
try of certain brain areas specifically connected to the storage of memories and
behavioural patterns.
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