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exploitation of the entropy principle
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A generalization of the classical Coleman–Noll procedure for the exploitation of second
law of thermodynamics in the presence of first-order non-local constitutive functions is
proposed. The local balance of entropy is regarded as a differential inequality constrained
by the governing equations for the set of the unknown fields as well as by their gradient
extensions. The thermodynamic compatibility of such a class of materials is achieved
without any modification of the basic thermodynamic laws. The results so obtained are
applied to model nonlinear heat conduction in solids, in the presence of a dynamical
semi-empirical temperature scale.
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1. Introduction

In continuum thermodynamics, the entropy principle constitutes a basic tool
in order to derive thermodynamic restrictions on the constitutive functions
(Truesdell 1984). In literature, one can find two rigorous mathematical
procedures, the Coleman–Noll (Coleman & Noll 1963) and the Liu one (Liu
1972), which are faced with the problem of finding necessary and sufficient
conditions ensuring that the dissipation inequality is satisfied in correspondence of
arbitrary solutions of the governing equations for the wanted fields. The Coleman–
Noll procedure was developed in the framework of rational thermodynamics
(Truesdell 1984). In such an approach, for rigid heat conductors, the second law
of thermodynamics is expressed locally by the Clausius–Duhem inequality

−(ψ̇ + sθ̇) − 1
θ
qiθ,i ≥ 0, (1.1)

where θ is the absolute temperature, ψ = (e − θs) is the Helmholtz free energy per
unit of volume, e being the internal energy density, s is the entropy density and qi ,
i = 1, 2, 3 are the components of the heat flux q. In equation (1.1), a superposed
dot denotes the derivative with respect to time, the symbol (,i) denotes partial
differentiation with respect to the current cartesian coordinates xi , the repeated
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indices implying summation. In the absence of heat sources, the inequality (1.1)
is obtained by substituting the local balance of energy

ė + qi,i = 0, (1.2)

into the entropy inequality

σs = ṡ +
(qi

θ

)
,i

≥ 0, (1.3)

where σs is the local entropy production.
It is worth observing that, in such a way, the differential constraint represented

by the balance of energy is taken into account only quantitatively but not
qualitatively, because its role is the same whatever the class of materials is. This is
a consequence of the fact that the space and time derivatives appearing therein are
not developed and hence the constitutive equations cannot be taken into account.

Rational thermodynamics introduces the gradients of the unknown fields as
arguments of the constitutive functions (weak non-locality). This represents a
useful mean in modelling phenomena in which the behaviour of the material in
a point depends on its interactions with the closest particles too. Weakly non-
local constitutive equations are mostly investigated in the study of the material
microstructure (Capriz 1989), or in the gradient extension of classical theories
(Cimmelli & Frischmuth 2007).

If the gradients enter the constitutive equations of deformable continua, and
the balance of energy is accepted in its classical form (Coleman & Noll 1963),
the Coleman–Noll procedure leads to the consequence that the entropy, the
free energy and the other thermodynamic potentials cannot depend on the
gradients, whatever is the order of non-locality of the constitutive equations.
Such a conclusion may generate serious discrepancies, because it renders some
important classes of non-local materials, such as the Korteweg fluids (Korteweg
1901), incompatible with the second law (Dunn & Serrin 1985; Cimmelli et al.
2009b). One can mention several other situations in which the entropy is required
to depend on the gradients of the unknown variables as, for instance, damage
theory (Bazant & Pijauder-Cabot 1987; Ván & Vásárhelyi 2001), liquid crystals
(Papenfuss & Forest 2006) and critical phenomena at low temperature (Lebon
et al. 1998).

In order to circumvent these problems, and still remain in the framework of
rational thermodynamics, two different approaches can be found in literature.

The first one modifies the entropy inequality (Müller 1967), by postulating the
existence of an entropy extra-flux k such that the total entropy flux becomes
J = (q/θ) + k. The second one modifies the local balance of energy, by supposing
the existence of an energy extra-flux u, owing to the matter diffusion (Gurtin &
Vargas 1971) or to the interstitial working of long-range interactions (Dunn &
Serrin 1985). However, even if we assume one of the two points of view above,
problems arise in dealing with the first-order non-local constitutive equations.
This is due to the fact that the Coleman–Noll procedure allows the entropy
to depend on the gradients of order n of the unknown fields if, and only if,
the constitutive functions depend on the gradients of order n + 1. In the case of
first-order non-locality, it is clear that this leads again to a local entropy (Müller
1967; Gurtin & Vargas 1971; Dunn & Serrin 1985).
Proc. R. Soc. A (2010)
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Recently, the above problem has been afforded by Cimmelli (2007) from a
different point of view. His proposal was that one should consider as constraints
for the entropy inequality both the governing equations of the wanted fields
and their gradient extensions up to the order which appears in the state space.
Starting from this idea, an extension of the classical Liu procedure (Liu 1972) was
developed. The new methodology has been applied in modelling second-grade
Korteweg-type fluids (Cimmelli et al. 2009b) and non-local effects and second
sound in solids (Cimmelli et al. 2009a). In both cases, the entropy is non-local,
without the needing of any extra-flux.

