
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A fast MPEG’s CDVS implementation for
GPU featured in mobile devices
ALESSANDRO GARBO1, STEFANO QUER1
1Politecnico di Torino – DAUIN, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (e-mail: {alessandro.garbo, stefano.quer}@polito.it)

Corresponding author: Stefano Quer (e-mail: stefano.quer@polito.it).

ABSTRACT The Moving Picture Experts Group’s Compact Descriptors for Visual Search (MPEG’s
CDVS) intends to standardize technologies in order to enable an interoperable, efficient and cross-platform
solution for internet-scale visual search applications and services. Among the key technologies within
CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for
indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover,
they are very time consuming as they need running times in the order of seconds when implemented on
the CPU of modern mobile devices. In this paper, to reduce computation times and to maintain precision
and accuracy, we re-design, for many-cores embedded GPUs, all main local descriptor extraction pipeline
phases of the MPEG’s CDVS standard. To reach this goal, we introduce new techniques to adapt the standard
algorithm to parallel processing. Furthermore, to reduce memory accesses, and efficiently distribute the
kernel workload, we use new approaches to store and retrieve CDVS information on proper GPU data
structures. We present a complete experimental analysis on a large and standard test set. Our experiments
show that our GPU-based approach is remarkably faster than the CPU-based reference implementation of
the standard, and it maintains a comparable precision in terms of true and false positive rates.

INDEX TERMS Computer applications, concurrent computing, embedded software, image analysis, object
detection.

I. INTRODUCTION
In modern scenarios (i.e., museums, exhibitions, etc.) a user,
equipped with a mobile terminal, takes pictures and receives
information on them in real time. The mobile terminal au-
tomatically verifies whether two images depict the same
objects or the same scene. This task is usually referred as
“pairwise matching”. Matching can be performed by on-line
or off-line analysis. In on-line applications, to minimize the
amount of data transferred over the network and to reduce
the latency time, the terminal should extract (from the pic-
ture) and deliver (to a workstation) only those data that are
essential to the matching. Alternatively, the overall process,
i.e., extraction and image matching, may be performed off-
line directly on the device [1].

The extraction of the data essential to the matching has
received specific attention by the Moving Picture Experts
Group (MPEG), producing the so-called Compact Descrip-
tors for Visual Search (CDVS) [2]. Following this standard,
extracting local features from an image requires six phases,
usually referred to as keypoint detection, orientation assign-
ment, feature selection, local descriptor computation, local

descriptor compression, and coordinate coding. One more
step, the aggregation of local descriptors, is necessary to
generate a single global descriptor. In CDVS, a descriptor is a
sequence of bits which represent information about an image.
A descriptor may contain information about specific areas of
the image (provided by local features), and information about
the image as a whole (provided by global descriptors). A lo-
cal feature is a vector of values whose elements characterize
a point neighborhood. Such a point corresponds to an image
detail, and it is usually named “keypoint” or “interest point”.
Global descriptors enable the search of similar images (i.e.,
image retrieval), whereas local features empower pairwise
matching (i.e., image matching).

The CDVS detector [3], named ALP (A Low-degree Poly-
nomial), identifies interest points finding local extrema in the
scale-space by approximating it using polynomials [4]. In the
scale-space representation, the images that result from the
Laplacian-of-Gaussian filtering are functions of the scale pa-
rameter. ALP approximates these functions with polynomials
of low degree. The algorithm works by subdividing the scale-
space in octaves in order to maintain low complexity. This

VOLUME 4, 2016 1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

process is often referred to as keypoint detection (KD). To
achieve invariance of the final matching to image rotations,
a canonical orientation is associated to each keypoint [5].
This stage is referred to as orientation assignment (OA). By
estimating how likely any feature will be correctly matched,
we may eliminate the least likely ones and pack only the
most promising features into the compact descriptor. This
process is often referred to as feature selection (FS). Selected
keypoints are used for the local descriptors computation
(LDC). Local descriptors are then compressed, subsequently
encoded, and finally used in the pairwise matching phase to
evaluate the matching probability. When a keypoint in one
image matches a keypoint in another image, there is a high
probability that the two keypoints actually correspond to the
same point within the same depicted scene.

Although the above phases are extremely complex and
they entail several choices and branches, they mainly ma-
nipulate images, and, for that reason, they are highly par-
allelizable. For this reason, the main target of this paper is
to re-implement the entire process of descriptors extraction,
that is, re-engineering all main CDVS stages, to efficiently
run on many-cores General Purpose Graphical Processor
Units (GPGPUs) supporting the OpenCL (or CUDA) lan-
guage. As the work has been developed under an industrial
non-disclosure agreement between Politecnico di Torino and
Telecom Italia Joint Open Lab (which contributed, within
the MPEG group, to define the standard itself) our main
target was to obtain the best-possible behavior with a fully
compliant implementation, not to modify or improved the
standard itself. To this extend, one of the driving idea was to
reduce CPU-to-GPU communication and interference, thus
letting the CPU free to work on alternative tasks. To reach this
goal, we adapted the standard to parallel processing by using
the right kernel structure to implement the overall process
with the maximum possible parallelism. To reduce memory
accesses, optimize transfer times, decrease latencies, and
efficiently distribute the workload of all OpenCL kernels,
we used new approaches to store and retrieve KD, OA,
FS and LDC information on proper GPU data structures.
To reduce overheads, we introduced some approximation
techniques to implement expensive sequential steps in the
parallel environment.

More in details, our work entails the following contribu-
tions:
• We describe the standard CDVS ALP detector and we

re-design it to efficiently manipulate images on many-
cores general purpose graphical processor units support-
ing the OpenCL (or CUDA) language. This step implies
a detailed analysis of the original algorithm to adapt it
to parallel processing.

• We use new approaches to store FS and OA information
on proper GPU data structures in order to reduce mem-
ory accesses and to efficiently distribute the workload of
OpenCL (or CUDA) kernels.

• We introduce a new technique, a sort of Open-CL “tex-
ture pagination”, to perform FS, OA and LDC. In our

application, while several working kernels are dedicated
to manipulate data following the standard data-flow,
others are adopted to re-organize these data to make the
former kernels more efficient.

• As following Amdahl’s law the speedup of a concurrent
program is limited by the serial part of the program
itself, we introduce approximation techniques to im-
plement expensive sequential steps in a parallel en-
vironment. For example, the standard implementation
of the FS phase requires a sorting step to select the
more promising keypoints. As this step cannon be ef-
ficiently parallelized in GPU, we present an alternative
implementation in which we do not order keypoints
and we estimate the final result. We essentially apply a
bucket-sort-inspired pseudo-sorting algorithm, and we
experimentally prove that our estimates reach the same
final pair-wise matching accuracy, and they are more
time efficient, than the original sorting strategy.

• We analyze a different CDVS flow where the FS step is
performed before the OA phase. We call this strategy
“hastened feature selection”, and we prove that it is
slightly more efficient than the standard approach (the
“deferred feature selection” scheme).

• We present a complete suite of experimental results
on standard benchmarks usually adopted by MPEG.
On this suite we prove the consistency of our imple-
mentation on different hardware platforms. Moreover,
we compare our embedded-GPU based implementation
with the original one. We demonstrate that our final ap-
plication is more efficient than, and at least as accurate
as, the standard CPU-based implementation.

It has to be noticed that this paper is an extended version of
the conference papers [6], [7], each one presenting only a few
steps of the CDVS chain. The current paper, on the contrary,
describes the entire CDVS implementation flow from the
source images to the extraction of compact descriptors. We
also extend our conference works by introducing a new
methodology to perform OA using Open-CL textures and
presenting the implementation of the LDC stage. We keep
the entire workload and data flow within the GPU even if
this may be prone to some level of inefficiency. In this way
we minimize data transfers which are by nature expensive
in terms of elapsed times and used memory. Moreover, we
keep the CPU idle for longer periods of time, enabling the
CPU to work on other tasks that may be deemed necessary
on embedded and power-limited systems. All main steps
are fully described from main ideas to algorithmic details.
Results have been revised and reformatted, and we accurately
validate our approaches reporting new data.

As far as we know, some of the previous contributions
are presented for the first time, and this is the first work
presenting a complete Open-CL (or CUDA) GPU-based im-
plementation of the standard. It is also worthwhile recalling
that the work was supported by an industrial contract with
Telecom Italia Joint Open Lab. For that reason, the software

2 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and the experiments cannot be made publicly available.

A. ROADMAP
In the following description, we mainly focus on the more
time consuming and complex key-operations. All others
phases will be described more superficially for the sake of
space. The rest of the paper is thus organized as follows.

Section II reports some comments on (and comparisons
to) previous works. Section III presents background notions
on the CDVS standard and GPU. Section IV, V, VI, and VII
describe our implementation of the main phases. Section VIII
illustrates experimental results on standard benchmarks,
highlighting performance and precision accuracy. Finally,
Section IX concludes the paper with some summarizing
remarks.

II. RELATED WORKS AND COMPARISONS
Due to the integration of multiple heterogeneous processing
units, programmers can make use of processors with various
features. However, data transfer and partitioning schemes ap-
pear as challenging tasks. The followings are several attempts
to adopt heterogeneous computing for several applications
close to the one we are dealing with in the paper.

Wang et al. [8] implement some major steps of the Scale-
Invariant Feature Transform (SIFT [5]) using both serial C++
code and OpenCL kernels targeting mobile processors. Based
on profiled results of different work-flows, they partition
SIFT between the CPU and the GPU to better exploit the
parallelism, and to minimize buffer transfer times. Suárez
et al. [9] introduce a CMOS vision sensor to extract the
Gaussian pyramid with an energy cost lower than the one of
conventional solutions. The chip, manufactured in a 0.18 µm
CMOS technology, consists of an arrangement of [88 × 60]
processing elements. These units capture images, and they
perform concurrent parallel processing right at pixel level.
Leyva et al. [10] concentrate on hardware architectures to
speed-up the computation of the feature descriptor vector in
SIFT. The architectures could be time-optimized or memory-
optimized, and they computed a feature descriptor vector
of 27 elements, starting from a keypoint neighborhood of
[15×15] pixels, in 649 or 874 clock cycles, respectively. The
process involves several steps, including complex ones such
as vector normalization. Lee et al. [11] present a sequential
implementation of a two-stage FS based on the CDVS Test
Model (TM). They significantly reduce run times while main-
taining the original matching and retrieval accuracy. This
implementation is the closest one to ours in the literature,
and we use some of their ideas to implement our version of
the FS module. Nevertheless, our implementation is faster
and several steps have been further optimized. Zhang et
al. [12] accelerate the CDVS extracting process on a multi-
core ARM processor. They implement a NEON SIMD-based
data level parallelism and a Pthread-based multi-thread par-
allelism scheme for mobile devices. They achieve significant
speed-up in the keypoint detection and in the local descriptor
computation stages. Arndt et al. [13] present a heterogeneous

implementation of the Histograms of Oriented Gradients
algorithm targeting the CPU-clusters and the GPU of the
Samsung Exynos 5 Octa 5422. The authors present different
strategies to generate the best partitioning scheme, and they
analyze the computational capabilities as well as the power
consumption of the individual processing units. Doush et
al. [14] develop an automatic banknote recognition, to clas-
sify Jordanian currency to the correct class. The application
uses SIFT, and it runs SIFT on smartphone devices. The au-
thors also compare a SIFT approach based on colored images
with the one based on gray tones. Lee et at. [15] propose an
efficient scheme to optimize SIFT for a mobile GPU. They
analyze the conventional scale-space construction step in the
SIFT generation, finding that reducing the size of the Gaus-
sian filter and the scale-space image leads to a significant
speed-up with only a slight degradation of the quality of
the features. Based on this observation, they modify SIFT
for real-time execution. They also obtain additional speed-
up by efficiently using both the CPU and the GPU available
on the mobile device. Duan et al. [16] presents a fast CDVS
encoder implemented using hybrid GPU-CPU computing.
The authors shift all computation-intensive and parallel-
friendly modules to the GPU platform. They also incorporate
the CDVS encoder with deep learning based approaches.
A comparison with other state-of-the-art visual descriptors
shows that they achieve significant speed-up compared with
algorithms running on pure CPU platforms while obtaining
similar results for image retrieval and matching accuracy.

To sum up, many works propose strategies to shift on a
GPU architecture only the most expensive and highly paral-
lelizable algorithmic steps. In those schemes data are usually
transferred several times forward-and-backward between the
CPU and the GPU. This sort of overhead may become a
bottleneck in several applications and it makes the overall
algorithmic flow intrinsically sequential. On the contrary we
strive to keep the entire workload and data flow within the
GPU even if this may be prone to some level of inefficiency.
In this way, we minimize data transfers which are by nature
expensive in terms of elapsed times and used memory. More-
over, we keep the CPU cores idle for longer periods of time
enabling them to work on other tasks that may be deemed as
necessary on embedded and power-limited systems.

As a final remark, notice that Francini et al. [17] present a
method to select features based on characteristics computed
by the keypoint detection process. They claim that in the
case of detectors based on Gaussian Scale Space theory [18],
the most important characteristics are the keypoint location,
scale, absolute value of the detected extreme, and the orienta-
tion. They prove that each of these characteristics has a strong
impact on the probability of having correct feature match.
This methodology has been inserted into the MPEG-CDVS
standard [19], and we base our KD, OA, and LDC phases
exactly on this algorithm.

III. BACKGROUND

VOLUME 4, 2016 3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Global
Descriptor

Local

Image

ALP

Keypoint
Detection

Orientation
Assignment Selection

Feature Local
Descriptor

Computation

Local
Descriptor

Compression

Coordinate
Coding

Global
Descriptor

Aggregation
Space

Gaussian
Scale

Descriptors

FIGURE 1: Descriptor extraction pipeline: Computing the
global and the local descriptors from the source image.

A. TERMINOLOGY AND NOTATION
In the rest of the paper, we will use the following notation
and terminology:
• KD, OA, FS, LDC, MP indicate keypoint detection, ori-

entation assignment, feature selection, local descriptors
computation, and matching probability, respectively.

• As kernels are organized as 2D-matrices of threads, we
use square brackets to indicate the number of threads
run by a kernel, e.g., [width× height].

• k indicates a keypoint, and K a keypoint set (with
k ∈ K). f indicates a feature, and F a feature set
(with f ∈ F). Subscripts indicate keypoint (feature)
attributes, i.e., matching probability (kmp), orientation
(kα), etc. In the CDVS terminology (see Section III-B)
a keypoint k becomes a feature f when the former is
enriched with the orientation attribute kα.

• O (S) indicates the octave set (filter set), |O| (|S|) its
cardinality, and o (s) a specific octave (filter).

• W and H indicate the image width and height, thus Wo

and Ho the image width and height at octave o ∈ O.
• G (L) indicates Gaussian images (Laplacian) within the

Gaussian Scale Space (GSS). Go,s (Lo,s) indicates a
Gaussian image (Laplacian) at octave o ∈ O and with
filter s ∈ S.

• p indicates a pixel and t a texel. This terminology
follows the one introduced by Doggett [20], where
individual elements in the texture map are called texels
(from “TEXture ELements”) to differentiate them from
the screen pixels. T indicates an OpenCL texture.

B. THE CDVS STANDARD
The compact descriptor of an image is composed of two
main elements, that is, a selected number of compressed local
descriptors (representing confined picture areas) and a single
global descriptor (representing the whole image).

Fig. 1 illustrates how these two elements are produced by
a series of processing steps (the ones already listed right in
the introduction) starting from an input image. The global
descriptor is finally used for image retrieval, while local
descriptors are used to check image correspondence [21].
Notice that keypoint detection, orientation assignment, fea-
ture selection, and local descriptor computation are the most
CPU time and memory expensive steps. At the same time,
they consider information related to neighboring pixels, thus

they are highly parallelizable. The objectives of these steps
are the following:
• The keypoint detection phase (KD) can be further di-

vided into the Gaussian Scale Space computation and
the identification of Low Polynomial degree (ALP) [3]
keypoints. Following Witkin [22], the Gaussian Scale
Space (GSS) is generated by a sequence of Gaussian fil-
ters of increasing size and different Gaussian’s standard
deviation. For each pixel in the image, ALP generates
a polynomial approximation of the scale-space function
and it searches local extrema over a certain interval. The
coefficients of the polynomial are obtained by comput-
ing weighted sums of the Laplacian of Gaussian images.
The scale is the parameter value where the polynomial
assumes the extrema. The pixel candidates are subject to
a comparison with the adjacent 8 pixels. Those having
extreme polynomial values exceeding their neighbors
are kept as candidates, all the others are discarded.

• During orientation assignment (OA), one or more ori-
entations are assigned to each keypoint, based on local
image gradient directions. This is the key operation to
represent keypoint descriptors as a function of their
orientations, therefore achieving invariance with respect
to image rotation. Notice that the standard describes this
step within the keypoint detection phase. We detail it
separately only because its efficient implementation is
part of our contribution.

• Feature selection (FS) chooses a limited number of
keypoints to improve the quality of the final matching.
The selection is based on the matching probability (MP)
associated to each keypoint. In turn, the MP of a key-
point is computed by the standard by applying several
quantification steps to keypoint information evaluated
during the KD phase.

• Local descriptor computation (LDC) calculates descrip-
tors for all keypoints selected during the previous phase.
Local descriptors are the used in the pairwise matching
phase.

• Local descriptor compression is a scalar quantization-
based compression of the selected local descriptors.
CDVS supports different sizes of compact descriptor
footprint, spanning from a maximum of 16KBytes per
image, which is the fully performing operating mode,
down to 512Bytes, for extremely constrained bandwidth
scenarios.

• Coordinate coding is the compression of the coordinates
of the selected keypoints to improve storage efficiency.

• Global descriptor compression consists in the aggrega-
tion of local descriptors, to form a single global descrip-
tor. Global descriptors enable image retrieval, that is, the
search for similar images. We will not concentrate on
this step as we mainly focus on image matching.