In the present paper, we propose a generalization of the classical Coleman–Noll
procedure which is in accordance with the above point of view.

Our proposal is that one should substitute into the inequality (1.1) the
governing equations of the wanted fields, and their gradient extensions up
to the order which appears in the state space, so that the number of
the constraints considered is every equal to the number of independent
thermodynamic variables. Moreover, these equations should be substituted in
such a way that the time derivatives of the thermodynamic potentials and the
divergences of the fluxes should be explicitly calculated, so that the influence
of the constitutive equations on the form of the dissipation inequality should
emerge. Indeed, a serious problem arising in applying the generalized procedure
illustrated above is that the substitution of the differential constraints into
the entropy inequality can be realized in several ways, giving rise to different
expressions for the dissipation inequality. Our proposal above provides a criterion
which should be taken into account in order to obtain the most appropriate
substitution.

In §2, we consider a general scheme in which the constitutive functions are
admitted to depend on the absolute temperature θ , on a set of intensive variables
z ruled by a governing equation which is not in the balance form, on a set
of extensive variables w, for which a balance equation is assigned, and on the
first-order gradients of all the aforementioned variables. Then, by substituting in
equation (1.1) the governing equations of the wanted fields and their gradient
extensions, the thermodynamic restrictions on the constitutive functions are
obtained starting by the observation that such an extended inequality is linear
in a suitable set of space and time derivatives which are considered to be
completely arbitrary. The main consequence of the new extended approach
is that a non-local entropy is compatible with the restrictions placed by the
second law, against the commonly accepted statement that first-order spatial
non-localities do not influence the thermodynamic potentials but contribute only
to the fluxes.

In §3, we apply the general scheme of §2 in modelling weakly non-local and
nonlinear heat transport in solids. We consider a rigid heat conductor whose
state space is spanned by the absolute temperature θ , a dynamical semi-empirical
temperature β (Cimmelli & Kosiński 1991) and their first-order gradients. A
governing equation for β is assigned. It is shown that the non-local terms entering
the thermodynamic potentials and the evolution equation of β lead to a nonlinear
extension of the celebrated Guyer–Krumhansl heat transport equation (Guyer &
Krumhansl 1966).

Finally, in §4, concluding remarks together with the possible further
developments of the theory are presented.
Proc. R. Soc. A (2010)
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2. Extended Coleman–Noll inequality

Let us consider heat conducting rigid bodies whose constitutive functions are
defined on the set

Z = {θ , θ,i , zα, zα,i , wA, wA,i }, (2.1)

with α = 1, . . . , N̄ , and A = 1, . . . , M̄ . Let us notice that in equation (2.1), two
additional types of indices have been used: the Greek index and the capital Latin
one. The former means the generic component of z and runs from 1 to N̄ . The
latter, instead, means the generic component of w and runs from 1 to M̄ .

Let us suppose that the components zα of the intensive state variable z are
ruled by an evolution equation of the type

żα = f 0
α (Z )θ̇ + f 1

αβij(Z )zβ,ij + f 2
αBij(Z )wB,ij , (2.2)

wherein f 0, f 1 and f 2 are suitable tensorial functions.
The components wA of the extensive state variable w are instead governed by

a balance law
ẇA + ΦAj ,j = 0, (2.3)

where ΦAj is the j-th component of the flux term and, for the sake of simplicity,
the production of wA has been supposed to be zero.

It is worth observing that an evolution equation for the temperature θ can be
obtained by taking into account equations (1.1) and (2.1). In the absence of heat
sources, it reads

cθ̇ + ∂e
∂θ,j

θ̇,j + ∂e
∂zβ

żβ + ∂e
∂zβ,k

żβ,k + ∂e
∂wA

ẇA + ∂e
∂wA,k

ẇA,k

+ ∂qi

∂θ
θ,i + ∂qi

∂θ,j
θ,ji + ∂qi

∂zβ

zβ,i + ∂qi

∂zβ,k
zβ,ki + ∂qi

∂wA
wA,i + ∂qi

∂wA,k
wA,ki = 0, (2.4)

with c = ∂e/∂θ as the specific heat. The above equation constitutes the constraint
on the state variable θ , to be taken into account in deriving the consequences of
the entropy principle.

Owing to equation (2.1), the inequality (1.1) reads(
∂ψ

∂θ
+ s

)
θ̇ + ∂ψ

∂θ,j
θ̇,j + ∂ψ

∂zβ

żβ + ∂ψ

∂zβ,k
żβ,k + ∂ψ

∂wA
ẇA + ∂ψ

∂wA,k
ẇA,k + 1

θ
qiθ,i ≤ 0.

(2.5)
Our next step consists in obtaining a very general entropy inequality,

the extended Coleman–Noll inequality, by substituting into equation (2.5) the
differential constraints (2.2)–(2.4), together with their spatial gradients. After
some lengthy calculations, we get[

∂ψ

∂zα

f 0
α + ∂ψ

∂zα,i
(f 0

α ),i − 1
c

∂ψ

∂θ,i

(
∂e
∂θ

)
,i

]
θ̇

−
⎡
⎣1

c

(
∂ψ

∂θ
+ s

)
∂e
∂θ,j

+ 1
c

∂ψ

∂θ,i

(
∂e
∂θ,j

)
,i

− ∂ψ

∂zα,j
f 0
α

⎤
⎦ θ̇,j
Proc. R. Soc. A (2010)
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− 1
c

∂ψ

∂θ,i

∂e
∂θ,j

θ̇,ji −
(

1
c

∂ψ

∂θ,i

∂qj

∂θ,k
+ ∂ψ

∂wA,i

∂ΦAj

∂θ,k

)
θ,kji

− 1
c

[(
∂ψ

∂θ
+ s

)
∂e
∂zβ

+ ∂ψ

∂θ,i

(
∂e
∂zβ

)
,i

]
żβ

− 1
c

[(
∂ψ

∂θ
+ s

)
∂e

∂zβ,i
+ ∂ψ

∂θ,i

∂e
∂zβ

+ ∂ψ

∂θ,k

(
∂e

∂zβ,i

)
,k

]
żβ,i − 1

c
∂ψ

∂θ,i

∂e
∂zβ,k

żβ,ki

−
[
1
c

∂ψ

∂θ,i

∂qj

∂zβ,k
− ∂ψ

∂zα,i
f 1
αβkj − ∂ψ

∂wA,i

∂ΦAj

∂zβ,k

]
zβ,kji

− 1
c

[(
∂ψ

∂θ
+ s

)
∂e

∂wA
+ ∂ψ

∂θ,i

(
∂e

∂wA

)
,i

]
ẇA

− 1
c

[
∂ψ

∂θ,i

∂e
∂wA

+
(

∂ψ

∂θ
+ s

)
∂e

∂wA,i
+ ∂ψ

∂θ,k

(
∂e

∂wA,i

)
,k

]
ẇA,i − 1

c
∂ψ

∂θ,i

∂e
∂wA,k

ẇA,ki

−
[
1
c

∂ψ

∂θ,i

∂qj

∂wA,k
− ∂ψ

∂zα,i
f 2
αAkj + ∂ψ

∂wB,i

∂ΦBj

∂wA,k

]
wA,kji

+ �(θ , θ,i , θ,ji , zα, zα,i , zα,ji , wA, wA,i , wA,ji ) ≥ 0, (2.6)

with � a suitable regular function of its arguments.
The above inequality is linear in the time derivatives which cannot be expressed

as functions of the elements of the state space, and in the gradients which are
two orders higher than the gradients in the state space. However, it is not linear
in the gradients which are one order higher than the gradients in the state space.
Hence, we have to distinguish between higher derivatives and highest derivatives
(Cimmelli et al. 2009b). The higher derivatives are the spatial derivatives whose
order is higher than that one of the gradients entering the state space. The highest
derivatives are both the time derivatives of the elements of the state space which
cannot be expressed as functions of the basic fields and the higher derivatives
whose order is the highest one.

In order to derive the consequences of equation (2.6), first we note that the
highest derivatives entering equation (2.6) are the following: θ̇ , θ̇,j , θ̇,ji , θ,kji , żβ , żβ,i ,
żβ,ki , zβ,kji , ẇA, ẇA,i , ẇA,ki , wA,kji . In any point (P0, t0) ∈ R

3 × [0, +∞[, the value
of these derivatives is completely arbitrary and independent of their coefficients
into the brackets. Then, should even only one of these brackets be different from
zero, the entropy inequality could be easily violated. As a consequence, all the
brackets must vanish and this yields the thermodynamic restrictions

∂ψ

∂zα

f 0
α + ∂ψ

∂zα,i
(f 0

α ),i − 1
c

∂ψ

∂θ,i

(
∂e
∂θ

)
,i

= 0, (2.7)

−1
c

(
∂ψ

∂θ
+ s

)
∂e
∂θ,j

− 1
c

∂ψ

∂θ,i

(
∂e
∂θ,j

)
,i

+ ∂ψ

∂zα,j
f 0
α = 0, (2.8)
Proc. R. Soc. A (2010)
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∂ψ

∂θ,i

∂e
∂θ,j

= 0, (2.9)