C. GPU ARCHITECTURES
Initially developed for real time and high-definition 3D
graphic applications, graphics processing units (GPUs) have

4 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

recently gained attention for high performance computing
applications (general purpose GPU or GPGPU). Indeed, the
peak computational capabilities of modern GPUs exceeds the
one of top-of-the-line central processing units (CPUs). GPUs
are highly parallel, multi-threaded, many-core units and have
been recently used in a plethora of different applications
and they are becoming more and more invasive in every-day
life [23]–[28]. GPUs are SIMT (single-instruction, multiple-
threads) architectures, i.e., the same instruction is executed
simultaneously on many data elements by different threads.
They are especially well-suited to address problems that can
be expressed as data-parallel computations.

The execution starts with a host (CPU) execution. When an
OpenCL or a CUDA kernel function is invoked, the execution
is moved to a device (GPU) and a grid is launched on the
GPU. A grid represents a set of blocks, and each block
contains up toN threads, whereN coincides with the number
of cores of the architecture. When the grid of threads of
a kernel complete its execution, the corresponding kernel
terminates, the execution continues on the host until another
kernel is invoked. When more kernels are run in parallel
they are pipelined by the GPU. When a kernel is launched,
each processor runs one block by executing groups of parallel
threads (named “warps” in the CUDA terminology). Threads
composing a warp start together at the same program address.
Nevertheless, they are free to branch and execute indepen-
dently. As thread blocks terminate, new blocks are launched
on the idle multiprocessors.

Threads have access to data stored on multiple memory
spaces. We can distinguish several types of memory spaces
(from the one with the smallest latency time on):
• Constant memory (for read-only constant data), regis-

ters, and private local memory space. This is local to
each thread.

• Shared memory spaces. This is accessible only by
threads in the same block.

• Global memory. This is visible by all grid threads and it
is accessible in read-and-write mode by all threads but
with larger latency times

With CUDA 3.0, threads of different blocks cannot com-
municate with each other explicitly but they can share their
results through a global memory. If threads of a warp diverge
when executing a data-dependent conditional branch, then
the warp serially executes each branch path. This leads to
poor efficiency.

Another important aspect within GPU architectures is the
copy strategy, i.e., the method used to bring data from CPU to
GPU memory space and vice-versa. In discrete devices, such
as desktops and servers, this basically translates into copying
memory from the system DRAM, through PCI, towards the
on-board low-latency memory space of the graphics adapter.
In case of embedded platforms, most GPUs implement local
memory through global memory. In this case, local mem-
ory should not be used as a software-managed cache for
performance. As a final remark, notice that both CUDA
and OpenCL programming models specify alternatives to

avoid explicit memory transfers and unnecessary buffer repli-
cations, such as CUDA UVM (Unified Virtual Memory)
and OpenCL 2.0 SVM (Shared Virtual Memory). However,
these approaches introduce CPU-GPU memory coherency
problems when accessing the same shared memory buffer,
so that avoiding copy engines does not necessarily lead to
performance improvements.

IV. KEYPOINT DETECTION (KD)
As described in Section III-B, the keypoint detection phase
can be further divided into the Gaussian Scale Space compu-
tation and the identification of keypoints using ALP. We will
analyze both phases into details in the following paragraphs.

A. GAUSSIAN SCALE SPACE
The Gaussian Scale Space computation is the first CDVS
operation working on the input image. Algorithm 1 illustrates
this phase as implemented by the standard. Function GSS
receives as input parameters the gray tone image G and the
set of Gaussian filters S of cardinality |S|. Its target is to
compute and to return the Gaussian image GO,S and the
Laplacian LO,S evaluated during all octaves O and all filters
S. Go,s (Lo,s) indicates the Gaussian image (Laplacian)
computed at octave o and filter s. Function GSS iterates
|O| times with images of decreasing size. For each octave
o ∈ O (line 3), function GSS first computes a new size
image (Wo, Ho). Then, it filters the current image through
|S| Gaussian filters and |S| Laplacian operators. The first
sequence of Gaussian filters (lines 5–7) starts from the gray
scale input image G assigned to G1,0 in line 2. All following
ones start from a rescaled image coming from the previous
octave and generated by function Reduction (lines 11–13).
The Laplacian operator Laplacian (line 9) is applied to each
Gaussian filtered image previously generated.

Require: G, S
Ensure: GO,S , LO,S

1: GSS
2: G1,0 = G
3: for o = 1 to |O| do
4: (Wo, Ho) = ImageRange (Go,0)
5: for s = 1 to |S| do
6: Go,s = GaussianFilter (Go,s−1, Wo, Ho, Ss)
7: end for
8: for s = 1 to |S| do
9: Lo,s = Laplacian (Go,s)

10: end for
11: if (o < |O|) then
12: (Go+1,0) = Reduction (Go,|S|−1)
13: end if
14: end for

Algorithm 1: GSS Computation.

To implement Algorithm 1 on a GPU, and more specifi-
cally functions GaussianFilter, Laplacian, and Reduction,
we proceed as follows.

VOLUME 4, 2016 5

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a: Gaussian Filtering
In our scenario, we work with gray scale images. An image,
on the other hand, can be manipulated at its best using
GPU textures. We use RGBA OpenCL cached textures T
where every texel t includes 4 values (x, y, z, w). As a
consequence, we encode 4 gray level pixels p in one texel
t (see Doggett [20]) of the texture T , reducing the number of
memory accesses.

This choice is motivated by the following considerations.
OpenCL cl_image data structure, as well as CUDA textures,
have a caching support, whereas global memory does not
have it (at least traditionally1). Several papers analyzed the
performance difference between textures and global memo-
ries (see for example Hakura et at. [29] and Wong et al. [30]).
Level 1 and Level 2 caching has also been proved to be
quite beneficial (especially during reading operations) by
several authors (see for example Doggett [20]). In practice,
we use cached textures in several parts of our implementation
(but in those cases in which we need a proper synchro-
nization among threads, see for example Section V-A and
Section VI-B). To be concrete, we run some experiments
on the keypoint extraction phase. We verified that global
memory is from 50% to 70% slower than cached textures in
our approach.

The Test Model (TM) implementation of CDVS [16] per-
forms the Gaussian Filtering of Algorithm 1 using a sequence
of one 1D horizontal filter and one 1D vertical filter. On
the contrary, we implement this process as a sequence of
two horizontal filters using 4 kernels which implement the
following operations:

1) Filter the image T with a 1D horizontal Gaussian.
2) Take the transpose TT of T .
3) Convolve with the same 1D horizontal Gaussian filter

the image TT .
4) Transpose one more time the result from TT to T .

With a source image of size [width × height] pixels, we
run [width4 × height] threads for the horizontal filtering
operations (steps 1 and 3) and [width4 × height

4] threads
for the transposition (steps 2 and 4). Every thread of the
4 kernels sequentially manipulates 4 consecutive horizontal
gray tone pixels, i.e., (x, y, z, w), within the RGBA texel
t. Those pixels represent the atomic pieces of information
loaded within the thread. We decided to use just horizontal
filters due to the gray pixel coding policy adopted inside the
texture texels t. Each horizontal filter involves a number of
pixels which depends on the filter size. CDVS uses a set of
4 Gaussian filters in sequence with size 15, 15, 21, and 27.
For example, to implement a Gaussian filter of size equal to
15, the standard approach requires 15 memory accesses for
each pixel. With our strategy, to upload all pixels required
by the same filtering operation, we read only 5 RGBA texels

1As far as we know, caching has been introduced for global memories
starting from CUDA-2.0. Anyhow, we do not take into consideration this
improvement in our implementation as the hardware platforms we consider
do not support it.

x y z w x y z w x y z w x y z w

5 memory accesses

x y z w

z convolution
y convolution

w convolution

x convolution

focus[0] focus[1] focus[2] focus[3] focus[4]

FIGURE 2: Gaussian Filtering: Performing Convolution
using OpenCL kernels.

within each thread. Those 5 texels store everything needed to
sequentially manipulate 4 gray tone pixels in the same thread.
This process is represented in Fig. 2.

Although the distance of each keypoint to the image center
is used to weight keypoints in the FS stage, and keypoints
around the image boundary are rarely selected for image
retrieval or image matching, the CDVS standard requires
“padding” during convolution. A straightforward implemen-
tation of this process implies concurrent code including
branches. Such a code, by definition, is not SIMT compliant
and therefore it may be quite inefficient. To avoid such a
problem, Algorithm 2 shows a solution in which branching
is restricted to the first and the last two texel columns. At the
same time, all internal columns present the same branching
flow. Moreover, notice that, as we use only horizontal filters,
padding must be implemented only on the left and right
borders. Thus, our coding policy reduces the overall working
load.

Function Conv15 follows the process of Fig. 2 for the first
and second filters of size 15. It receives the Gaussian image
at octave o and filter s− 1 (i.e., Go,s−1), the width (Wo) and
height (Ho) of the image at that octave, and the set of filters
(S). It generates the Gaussian image at the octave o and filter
s. In line 2, variables i and j are used to store the thread
indices, i.e., the texel position within the current Gaussian
image Go,s−1. When the current pixel is not on the image
border (i.e., i > 1 and i < (Wo − 2)), following Fig. 2,
the four pixel data sets focus[0], focus[1], focus[3], and
focus[4] are read (by function ReadItem) from the current
Gaussian image Go,s−1. On the contrary, when the current
pixel is on the image border (i.e., i = 0 or i = (Wo − 1))
or just on the inner frame (i.e., i = 1 or i = (Wo − 2)),
one or more pixels are obtained with padding (lines 9-10,
13, 21-22, and 25). Padding duplicates one gray tone in
all texel components. Function UnrollConvolution finally
computes Go,s by optimizing the convolution computation
through loop unrolling.