1
c

∂ψ

∂θ,i

∂qj

∂θ,k
+ ∂ψ

∂wA,i

∂ΦAj

∂θ,k
= 0, (2.10)

(
∂ψ

∂θ
+ s

)
∂e
∂zβ

+ ∂ψ

∂θ,i

(
∂e
∂zβ

)
,i

= 0, (2.11)

(
∂ψ

∂θ
+ s

)
∂e

∂zβ,i
+ ∂ψ

∂θ,i

∂e
∂zβ

+ ∂ψ

∂θ,k

(
∂e

∂zβ,i

)
,k

= 0, (2.12)

∂ψ

∂θ,i

∂e
∂zβ,k

= 0, (2.13)

−1
c

∂ψ

∂θ,i

∂qj

∂zβ,k
+ ∂ψ

∂zα,i
f 1
αβkj + ∂ψ

∂wA,i

∂ΦAj

∂zβ,k
= 0, (2.14)

(
∂ψ

∂θ
+ s

)
∂e

∂wA
+ ∂ψ

∂θ,i

(
∂e

∂wA

)
,i

= 0, (2.15)

∂ψ

∂θ,i

∂e
∂wA

+
(

∂ψ

∂θ
+ s

)
∂e

∂wA,i
+ ∂ψ

∂θ,k

(
∂e

∂wA,i

)
,k

= 0, (2.16)

∂ψ

∂θ,i

∂e
∂wA,k

= 0, (2.17)

−1
c

∂ψ

∂θ,i

∂qj

∂wA,k
+ ∂ψ

∂zα,i
f 2
αAkj − ∂ψ

∂wB,i

∂ΦBj

∂wA,k
= 0 (2.18)

and � (
θ , θ,i , θ,ji , zα, zα,i , zα,ji , wA, wA,i , wA,ji

) ≥ 0. (2.19)

Remark. In our analysis, we did not require that the system of equations (1.2),
(2.2) and (2.3) admits analytic solutions, but simply that the Cauchy problem for
it is well posed in a suitable functional space (Ruggeri 1988). Hence, we avoided
any additional hypothesis which requires a strong regularity of the solution as, for
instance, the symmetry of higher-order spatial derivatives of the unknown fields.
In the case of analytic solutions, a set of weaker restrictions, involving only the
symmetric part of the coefficients of the highest derivatives θ̇,ji , θ,kji , żβ,ki , zβ,kji ,
ẇA,ki , wA,kji , would be true.

A further important difference with respect to the classical case is that in
equation (2.6), the coefficients of the highest derivatives include terms that, in
principle, may also contain some higher-order derivatives of the state functions.
These coefficients must vanish anyway, as they are independent of the highest
derivatives. However, we must require that the consequent restrictions involve
only the constitutive equations. A direct inspection of equations (2.7)–(2.18)
shows that this is true if the functions f 0

α are local and, moreover, if either

ψ = ψ(θ , zα, zα,i , wA, wA,i ), (2.20)

or
e = e(θ , zα, wA). (2.21)
Proc. R. Soc. A (2010)
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Let us suppose equation (2.20) holds. In such a case, the set of thermodynamic
restriction equations (2.7)–(2.18) yields

∂ψ

∂zα

f 0
α + ∂ψ

∂zα,i
(f 0

α ),i = 0, (2.22)

−1
c

(
∂ψ

∂θ
+ s

)
∂e
∂θ,j

+ ∂ψ

∂zα,j
f 0
α = 0, (2.23)

∂ψ

∂wA,i

∂ΦAj

∂θ,k
= 0, (2.24)

(
∂ψ

∂θ
+ s

)
∂e
∂zβ

= 0, (2.25)

(
∂ψ

∂θ
+ s

)
∂e

∂zβ,i
= 0, (2.26)

∂ψ

∂zα,i
f 1
αβkj + ∂ψ

∂wA,i

∂ΦAj

∂zβ,k
= 0, (2.27)

(
∂ψ

∂θ
+ s

)
∂e

∂wA
= 0, (2.28)

(
∂ψ

∂θ
+ s

)
∂e

∂wA,i
= 0 (2.29)

and
∂ψ

∂zα,i
f 2
αAkj − ∂ψ

∂wB,i

∂ΦBj

∂wA,k
= 0. (2.30)

From the restrictions above, if the internal energy depends at least on one of
the variables zβ , zβ,i , wA, wA,i , then the classical relation

s = −∂ψ

∂θ
(2.31)

ensues.
On the other hand, if the condition (2.21) holds, we obtain

∂ψ

∂zα

f 0
α + ∂ψ

∂zα,i
(f 0

α ),i − 1
c

∂ψ

∂θ,i

(
∂e
∂θ

)
,i

= 0, (2.32)

∂ψ

∂zα,j
f 0
α = 0, (2.33)

1
c

∂ψ

∂θ,i

∂qj

∂θ,k
+ ∂ψ

∂wA,i

∂ΦAj

∂θ,k
= 0, (2.34)

(
∂ψ

∂θ
+ s

)
∂e
∂zβ

= 0, (2.35)

∂ψ

∂θ,i

∂e
∂zβ

= 0, (2.36)
Proc. R. Soc. A (2010)
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−1
c

∂ψ

∂θ,i

∂qj

∂zβ,k
+ ∂ψ

∂zα,i
f 1
αβkj + ∂ψ

∂wA,i

∂ΦAj

∂zβ,k
= 0, (2.37)

(
∂ψ

∂θ
+ s

)
∂e

∂wA
+ ∂ψ

∂θ,i

(
∂e

∂wA

)
,i

= 0, (2.38)

∂ψ

∂θ,i

∂e
∂wA

= 0 (2.39)

and − 1
c

∂ψ

∂θ,i

∂qj

∂wA,k
+ ∂ψ

∂zα,i
f 2
αAkj − ∂ψ

∂wB,i

∂ΦBj

∂wA,k
= 0. (2.40)

Hence, the conditions (2.30) and (2.31) hold again unless e depends on the
absolute temperature only. If this is not the case, by the restrictions above
we infer

∂ψ

∂zα

f 0
α + ∂ψ

∂zα,i
(f 0

α ),i = 0, (2.41)

∂ψ

∂zα,j
f 0
α = 0, (2.42)

∂ψ

∂wA,i

∂ΦAj

∂θ,k
= 0, (2.43)

∂ψ

∂zα,i
f 1
αβkj + ∂ψ

∂wA,i

∂ΦAj

∂zβ,k
= 0 (2.44)

and
∂ψ

∂zα,i
f 2
αAkj − ∂ψ

∂wB,i

∂ΦBj

∂wA,k
= 0. (2.45)

Let us suppose for a while that the intensive variable z does not enter the state
space. From equations (2.41)–(2.45), it follows

∂ψ

∂wA,i

∂ΦAj

∂θ,k
= 0 (2.46)

and

∂ψ

∂wB,i

∂ΦBj

∂wA,k
= 0. (2.47)

The previous restrictions can be trivially satisfied if either ψ or ΦA is local.
A similar result has been obtained by Cimmelli (2007) and referred to as law of
the exchange of non-locality.

The residual inequality (2.19) still depends on the higher derivatives θ,ji , zα,ji
and wA,ji and its form is peculiar of the extended procedure. Indeed, if we
denote by X	, 	 = 1, . . . , S̄ = 9(1 + N̄ + M̄ ), the generic element of the set of
independent higher derivatives, the inequality above can be written as (Cimmelli
et al. 2009b)

A	ΩX	XΩ + B	X	 + C ≥ 0, (2.48)
Proc. R. Soc. A (2010)

http://rspa.royalsocietypublishing.org/


Generalized Coleman–Noll procedure 919

 on July 19, 2018http://rspa.royalsocietypublishing.org/Downloaded from 
where A	Ω , B	 and C depend on the state functions only. Second law requires the
inequality (2.48) to be satisfied for arbitrary values of X	. It is worth observing
that the first term in relation (2.48) can assume a definite sign for arbitrary
values of the X	. To this end, it suffices that the matrix A	Ω is positive semi-
definite. The same is not true for the linear terms in X	, as the coefficients B	 are
independent of the X	. Hence, for B	 �= 0 and arbitrary X	, the quantity B	X	

could take arbitrary negative values, and the inequality (2.48) could be violated.
Then, the additional restrictions

B	 = 0, A	ΩX	XΩ + C ≥ 0 (2.49)

ensue. Putting B	 = 0, we get the additional set of thermodynamic restrictions

− ∂ψ

∂wA

∂ΦAi

∂θ,k
− ∂ψ

∂wA,i

(
∂ΦAk

∂θ
+ ∂2ΦAj

∂θ∂θ,k
θ,j + ∂2ΦAj

∂zβ∂θ,k
zβ,j + ∂2ΦAj

∂wB∂θ,k
wB,j

)

− ∂ψ

∂wA,j

(
∂2ΦAi

∂θ,k ∂θ
θ,j + ∂2ΦAi

∂θ,k ∂zβ

zβ,j + ∂2ΦAi

∂θ,k ∂wB
wB,j

)
= 0, (2.50)

∂ψ

∂zα

f 1
αβki + ∂ψ

∂zα,j

(
∂f 1

αβki

∂θ
θ,j + ∂f 1

αβki

∂zγ

zγ ,j + ∂f 1
αβki

∂wA
wA,j

)
− ∂ψ

∂wA

∂ΦAi

∂zβ,k

− ∂ψ

∂wA,i

(
∂ΦAk

∂zβ

+ ∂2ΦAj

∂θ∂zβ,k
θ,j + ∂2ΦAj

∂zγ ∂zβ,k
zγ ,j + ∂2ΦAj

∂wB∂zβ,k
wB,j

)