To further reduce branching, it is possible to use 5 kernels
to manipulate different sections of the image. In this scheme
the first kernel manipulates texels within the first column,
the second one pixels belonging to the second column, the
third one the central image section, the fourth one pixels

6 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

belonging to the last but one column, and the fifth kernel
pixels within the last column. These 5 kernels would run
a number of threads equal to [1 × height], [1 × height],
[(width/4) − 4 × height], [1 × height], and [1 × height],
respectively. Algorithm 2 can be modified following this
strategy, such that all running threads would be completely
SIMT complaint.

To analyze the best trade-off between the number of code
branches allowed and the number of kernels that have to
be run, we implemented and compared three versions of
this procedure: The one with one single kernel, the one
presented in Algorithm 2, and the one with 5 kernels. If we
consider the intermediate solution, i.e., the one represented
by Algorithm 2, about 20–25% of the time is spent in padding
and about 75–80% by function UnrollConvolution (line 28).
From the one hand, without stencil code optimization this last
function would be from 4 to 5 times slower. From the other
one, with one single kernel padding is about 50% slower and
it is about 5–10% faster with 5 kernels. As the two versions
with 2 and 5 kernels are almost equally efficient, with no
clear winner (as the majority of the time is spent to unroll
the convolution, anyhow), we consider Algorithm 2 as our
reference implementation.

Require: Go,s−1, Wo, Ho, S
Ensure: Go,s

1: Conv15

2: (i, j) = GetGlobalId ()
3: focus[2] = ReadItem (i, j, Go,s−1)
4: if (i > 1) then
5: focus[0] = ReadItem (i− 2, j, Go,s−1)
6: focus[1] = ReadItem (i− 1, j, Go,s−1)
7: else
8: if (i == 0) then
9: for j ∈ {x, y, z, w} do focus[0].j = focus[2].x

10: for j ∈ {x, y, z, w} do focus[1].j = focus[2].x
11: else
12: focus[1] = ReadItem (i− 1, j, Go,s−1)
13: for j ∈ {x, y, z, w} do focus[0].j = focus[1].x
14: end if
15: end if
16: if (i < (Wo − 2)) then
17: focus[3] = ReadItem (i+ 1, j, Go,s−1)
18: focus[4] = ReadItem (i+ 2, j, Go,s−1)
19: else
20: if (i == (Wo − 1)) then
21: for j ∈ {x, y, z, w} do focus[3].j = focus[2].w
22: for j ∈ {x, y, z, w} do focus[4].j = focus[2].w
23: else
24: focus[3] = ReadItem (i+ 1, j, Go,s−1)
25: for j ∈ {x, y, z, w} do focus[4].j = focus[3].w
26: end if
27: end if
28: Go,s = UnrollConvolution (focus, S)

Algorithm 2: Edge padding during Gaussian filtering on a
texture with size 15 (the first or the second one). Notice that,
with this filter size, the situation is exactly the one depicted
in Fig. 2, where there are just 2 texels on the right and on the
left of the analyzed texel.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
�������

���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

������������������������������������

������������������������������������

������������������������������������
������������������������������������

������������������������������������

������������������������������������
������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

������������������������������������

Px

P

P

P

P

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

Q

Q

Q

Q

R

R

R

R

S

S

S

S

x y z w

x y z w

x y z wQ Q Q Q

R R R R

S S S S

P P Py z w

...

...

0.24

0.20

0.16

0.12

0.8

0.4

0.0

0.0

4.0

8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

i I

J

j

FIGURE 3: Transpose operation: From (i, j) on the input
texture to (I = j, J = i) on the output texture.

x y z w

x y z w

x y z w

x y z w x y z wx y z w
0 1

4

2

3

Lt

t

t

t

t t

FIGURE 4: Laplacian computation considering 4 gray pixels
at the same time.

To transpose T into TT (and vice-versa) each thread
manipulate 4 RGBA pixels vertically placed, and it generates
the same number of output pixels. As represented in Fig. 3,
each thread identifies the area of the input texture on which it
has to work, using its thread index (i, j), and it identifies the
area on the output texture, using the transpose (I = j, J = i).

Using 4 sequential kernels to perform filtering reduces the
number of read operations (Rt) with respect to the standard
case which uses 2 kernels to perform a horizontal and a
vertical filter. For example, with filters of size equal to 15,
the standard procedure performs 5 read operations for the
horizontal filter, and 15 for the vertical one, i.e., a total of
Rt = 5 + 15 = 20 read operations. At the same time, our
solution with 4 kernels implies 5 accesses for each convolu-
tion and 1 access for a group of 4 transpositions (that is 0.25
accesses every single texel), i.e., Rt = 5+0.25+5+0.25 =
10.5 read operations. Furthermore, it is important to remind
that the GPU caching infrastructure stores a pixel t and its
neighbor (after it has been read) within the hardware cache,
thus reducing latency times of all subsequent accesses by
other threads.

b: Laplacian
The Laplacian operator (useful to highlight regions of rapid
intensity change) is applied to the images that have first been
smoothed by a Gaussian filter. Following Algorithm 1 the
Laplacian function takes a single gray-level image as input
and produces a Laplacian of Gaussian image as output. We
implement an OpenCL kernel with [width4 ×height] threads,
which it is able to apply the Laplacian operator sequentially

VOLUME 4, 2016 7

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to the 4 gray pixels encoded in t. Fig. 4 shows which input
image pixels (left-hand side) are used to compute the output
pixels (right-hand side). Boxes in the image represent differ-
ent texture texels. The standard approach does not perform
padding as it rules-out all pixels of the image frame from
the Laplacian computation. In our case, threads compute
the Laplacian even on the frame to avoid kernel branches.
Nevertheless, as our function ReadItem of Algorithm 2
returns (0, 0, 0, 0) on the frame, the result we obtain is exactly
the one returned by the standard procedure. The formulas

Lo,s[1].x += Go,s[0].w +Go,s[1].y
Lo,s[1].y += Go,s[1].x+Go,s[1].z
Lo,s[1].z += Go,s[1].y +Go,s[1].w
Lo,s[1].w += Go,s[1].z +Go,s[1].x
Lo,s[1] += Go,s[3] +Go,s[4]− 4 ·Go,s[1]

(1)

represent the computation of Laplacian for each encoded
gray pixel (Lo,s[1].x, Lo,s[1].y, Lo,s[1].z, Lo,s[1].w) given
the adjacent texels (Go,s[0], Go,s[2], Go,s[3], and Go,s[4])
from the correspondent Gaussian texture. Each thread com-
putes the Laplacian for 4 pixels at the same time accessing
the memory only 5 times.

c: Reduction
Following Algorithm 1, the Go,|S|−1 image (i.e., the second
to last filtering Gaussian from the GSS pyramid) is down-
scaled by a factor of two by procedure Reduction. This
down-scaling procedure creates the next octave, and it is
performed by a dedicated kernel running a matrix of [width8 ×
height

2] threads. Given our texture texel t the kernel reads two
consecutive texels on the same row t′(t′.x, t′.y, t′.z, t′.w)
and t′′(t′′.x, t′′.y, t′′.z, t′′.w), and it generates a single pixel
t(t′.x, t′.z, t′′.xt′′.z) skipping odd rows. The result of this
reduction becomes the input Go+1,0 for the next octave as
represented by the pseudo-code of Algorithm 1.

B. THE ALP DETECTOR
The target of ALP is to find all keypoints k, and to return
the entire keypoint set KO (with k ∈ KO), given the
Laplacian LO at the current octave. This process is described
in Algorithm 3. For each octave o ∈ O (line 2), and for
each pixel within the image available at the current octave
p ∈ [1,Wo · Ho] (line 3), ALP generates a polynomial of
degree 3, i.e., ψo[p]. This polynomial is generated (line 5)
as a linear combination of the 4 Laplacian values Lo,f (with
f ∈ [1, F]) forming the octave. Given ψo[p], the roots of
its first derivative (ψ′o[p], line 6), are the minimum Smo and
the maximum SMo values (scale). Evaluating ψo[p] in Smo
and SMo gives the minimum Rmo [p] and the maximum RMo [p]
values (response), respectively. All those data are stored in
different textures in a position corresponding to the one of
the pixel p. This technique enables a quick retrieval of all
keypoint information by all kernels that have to perform
their computation. The minimum and maximum values of
ψo become keypoint candidates if they represent minimum
and maximum values around a pixel p. Function Detect

(line 8) performs a selection process among the keypoints
generated for each pixel. Once all pixels are manipulated,
function Duplicate compares all keypoints generated during
two consecutive octaves (i.e, Ko−1 and Ko), and it retains
only the strongest keypoint within each couple of duplicated
keypoints.

Require: LO
Ensure: KO

1: ALP
2: for o = 1 to |O| do
3: for p = 1 to (Wo ·Ho) do
4: (Rmo [p], RMo [p]) = Init (Lo,1, Lo,F)
5: ψo[p] = Coeff (Lo)
6: (Smo [p], SMo [p]) = Root (ψ′o[p])
7: (Rmo [p], RMo [p]) = ψo[p] (Smo [p], SMo [p])
8: Ko = Detect (ψo[p], Smo [p], SMo [p], Rmo [p], RMo [p])
9: end for

10: (Ko−1, Ko) = Duplicate (Ko−1, Ko)
11: end for

Algorithm 3: Keypoint detection. The 4 coefficients of ψo
and all information within Smo , SMo , Rmo e RMo are encoded
in a RGBA texture with 4 components.

a: Scale Space Approximation and Extrema Detection
ALP finds keypoints during each octave and it merges all
results during the last iteration. To extract keypoints we use
several kernels implementing the steps included in the CDVS
standard. The number of kernels has been selected as the best
possible trade-off between precision and efficiency. A few
of them are used to run initialization operations. Others are
used to find, re-arrange, and gather keypoints based on their
octave.

To implement Algorithm 3 on a GPU, we use 5 different
OpenCL kernels.

The first one (function Init, line 4) initializes response
textures Rmo and RMo with the lower and the upper Laplacian
texture Lo,1 and Lo,F .

The second one (function Coeff, line 5) computes the
linear combination ψo of 4 Laplacian coefficients for every
pixel p.

The third kernel (function Root, line 6) evaluates the roots
Smo , and SMo of the first derivative ψ′o of the polynomial.
Moreover, it finds the minimum and maximum values of
those roots Rmo [p], and RMo [p]. Unlike the Gaussian and
Laplacian computation, where also neighboring pixels are
considered, in this case each kernel (running a matrix of
[width4 × height] threads) performs just one memory access
to process 4 gray pixels p.

All threads within kernel Init, Coeff and Root read all
required pixel information from different textures storing
intermediate data. These data are manipulated by a fourth
kernel, that is Detect. This kernel considers only pixels with
minimum or maximum local polynomial values (i.e., those
pixels having values Rmo and RMo exceeding the ones of their
pixel neighbors), and for each of them:

8 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• It refines the position of those candidates to sub-pixel
precision using a different polynomial ω. This polyno-
mial ω is a linear combination of the Laplacians of the
area of dimension q around the examined pixel p and
the root of ψ′o[p]. Using the ALP standard, from ω it
is possible to compute the ratio τ (the squared trace to
the determinant of the Hessian), and the value of ∆x and
∆y . These variables are the two values that influence the
displacement from the integer pixel position (Ix, Iy).

• It initializes σ as the root Smo [p] or SMo [p] of the poly-
nomial ψ′o,p with the generation of Rmo [p] or RMo [p]
local minimum or maximum. It defines the peak ρ as the
reference value Rmo [p] or RMo [p]. Moreover, it specifies
the scale δf (with f ∈ (1 . . . F)) as the value of the
Gaussian filter Sσ closer to Smo [p] or SMo [p].

• It computes the keypoint curvature σcurv based on the
second derivative of ψo.

Note that candidates are detected one octave at a time, and the
analyzed images in each octave have a quarter of the size of
those in the previous octave. The coordinates and scales are
referred to the coordinate system of the octave in which they
are detected. Therefore a further step performed by kernel
Detect is to map coordinates and scale to the resolution of
the converted initial input image dimension [31] (coordinated
domain). Once coordinates are mapped, we need to store the
keypoints Ko of all octaves O into KO.

b: ALP keypoints

Instead of storing keypoints on temporary CPU data struc-
tures, we store them in OpenCL textures. Fig. 5 shows all
internal fields of this OpenCL texture. The maximum size
of this texture is equal to (1024 · 8) pixels. Each keypoint
k ∈ Ko is stored on 4 RGBA elements, and each element is
composed by 4 float numbers. Then, the total number of float
elements per keypoint is 16. The first 9 float numbers (from
Ix to τ) represent CDVS keypoint characteristics computed
by kernel Detect. The last elements represent the ratio τ ,
the keypoint orientation α, the octave o, and the Matching
Probability MP . As the maximum number of keypoints that
can be stored in a row is 256, the total number of keypoints
per octave that can be stored in the texture is 2048 (256 · 8).
As the keypoint structure is shared by several kernels, proper
synchronization has to be adopted. We used the OpenCL
atomic_inc function to perform atomic increments on global
keypoint counters when Detect generates new keypoints.
This drastically reduces memory access latency times of all
other kernels.

c: Duplicates

In the last row of Algorithm 3 the OpenCL kernel Duplicate
works on (Ko−1,Ko) represented by the keypoint textures
we have just described. If keypoints are meaningful, it may
happen that they are captured by different octaves o ∈ O.
The procedure compares each keypoint in Ko−1 with all
keypoints in Ko. For each pair, first CDVS computes the

keypoint

I Ix y y∆x∆ σ ρ σcurv
...O MPατδ

internal variablesPixel (R,G,B,A)

cl_keypoint
[256KBytes]

height [8]

width [1024]

FIGURE 5: OpenCL implementation: A keypoint/feature
structure.

distance between the two keypoints and the difference be-
tween their scales. Then, it compares these two values with
two different thresholds. If both values (distance and scale
difference) are below the threshold, the keypoint with the
smallest absolute value of ρ is canceled, otherwise both
keypoints are maintained.

V. FEATURE SELECTION (FS)
As represented in Fig. 1, keypoint detection (KD) is followed
by orientation assignment (OA), and then by feature selection
(FS). In this process, each keypoint (k ∈ K) becomes a fea-
ture (f ∈ F) when the orientation kα is added to the original
keypoint. Nevertheless, our GPU algorithm is designed in
such a way that OA and FS can be swapped with some mem-
ory and time advantage. As a consequence, in the following
two subsections, we present two feature selection algorithms.
In the first one, which we call “deferred FS” scheme (see
Section V-A), FS is performed after OA, as in the standard. In
this case, our main contribution consists in adopting a GPU-
oriented approximated sorting algorithm inspired by bucket-
sort instead of an exact sorting algorithm. In the second one,
which we call “hastened FS” scheme (see Section V-B), the
FS phase is anticipated and performed before OA. The last
part of this section (Section V-C) focus on one important
CDVS sub-step, namely the matching probability phase.

A. DEFERRED (STANDARD) FS
In the standard scheme, FS is computed following the
pseudo-code reported in Algorithm 4. The procedure receives
the set of all keypoints at all octaves,KO, and a quantification
set Q. It generates the set of features at all octaves FO, a
threshold TH , and all local descriptors at all octaves DO.

Require: KO , Q
Ensure: FO , TH , DO

1: DeferredFS
2: FO = OrientationAssignment (KO)
3: (FO , H) = MP (FO , Q)
4: TH = ComputeThreshold (H)
5: DO = LocalDescriptor (FO , TH)

Algorithm 4: Deferred (standard) approach: FS is performed
after OA.

VOLUME 4, 2016 9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

To do that, the CDVS standard proceeds as follows. Func-
tion OrientationAssignment (line 2) manipulates all key-
points (KO) found by the KD module, and it generates a set
of features (FO). The set FO may have a cardinality larger
than the one of KO, i.e., |FO| ≥ |KO|, as the orientation
assignment step duplicates all keypoints with more than one
possible orientation. Then, for each feature f ∈ FO gener-
ated by the OA module, CDVS computes its matching prob-
ability (line 3). Notice that in this case, function MP works
on the entire set of features FO, considering their orientations
fα directly when computing their matching probability fmp.
As a consequence, MP has to manipulate a quite large set
of objects. Function MP will be analyzed into details in
Section V-C. The list of features, enriched with the matching
probability, is then sorted by function ComputeThreshold
(line 4). The standard, running on CPU platforms, sorts
features using a state-of-the-art sorting algorithm. Even if the
number of features, for every octave o ∈ O, is upper-bounded
by (2 · 103), sorting keypoints adopting a standard sorting
algorithm may be quite inefficient on a GPU-based SIMT
architectures [32]. Moreover, note that the CDVS standard
sorts keypoints only to select the most important features,
not to obtain a complete and global order among them. As
a consequence, we apply an approximated sorting algorithm
inspired by bucket-sort. This guarantees low time complexity
with practically no penalty in terms of accuracy. It proceeds
as follows.

The histogram H , returned by function MP, represents
a pre-defined number of classes. Each class stands for a
range interval within the minimum and maximum values of
fmp. This number of classes is selected as a function of the
desired approximation. As the histogram’s maximum number
of intervals is 103, and fmp ∈ [3, 3 · 10−3], the size of each
class is [3 · 10−6]. In this situation, the first class contains
features having fmp ∈ [0, 3 · 10−6], the second class features
having fmp ∈]3 · 10−6, 6 · 10−6], etc. For each class (or
bin), we define a counter representing the number of features
having fmp in the corresponding interval. As a consequence,
once all fmp values have been computed, each feature is
assigned to the corresponding histogram interval to populate
the histogram.

As all threads work in parallel, we must guarantee a proper
synchronization among them, such that only one thread can
modify a bin counter at any given time. Synchronization is
obtained with OpenCL (or CUDA) proper functions, such as
atomic_add. However, this can become a source of over-
head, and locally computing parts of the histogram and then
merging results together may be a solution. Obviously, there
is a trade-off between concurrency and number of threads
and kernels, i.e., between fine-grained and coarse-grained
procedures. Anyhow, our results do not show large variations
in terms of overall performances once the overall “race-
histogram” strategy has been implemented. For this reason
we prefer the simplest solution in which just one single race
is run to compute the entire histogram to the one in which
more races are run in parallel.