− ∂ψ

∂wA,j

(
∂2ΦAi

∂zβ,k ∂θ
θ,j + ∂2ΦAi

∂zβ,k ∂zγ

zγ ,j + ∂2ΦAi

∂zβ,k ∂wB
wB,j

)
= 0 (2.51)

and
∂ψ

∂zα

f 2
αBki + ∂ψ

∂zα,j

(
∂f 2

αBki

∂θ
θ,j + ∂f 2

αBki

∂zβ

zβ,j + ∂f 2
αBki

∂wA
wA,j

)
− ∂ψ

∂wA

∂ΦAi

∂wB,k

− ∂ψ

∂wA,i

(
∂ΦAk

∂wB
+ ∂2ΦAj

∂θ∂wB,k
θ,j + ∂2ΦAj

∂zβ∂wB,k
zβ,j + ∂2ΦAj

∂wC ∂wB,k
wC ,j

)

− ∂ψ

∂wA,j

(
∂2ΦAi

∂wB,k ∂θ
θ,j + ∂2ΦAi

∂wB,k ∂zβ

zγ ,j + ∂2ΦAi

∂wB,k ∂wC
wC ,j

)
= 0. (2.52)

In the simpler case in which ψ is local, equations (2.50)–(2.52) reduce to

∂ψ

∂wA

∂ΦAj

∂θ,k
= 0, (2.53)

∂ψ

∂zα

f 1
αβki − ∂ψ

∂wA

∂ΦAi

∂zβ,k
= 0 (2.54)

and
∂ψ

∂zα

f 2
αBki − ∂ψ

∂wA

∂ΦAi

∂wB,k
= 0. (2.55)

Finally, if f 1
αβki and f 2

αβki vanish, the restrictions above can be trivially satisfied
if either ψ = ψ(θ , zα), or ΦA is local.
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3. Dynamical temperature and nonlinear heat transport equation

The analysis of diffusive-relaxational heat conduction in solids (Ackerman &
Guyer 1968), or in miniaturized systems (Chen 2001; Jou et al. 2005; Alvarez &
Jou 2007), has given a strong impulse to the recent development of non-
equilibrium thermodynamics. Such a phenomenon cannot be described by the
classical Fourier law because it is not capable to reproduce the relaxational regime
(Cattaneo 1948). In the linear approximation, the most celebrated diffusive-
relaxational heat transport equation is the Guyer–Krumhansl one (Guyer &
Krumhansl 1966)

τRq̇ i + qi = −κθ,i + 9
5

κτN

c
(qi,kk + 2qk,ki ), (3.1)

with κ as the heat conductivity. Moreover, τN and τR are two relaxation times
related, respectively, to normal and resistive scattering processes of the heat
carriers (Reissland 1973). If τN is negligible, it reduces to the Maxwell–Cattaneo
equation (Cattaneo 1948)

τRq̇ i + qi = −κθ,i , (3.2)

which describes the second-sound propagation. Nowadays, several macroscopic
theories have been developed to cope with the above equations (Joseph & Preziosi
1989, 1990; Müller & Ruggeri 1998; Jou et al. 2001). Here, we consider the
theory of heat conduction with a non-equilibrium semi-empirical temperature
(Cimmelli & Kosiński 1991; Cimmelli & Frischmuth 2005; Cimmelli et al. 2009a).
In such a theory, an additional internal scalar state variable β (the semi-empirical
temperature scale) and an evolution equation for it was introduced. The physical
interpretation of β is of a dynamical non-equilibrium temperature such that the
heat flux is in the inverted direction of the gradient of β (Cimmelli & Kosiński
1991; Cimmelli et al. 2009a), namely

qi = −κβ,i . (3.3)

In setting up our model, we suppose that the state space Z is spanned by the
absolute temperature θ , the semi-empirical temperature β, together with their
first-order gradients ∇θ and ∇β, namely

Z = {θ , θ,i , β, β,i }.
In an equilibrium system, the use of both temperatures would be redundant.

However, out of equilibrium, the absolute temperature θ is not distributed as
in equilibrium and, therefore, β is a truly independent quantity, not redundant
with θ (Cimmelli & Kosiński 1991; Cimmelli et al. 2009a). We suppose that the
semi-empirical temperature β is governed by the evolution equation

β̇ = f0(Z ) + f β

ji (Z )β,ji + f θ
ji (Z )θ,ji , (3.4)

where f0, f β

ji and f θ
ji are suitable tensorial functions. The evolution equation for

the absolute temperature θ , in this particular case, reads

cθ̇ = −
(

∂e
∂β

β̇ + ∂e
∂θ,i

θ̇,i + ∂e
∂β,i

β̇,i + ∂qi

∂θ
θ,i + ∂qi

∂β
β,i + ∂qi

∂θ,k
θ,ki + ∂qi

∂β,k
β,ki

)
, (3.5)
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and the inequality (1.1) reduces to(
∂ψ