Once this phase is terminated, each box of the histogram
represents an interval and it contains the number of features
belonging to that interval. To select the target number N
of keypoints, we compute a threshold TH . This threshold
is obtained by multiplying the interval size by the number
of buckets considered at that point. Then, we use an accu-
mulator A to count the number of features in each interval,
starting from the last element of the histogram. The counting
phase ends when A ≥ N . The threshold TH is then used
as a threshold to select or rule-out each keypoint k based on
its matching probability kmp. Notice that in this algorithm
linear search is performed only on a subset of the overall
number of classes. This makes our algorithm much faster
than a standard linear search. Moreover, even if the number
of features selected is just an estimate of the desired one,
this approximation does not have any impact on accuracy as
proved in Section VII.

B. HASTENED FS

Algorithm 5 shows how we re-designed FS within the entire
CDVS chain to re-position it before OA [11]. We call this
computation scheme hastened FS.

Require: KO , Q
Ensure: FO , TH , DO

1: HastenedFS
2: (KO , H) = MP (KO , Q)
3: TH = ComputeThreshold (H)
4: FO = OrientationAssignment (KO , TH)
5: H = UpdateHistogram (H , FO)
6: TH = ComputeThreshold (H)
7: DO = LocalDescriptor (FO , TH)

Algorithm 5: Hastening FS before OA.

Input and output parameters are the same of the deferred
version (Algorithm 4). However, in this case we first com-
pute the matching probability (line 2), then we compute the
threshold TH (line 3), and finally we resort to the Orien-
tationAssignment function (line 4). Function MP (line 2)
works as in Algorithm 4 but, in this case, it manipulates the
keypoint set (KO) instead of the feature set (FO). Proce-
dure OrientationAssignment starts from the keypoint KO

selected by ComputeThreashold and it produces enriched
features FO, i.e., the original keypoint with added orientation
information kα. Notice that the cardinality of FO is usually
larger than the one of KO, because OrientationAssignment
can generate many features with different orientations from
the same keypoint. As a consequence, to maintain the number
of selected features as desired, we need to update the his-
togram (function UpdateHistogram, line 5) and compute a
new threshold TH (line 6). Procedure ComputeThreshold
applies the bucket-sort-inspired approximated sorting algo-
rithm previously described in Section V-A. Moreover, all
local descriptors DO are computed by function LocalDe-
scriptor. Notice that in this scheme, functions Orienta-
tionAssignment and LocalDescriptor manipulate only a

10 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

subset of keypoints and features, thus reducing the overall
computational effort.

Our experimental analysis, performed on a vast set of
images, shows that the contribution of the OA phase to the
MP function consists in an almost constant displacement.
This means that if we do not consider orientation during
MP, no important feature is ruled-out by the process, and
the final matching accuracy does not decrease. A similar
consideration is done by Lee et al. [11]. As a consequence,
FS can be performed before OA computing the orientation
only for a reduced number of selected keypoints.

C. MATCHING PROBABILITY (MP)
As analyzed in Sections V-A and V-B the matching prob-
ability phase can be applied either after (Algorithm 4) or
before (Algorithm 5) orientation assignment. In the first case,
it manipulates features f ∈ F . In the second one, it deals with
keypoints k ∈ K. For the sake of simplicity, we explicitly
refer to Algorithm 5 in this section, and function MP will
manipulate keypoints.

Following the CDVS standard (see Section III-B), the
matching probability phase is mainly based on data evaluated
during the detection phase, such as the displacement from
the image center (∆x,∆y), the scale δ, the peak ρ, the
curv-sigma σcurv , and the ratio τ . Anyhow, in the deferred
algorithm, it also considers data coming from OA, such as α
(see Lee et at. [33]). MP generates the matching probability
kmp of each keypoint k ∈ KO.

To compute these kmp values, the standard adopts sev-
eral conditional distributions, learned during standardization
using an independent matching data set, and several quan-
tification steps [19]. To parallelize and to accelerate their
computation (and also to select the most promising features
as described in Sections V-A and V-B) we use OpenCL kernel
work-groups.

Require: KO , Q
Ensure: KO , H

1: MP
2: for o = 1 to |O| do
3: for k = 1 to Ko do
4: k∆x,∆y = Quantize (Q, k∆x,∆y)
5: kδ = Quantize (Q, kδ)
6: kρ = Quantize (Q, kρ)
7: kσcurv = Quantize (Q, kσcurv)
8: kτ = Quantize (Q, kτ)
9: (kmp, H) = PDF (k∆, kδ , kρ, kσ , kτ)

10: end for
11: end for

Algorithm 6: Computing the matching probability kmp for
each keypoint k ∈ KO.Q is a quantization set which enables
the quantization of the interest point distance from the image
center, its scale, its peak response, its curv-sigma, and its
ratio.

A work-group must consist of at least one work-item
(thread). The maximum number of work-items is platform

dependent. The work-items within a work-group must be
synchronized to share local memory with each other.

To efficiently distribute the workload of the kernel we
use the MP procedure described in Algorithm 6. Function
MP receives the set of keypoints at all octaves KO, and a
quantification set Q. It returns the same keypoint set KO

updated with new attributes values (namely kmp), and a
histogram H . Function MP calls function Quantize for each
keypoint k ∈ Ko (line 3) of each octave o ∈ O (line 2). This
function restricts keypoint attributes (i.e., the displacement
from the image center (∆x,∆y), the scale δ, the peak ρ, the
curv-sigma σcurv, and the ratio τ) to discrete values starting
from a continuous set of values. The 5 calls to function
Quantize (lines 4-8) are done in sequence, but they perform
operations with a high level of concurrency. To optimize
this phase, we follow the suggestion given by Francini et
at. [17], where the maximum number n of quantized elements
is mapped on the higher populated conditional distributions
Q, i.e., n∆x,∆y

= 32, nδ = 8, nρ = 16, nσcurv
= 16,

nτ = 16. Thus, for every Quantize function calls, we
activate a work group composed by 32 work-items running
in parallel. Anyhow, for each function Quantize only the
right number of threads n (i.e., n∆x,∆y

, nδ , nρ, nσcurv
, and

nτ) is activated. The attribute values of each keypoint k (i.e.,
k∆x,∆y

, kδ , kρ, kσcurv
, and kτ) after quantization (computed

by lines 4-8) are used by function PDF to generate the
matching probability kmp of the keypoint k. Finally, one
work-item inserts each keypoint matching probability kmp
into the histogram H used by function ComputeThreshold
(see Section V-A) to select the desired number of keypoints.

VI. ORIENTATION ASSIGNMENT (OA)
OA finds the feature f ∈ FO corresponding to each keypoint
k ∈ KO. During the orientation assignment phase, CDVS
assigns a dominant orientation Fα to each feature to allow
rotation invariance during the pairwise matching phase. To
do that, for each keypoint selected by the FS (hastened or
deferred) phase, CDVS computes the magnitude Θmod and
direction Θθ of the gradient of every pixel within the circular
neighboring area defined by the keypoint (scale kδ and sigma
kσ) and from the Gaussian (Gfo with f = Kδ ∈ (1 . . . Gg)
and o = Ko). Gradient values Θθ are then organized in a
histogram Hk.

All previous computations are sketched in Fig. 6 and
detailed in Fig. 7. For each keypoint k ∈ K (black dot) its
scale defines a circular neighboring area (or radius rk and
evaluated by function Compute, line 4) and a square matrix
circumscribing this area (of size equal to [(2 · rk)× (2 · rk)]
pixels). The Gradient is then used to get the final orientation
result [34] adopting a histogram composed by 36 bins (func-
tion Histo, line 8). This histogram is recursively smoothed
(procedure Smooth, line 11) six times by averaging 3 ad-
jacent bins at a time. The bin corresponding to the highest
peak (function Max, line 14), as well as the bins with a
value larger than 80% of the highest value, are selected as
the dominant orientations of the interest point. Notice that

VOLUME 4, 2016 11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

r

rk

k
k

k

FIGURE 6: Keypoints k ∈ K (black dots), circular neigh-
boring (of radius rk) , and circumscribed square (of size
[(2 · rk)× (2 · rk)] pixels) defined by the keypoint scale.

these extra orientations generate the same features computed
by the original keypoints but with different orientations.

Require: KO

Ensure: FO
1: OrientationAssignment
2: for o = 1 to |O| do
3: for k ∈ Ko do
4: rk = Compute (kσ)
5: for i = (k∆x − rk) to (k∆x + rk) do
6: for j = (k∆y − rk) to (k∆y + rk) do
7: (Θmod,Θθ) = Gradient (i, j, kδ , Go,s)
8: Hk = Histo (Θθ)
9: end for

10: for i = 1 to 6 do
11: Hk = Smooth (Hk)
12: end for
13: end for
14: kα = Max (Hk)
15: end for
16: end for

Algorithm 7: Sequential algorithm: Pixel-by-pixel manip-
ulation for gradient computation and histogram update. If
there values are larger than 80% of the main maximum, the
procedure duplicates the keypoint k into a new feature.