∂θ
+ s

)
θ̇ + ∂ψ

∂β
β̇ + ∂ψ

∂θ,i
θ̇,i + ∂ψ

∂β,i
β̇,i + 1

θ
qiθ,i ≤ 0. (3.6)

If we restrict ourselves to thermodynamic processes corresponding to analytic
solutions of the basic equations (3.4) and (3.5), and study the consequences of
the inequality (3.6) by the procedure illustrated in the previous section, we are
led to the set of thermodynamic restrictions

∂ψ

∂β
+ ∂ψ

∂β,j
f0,j − 1

c
∂ψ

∂θ,j

(
∂e
∂θ

)
,j

= 0, (3.7)

(
∂ψ

∂θ
+ s

)
∂e
∂θ,i

+ ∂ψ

∂θ,j

(
∂e
∂θ,i

)
,j

+ ∂ψ

∂β,i
f0 = 0, (3.8)

〈
∂ψ

∂θ,j

∂e
∂θ,i

〉
= 0, (3.9)

〈
1
c

∂ψ

∂θ,j

∂qi

∂θ,k
− ∂ψ

∂β,j
f θ
ki

〉
= 0, (3.10)

(
∂ψ

∂θ
+ s

)
∂e
∂β

+ ∂ψ

∂θ,j

(
∂e
∂β

)
,j

= 0, (3.11)

(
∂ψ

∂θ
+ s

)
∂e
∂β,i

+ ∂ψ

∂θ,j

(
∂e
∂β,i

)
,j

+ ∂ψ

∂θ,i

∂e
∂β

= 0, (3.12)

〈
∂ψ

∂θ,j

∂e
∂β,i

〉
= 0, (3.13)

〈
1
c

∂ψ

∂θ,j

∂qi

∂β,k
− ∂ψ

∂β,j
f β

ki

〉
= 0 (3.14)

and
〈
∂ψ

∂β,j
f θ
ki

〉
= 0. (3.15)

In the above equations the symbols 〈aij〉 and 〈aijk〉 denote the symmetrized part
of second-order and third-order tensors aij and aijk with respect to the indices (i, j)
and (i, j , k), respectively.

The restrictions above can be satisfied in several ways. Below, we analyse a
possible solution, leading to meaningful consequences on the model. Hence, let
us choose

f0 = 1
τR

(θ − β), (3.16)

∂ψ

∂θ,
= 0, (3.17)
j
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f θ
ki = 0 (3.18)

and f β

mi = − κ

Ac
β

T
δmi , (3.19)

where A is a constant, and T means the value of the semi-empirical temperature
at the equilibrium (β̇ = 0). Then, from the set of thermodynamic restrictions
(3.7)–(3.15), it follows

∂ψ

∂β
+ ∂ψ

∂β,j
f0,j = 0, (3.20)

(
∂ψ

∂θ
+ s

)
∂e
∂θ,i

+ ∂ψ

∂β,i
f0 = 0, (3.21)

(
∂ψ

∂θ
+ s

)
∂e
∂β

= 0, (3.22)

(
∂ψ

∂θ
+ s

)
∂e
∂β,i

= 0 (3.23)

and
κ

Ac
β

T

〈
∂ψ

∂β,j
δki

〉
= 0. (3.24)

By equation (3.23), we get

s = −∂ψ

∂θ
, (3.25)

which makes equation (3.22) satisfied. Then, under the assumption
1
A

= 27
5

τN

τR
,

the evolution equation (3.4) for β becomes

β̇ = 1
τR

(θ − β) + 27
5

κτN

cτR

β

T
β,jj . (3.26)

Finally, once the balance of energy (1.2), the constitutive equation (3.3) for the
heat flux and the symmetry of the third-order spatial derivatives of β are taken
into account, if the thermophysical material functions are constant, the gradient
extension of the above equation leads to the nonlinear heat transport equation

τRq̇ i + λqi = −κθ,i + l2(qi,kk + 2qk,ki ), (3.27)