The OpenCL computation scheme for Θh and Θv is very
close to the Laplacian one, shown in Fig. 4. Input image
pixels (left-hand side of Fig. 4) are used to compute the
horizontal Θh and vertical Θv components of the gradient,
separately.

For each Go,s every gray scale pixel (x, y, z, w) gradients
Θh and Θv are computed as follows:

Θh.x = 0.5 · (Go,s[1].y −Go,s[0].w)
Θh.y = 0.5 · (Go,s[1].z −Go,s[1].x)
Θh.z = 0.5 · (Go,s[1].w −Go,s[1].y)
Θh.w = 0.5 · (Go,s[2].x−Go,s[1].z)

(2)

for the horizontal position, and

Θv.x = 0.5 · (Go,s[4].x−Go,s[3].x)
Θv.y = 0.5 · (Go,s[4].y −Go,s[3].y)
Θv.z = 0.5 · (Go,s[4].z −Go,s[3].z)
Θv.w = 0.5 · (Go,s[4].w −Go,s[3].w)

(3)

for the vertical one. From Θh and Θv , it is possible to obtain:

Θmod =

√
Θh2

+ Θv2

Θθ = arctan
Θv

Θh

(4)

To implement Algorithm 7 concurrently, we experimented
with two different solutions. In our first implementation, we
run a fixed number of threads (corresponding to the maxi-
mum required ones) for each neighboring areas, and we even-
tually disabled the ones that were not required. In the second
one we use 4 kernels to orchestrate the overall work-flow, i.e.,
a first kernel generates all pagination data and then all other
kernels manipulate pixels. Experimentally, we discover that
the time spent by the pagination kernel is more than balanced
by all following “denser” kernels, and that this last solution
is about 40% faster than the previous one on average. As as
consequence, we concentrate on it. It adopts kernels Gradi-
ent, Pagination, Orientation, and Peak. They are called in
sequence as described by Algorithm 8. These 4 kernels are
described in Sections VI-A, VI-B, VI-C, and VI-D.

Require: KO

Ensure: FO
1: OrientationAssignment
2: (Θmod,Θθ) = Gradient (kδ , Go,s)
3: PT = Pagination (KO)
4: Hk = Orientation (PT , idwidth, idpages)
5: Kα = Peak (HK)

Algorithm 8: Concurrent algorithm: Kernels Gradient, Pag-
ination, Orientation, and Peak are run sequentially to gen-
erate features from keypoints.

A. KERNEL GRADIENT: GRADIENT EVALUATION
We use the first kernel Gradient (running a matrix of
[width4 ×height] threads) to pre-compute the gradient (Θmod,
Θθ) of all pixels within the image. More specifically, like
in Section IV, we run one thread for each image texel of
the convolution texture. Each thread essentially computes the
gradient for that coded pixel using Equations (2) and (3).
After that, using Equations 4, we generate the texture pairs
including Θmod and Θθ for each convolution Go,s (with
s ∈ S and octave o ∈ O). Notice that this sort of pre-
computation implies that the gradient is evaluated also for
pixels outside all neighboring areas (rk,∀k ∈ KO). At the
same time, it also implies that we compute a single gradient
for all pixels belonging to more than one neighboring area
(as represented by all gray areas in Figure 6). As many
pixels actually do belong to more than one neighboring area,
these two effects generally balance each other. Once we have
computed rk for each keypoint, to perform the two nested
cycles of Algorithm 7 in a concurrent way, we run a group of
threads (items) for each keypoint. Each item manipulates a
pixel within the keypoint neighboring area and it contributes
to the generation of the histogram Hk. If we suppose to
organize these items with a proper data grid structure, we

12 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

should use a 2D matrix storing keypoints along rows and
items (for each neighboring pixel) along columns.

B. KERNEL PAGINATION: DENSE PAGINATION TABLE
The pagination kernel does not perform any specific CDVS
step as it essentially builds a “pagination table” to make
the orientation kernel (analyzed in Section VI-C) more ef-
ficient. In other words, the pagination kernel pre-computes
information items that are common to all threads run by
the orientation kernel to improve its performances and to
avoid re-computations. The problem and the core idea are
the following ones.

The orientation kernel must analyze all pixels of all key-
point neighboring areas (of all octaves) to update a histogram
storing keypoint characteristics. To perform this task in a
concurrent way, one possible solution consists in running one
thread for each pixel of each keypoint. As the number of
pixels in the neighboring area varies with the size of this area,
one first possibility is to run a number of threads equal to the
number of keypoints multiplied by the number of pixels in
the largest neighboring area. In this case, many threads would
be run and then stopped when dealing with keypoints with
smaller neighboring areas, and this would imply that a lot of
threads would not be SIMT compliant, reducing the overall
efficiency.

To solve this problem we first compute the total number
of pixels included in the neighboring areas of all keypoints.
Then, as the generated threads have to be distributed over
a dense grid to optimize their computation, we create a
“pagination table” to store every thread-to-pixel correspon-
dence. Finally, we run a number of threads equal to the
number of those pixels and we use the pagination table to
allow each thread to manipulate the right pixel within the
proper keypoint neighboring area. Whereas this last step is
performed by the orientation kernel (see in Section VI-C)
all previous ones are performed by the pagination kernel. Its
implementation is reported in Algorithm 9.

Kernel Pagination receives the keypoint set KO as a
parameter, and it returns the pagination table PT . It runs
one thread for each keypoint k ∈ KO of that octave. Each
thread executes function Compute (line 2) to compute the
neighboring regions radius rk. Thus the neighboring area will
be defined by the square matrix of size [(2 · rk) × (2 · rk)].
The value returned by function Compute is larger than zero
only for the selected keypoints, i.e., for those keypoints above
the threshold TH which have been selected as features kmp.
For those features (line 3), function Page (line 4) assigns to
each keypoint a number of threads equal to the number of
pixels in its neighboring area. The global counter Catomic
is used to count the number of required threads required for
each keypoint as well as the total number of threads required
by all keypoints. As function Page is shared among all
threads, we need to avoid collisions on the counter Catomic.
To obtain a proper synchronization we protect the counter
within a critical section, such as the one obtained with the
OpenCL function atomic_add. As a result, function Page

finally returns for each keypoint k a starting index (idstart)
and an ending index (idend). All threads assigned to that
keypoint will have index within the range [idstart, idend]. As
variable Catomic is manipulated within a critical section, its
final value defines the total number of threads that have to
be run. Those threads are rearranged in groups, spread-out
in subsequent pages (i.e., rows) within the pagination table
PT . Each page of the pagination table represents a group
of constant size, equal to PTwidth = 512. We selected this
value statically for the following reasons. First of all, 512
is a power of 2 and this enables each thread to address the
right page with a simple binary-shift operation. Obviously,
any power of 2 would suit this requirement, but too small
values would imply too many rows to represent threads for
the same keypoint, and too large values would imply too
many keypoints into the same row. In fact, the neighboring
area of each feature can be spread in more than one page, and
a page may store neighboring items belonging to more than
one feature. Groups of items belonging to different pages will
have duplicated entries on different pages within PT . Given
the smallest neighboring area with pages of width 512, we
experimentally noticed that each page contains information
for a maximum of 8 keypoint neighboring areas. This is an
important value as within the orientation kernel each thread
will have to visit an entire page of the pagination table PT
to recover its pixel position. Too large values would imply an
inefficient sequential search. Too small values would imply
a too large number of pages. Thus 512 (corresponding to 8
keypoints) is a trade-off among several requirements.

Function Index finally generates the entry for the pagina-
tion table PT based on the item position (idstart, idend). PT
will be used by all threads within the orientation kernel to
recover all required keypoint information. Notice that within
the pagination table, each entry is encoded with two pixels
represented as RGBA float numbers.

Require: KO

Ensure: PT
1: Pagination
2: rk = Compute (kσ , kmp, TH)
3: if rk > 0 then
4: (idstart, idend) = Page (Catomic, rk)
5: PT = Index (idstart, idend, k)
6: end if

Algorithm 9: Pagination process. The scheduled items within
the pagination table represent a dense grid of parallel pro-
cesses.

C. KERNEL ORIENTATION: UPDATE HISTOGRAM
Once the pagination table is created we run the Orientation
kernel to update all histogram’s bins. Once again, this step
corresponds to a real CDVS phase, whereas the pagination
thread has just set the pagination table up to optimize it. In
other words, the orientation kernel uses the pagination table
to recover all thread-to-pixel correspondences. Its pseudo-
code is reported in Algorithm 10. It receives as input parame-

VOLUME 4, 2016 13

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ters the pagination table PT and the thread identifiers idwidth
and idpages. It returns the final keypoint histogram Hk.

Require: PT , idwidth, idpages
Ensure: Hk

1: Orientation
2: (idk, iditem) = Recovery (PT , idwidth, idpages)
3: Hk = Histo (idk, iditem, Θmod, Θθ)

Algorithm 10: Orientation kernel: Starting from the pagi-
nation table (PT) pre-computed by the pagination kernel, it
creates the histogram Hk.

The orientation kernel runs a number of threads equal
to the total number of pixels within all selected keypoints
(i.e., features), which also corresponds to the final value
of variable Catomic. Each thread, using procedure Recov-
ery, accesses the pagination table texture PT (line 2). This
function, given the thread identifiers (idwidth and idpages),
identifies the corresponding keypoint idk and the target pixel
iditem of which it will be in charge of.