where l2 = (9/5)(κτN/c)(β/T ), and λ = 1 + (27/5)(τN/cTκ)qk,k . Such an equation
extends to the nonlinear regime the Guyer–Krumhansl equation (3.1), which
can be recovered by equation (3.27) in homogeneous states close to the thermal
equilibrium, namely when ė, β̇, ∇e and ∇β are negligible. It is worth observing
that in equation (3.27) two different types of nonlinearity appear. The first one
is due to the dependence of the coefficient λ on ∇ · q, and this introduces a
second-order term in the heat flux and its spatial derivatives. The second type of
nonlinearity, which is often referred to as semi-linearity, is due to the dependence
of l2 on the dynamical temperature β, and does not contain second-order terms
in the heat flux and its spatial derivatives.
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In the present case, the evolution equation for β does not contain the first-
order gradient of β. This is not the most general case. For instance, a more
general governing equation, including a quadratic term in the first gradient of β,
has been considered by Cimmelli et al. (submitted). The thermodynamic analysis
of such a case can be developed in the realm of thermodynamics with Lagrange
multipliers. In the linear case, it yields the classical Guyer–Krumhansl equation.
In the nonlinear case, the heat transport equation is more general than that
derived here and contains several quadratic terms in the heat flux and its first and
second gradients, whose physical interpretation is not yet clear. To our knowledge,
the above derivation is the first one developed by applying the Coleman–Noll
procedure in the absence of extra-fluxes.

By straightforward calculations, it is possible to show that if the classical
Coleman–Noll procedure would have been applied without modifying either first
or second law, our model would have been incompatible with thermodynamics.
On the contrary, by applying the extended procedure, we have proven that the
model is compatible with the second law, without any ‘ad hoc’ hypothesis on
the basic thermodynamic laws. Moreover, it was capable to dismantle a physical
property which does not emerge in the classical case, namely that the entropy
and the free energy can depend on the gradients, too.

4. Conclusions

In the present paper, we have proposed a generalization of the classical Coleman–
Noll procedure for the exploitation of the second law of thermodynamics. The
new method consists in substituting into the entropy inequality not only the
governing equations for the wanted variables, but their gradient extensions
too. We have generalized some classical results of rational thermodynamics,
by proving that even in the absence of energy or entropy extra-flux, non-
local materials of arbitrary order are still compatible with the second law.
Of course, our result does not imply that these extra-fluxes do not exist but
that they are no longer essential to ensure the thermodynamic compatibility.
Hence, their effective existence should be decided only on the basis of suitable
experimental results.

Indeed, the Coleman–Noll approach is originally based on the fact that
entropy source at a boundary is proportional to the heat source at a boundary,
and both can be expressed linearly in terms of the unit normal. The first
assumption follows from a general idea originating from the works of Clausius,
Gibbs and Duhem. The second one, owing to Stokes but following in the
path opened by Fourier and Cauchy, is what introduces the vectorial fluxes.
On the other hand, this is necessarily related to the notion of first-gradient
theory, because only the description of the surface at the first order, its unit
normal, is involved. Therefore, this framework, if not generalized, does not
cope with constitutive equations including higher-order gradients. Classically,
the problem can be circumvented, for instance, by abandoning the hypothesis of
proportionality between heat source and entropy source at the boundary, namely
by postulating the existence of an entropy extra-flux. However, such an idea
does not seem to be applicable to the rigid heat conductors considered in the
present paper. In fact, by supposing that the extra-flux is due to long-range
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interactions, one should answer the question why the same is not postulated
for the classical case, with the state space spanned by θ and ∇θ only, which is
non-local too.

Here, we proposed a different solution, which does not require to modify
the physical setup but only the mathematics necessary to analyse it,
namely the technique of exploitation of the entropy principle. It is worth
observing that, although the present paper is in the realm of rational
thermodynamics, our generalized procedure can be applied whenever one is
faced with a weakly non-local theory, such as, for instance, extended irreversible
thermodynamics (Jou et al. 2001) or classical irreversible thermodynamics
(de Groot & Mazur 1962).

The extended procedure allowed us to build up a macroscopic model leading
to a generalization of the celebrated Guyer–Krumhansl equation. This seems
to be important not only in the description of the diffusive-relaxational
heat transport, but also in the discussion concerning the fundamentals of different
thermodynamic theories (Cimmelli in press). In fact, all modern non-equilibrium
thermodynamic theories aim to fit the results from kinetic theory (Müller &
Ruggeri 1998; Jou et al. 2001). On the other hand, as the Guyer–Krumhansl
equation has been obtained by solving a linearized phonon Boltzmann equation,
i.e. in the framework of the kinetic theory, it seems to be important for any
thermodynamic theory to provide a model for the Guyer–Krumhansl equation.
The result above proves that rational thermodynamics can provide such a model
without any amendment to the classical form of the first and second laws. Hence,
it leads to important theoretical consequences concerning the basic principles.

In setting up our model, we needed several additional hypotheses on the
constitutive quantities. This is due to the fact that, once the thermodynamic
compatibility of the constitutive functions has been proven by the extended
exploitation procedure, these functions have still to be set:

— according to the hypotheses of phonon gas hydrodynamics (Reissland
1973);

— according to the linear approximation in the solution of phonon Boltzmann
equation (Guyer & Krumhansl 1966).

However, as the hypotheses of §3 are correct from the mathematical point
of view and compatible with the second law of thermodynamics, the model is
physically realizable.
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