Function Histo builds the keypoint histogram. To store
the histogram Hk, we use the global memory (shared by
all threads run by the Orientation kernel) to enable atomic
operations. Essentially, the histogram is composed by a
buffer with [2048 × 36] integer elements, where 2048 is the
maximum number of keypoints per octave, and 36 is the
length of the orientation histogram of each keypoint. The
current gradient, is selected using the feature scale kδ . Each
thread reads the direction Θθ and magnitude Θmod of the
gradient of the target pixel, it identifies the corresponding
orientation histogram bin, and, using atomic instructions
(such as the OpenCL atomic_add) it adds the corresponding
gradient magnitude (multiplied by a specific function [19]) to
the histogram.

D. KERNEL PEAK: SMOOTH HISTOGRAM
The fourth and last kernel performs the smoothing and it
selects the dominant orientations. This kernel runs [KO×36]
threads. Its pseudo-code is reported in Algorithm 11.

Require: Hk
Ensure: Kα

1: Peak
2: for i = 1 to 6 do
3: Hk = Smooth (Hk)
4: end for
5: Kα = Race (Hk)

Algorithm 11: Kernel Peak returns all keypoint orientations
(Kα) whose values is larger than 80% of the maximum
orientation value.

We use OpenCL work-groups, composed by 36 work-
items, to smooth the orientation histogram Hk. The structure
named Hk is used to define the orientation kα and identify
all possible keypoint duplicates. Each work-item operates on
an orientation histogram bin computing average values using
two adjacent bins. Work-items are synchronized using the
OpenCL barrier function in order to read consistent memory

values. Following the standard, function Smooth is called 6
times. Through loop unrolling and stencil code optimization
it performs the required smoothing. Once all computations
on all bins have been completed by all work-items, the entire
histogramHk is manipulated by the first 4 work-items within
function Race. At this point, each work-item computes
the maximum histogram value of 9 consecutive histogram
bins, e.g., the first work-item computes the maximum among
histogram elements in position 1–9, the second one the maxi-
mum among histogram elements in position 10–18, etc. After
that, the first work-item evaluates the global maximum con-
sidering the 4 local maximum values previously computed.
Finally each work-item checks whether its corresponding
bin is equal to the maximum value, or larger than 80% of
the maximum. The maximum bin will define the orientation
of the corresponding feature. All other relative maximum
values will duplicate the feature with its orientation. All these
features will be returned as Kα.

VII. LOCAL DESCRIPTOR COMPUTATION (LDC)
Local descriptor computation is quite similar to the orien-
tation assignment phase, analyzed in Section VI. LDC is
performed by 3 kernels.

The first kernel is in charge of all initial operations nec-
essary to compact all items within the pagination table. It
follows an implementation quite similar to the one reported
in Algorithm 9 of Section VI-B. Anyhow, it is worthwhile to
highlight two main differences from Section VI-B:
• The neighboring area is constructed (see function Com-

pute) with a different strategy and rk is usually two
times larger than in the pagination kernel. This obvi-
ously implies larger computational costs.

• Procedures Histo and Smooth of Sections VI-C
and VI-D are replaced by functions Descr and Norm.
These functions, reported in Algorithms 12 and 13, per-
form a sequence of steps, described within the standard,
to compute the feature descriptor. Those operations are
highly parallelizable with subsequent important effi-
ciency advantages.

Require: PT , idwidth, idpages
Ensure: Df

1: Descriptor
2: (idk, iditem) = Recovery (PT , idwidth, idpages, Precovery)
3: Df = Descr (idf , iditem, Θmod, Θθ)

Algorithm 12: Local descriptor computation kernel.

In the second kernel, reported in Algorithm 12, the Recov-
ery phase (line 2) identifies the feature and its corresponding
position in the neighboring area. In function Descr (line
3), each item participates to the composition of Df , which
is composed by 128 bins. The descriptor Df is built using
data such as Θmod and Θθ stored in textures previously
created. Df includes information used by the subsequent
CDVS matching phase. Differently from Histo, within func-
tion Descr each bin is coupled with more than one field of

14 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the descriptor Df . Anyway, also in this case all descriptors
are recorded into the global memory to enable atomic oper-
ations (e.g., such as the ones performed by the atomic_add
function) to avoid conflicts among different items.

The third kernel (running [Ko× 128] threads) is described
in Algorithm 13. It performs the normalization step required
by the standard in a concurrent way. The required operations
are performed on Df by groups of 128 threads appropriately
synchronized. Following the CDVS standard, normalization
is performed twice (line 2). Function Norm (line 3) copies
each descriptor from the global memory to a local texture.
Loop unrolling is used to optimize stencil codes within the
function. The texture has 32 rows and FO columns. Each
descriptor is encoded on 32 RGBA floats in a texture where
on each row there is a different Df .

Require: Df
Ensure: Df

1: Normalization
2: for i = 1 to 2 do
3: Df = Norm (Df)
4: end for

Algorithm 13: Normalization kernel.

A. COMPRESSION AND COORDINATE CODING
Local descriptors Df require about 83 KBytes of memory.
This makes local descriptors complex to manage and to trans-
mit. This is especially true when hardware platforms have
limited resources, like embedded devices and cell phones.
For this reason MPEG developed a compression technique
to generate more manageable data. CDVS includes 6 modes
of compression that store the following amount of informa-
tion: 512Bytes, 1KBytes, 2KBytes, 4KBytes, 8KBytes, and
16KBytes. According to the compression mode being used,
the compression algorithm selects a specific subset of the
transformed components from local descriptors. In order to
enable mode interoperability, these components are selected
such that the set of components of a more compressed
mode is always a subset of the set of components of a less
compressed mode. Once the transformed components have
been selected, each component is quantized to three values
(that is, −1, 0, and 1) and finally encoded (into 10, 0, and
11). The quantization levels for each component are defined
in the standard’s normative look-up table. These values are
obtained maintaining a high level of precision when doing
image matching.

For each compression mode, we implement a different
kernel. The system runs only the kernel corresponding to
the selected mode. Each kernel gathers all coding operations
required by an increasing number of groups, depending on
the mode (5, 5, 10, 16, 20, and 32). Each group of 8 threads
applies the CDVS standard encoding and quantization table
to the descriptor to reduce its size as specified by the se-
lected compression mode. Using separate kernels to perform
compression enables a straightforward mapping of several

coding tables, it reduces the required checks, and improves
performances.

The last step in the feature compression pipeline efficiently
encodes the coordinates of each keypoint (∆x,∆y). Coordi-
nates are usually represented using floating-point precision,
which becomes a bottleneck once the feature vectors have
been quantized. CDVS uses a location histogram coding
scheme [35] to identify cluster of features and it efficiently
makes use of arithmetic encoding. For this reason, our last
kernel [FO] reads keypoint positions and, based on coding
tables, it associates these keypoints to an encoding coordinate
which will be used (together with the compact descriptor)
during the matching phase.

VIII. EXPERIMENTAL RESULTS
In this section we present our results, with specific attention
on accuracy (precision) and computation efficiency (speed).
We follow the inter-operability (Pairwise Matching) test [36]
defined by the CDVS standard. The reference picture descrip-
tors for pairwise matching are extracted using the Test Model
14 (TM 14.0) (the last implementation of the standard at
publication time) while the query descriptors are selected us-
ing the proposed methods. The data-sets used for the CDVS
interoperability test are the followings [37]: Graphics (2500
images), Graphics VGA resolution (2500 images), Graphics
VGA resolution and high JPEG compression (2500 images),
Paintings (455 images), Video Frames (500 images), Build-
ings (14935 images), Common Objects (10200 images). We
manipulate all images with a resolution of (640 · 480) pixels.

We selected three widely used devices:
• The Arndale Octa board. This is a high-power single-

board computer featuring a 1.7GHz dual-core ARM
Cortex-A15 as a CPU and an ARM Mali T628 GPU.

• The Samsung Galaxy Note 3. This adopts a chipset
Snapdragon 800 Qualcommm MSM8974 embedding
a CPU 2.3GHz quad-core ARM Cortex A15 and a
Qualcomm Adreno 330 GPU.

• The Samsung Galaxy Note 4. It uses a APQ8084 Qual-
comm Snapdragon 805 chipset, with a 2.7 GHz Quad
Core CPU and a Qualcomm Adreno 420 GPU.

Anyhow, our considerations may easily be extended to
other float single-precision GPUs supporting the Open-CL or
CUDA language.

Section VIII-A compares our fully GPU-based approach
with the CPU-based CDVS Test Model, in terms of time
efficiency. Section VIII-B draws a comparison between our
approach and the one by Duan et al. [16]. Moreover, fol-
lowing Cavicchioli et al. [38], it talks about memory issues
and memory transfer times. Section VIII-C, follows Sec-
tion VIII-A, and it compares the same approaches in terms
of accuracy.

A. EFFICIENCY
We start our experimental analysis by comparing our GPU-
based implementation of the extraction pipeline of Fig. 1 with
the CPU-based CDVS Test Model implementation.

VOLUME 4, 2016 15

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Fig. 7 reports results on the whole CDVS data-set,i.e.,
more than 33, 000 images with resolution (640 · 480) pixels.
The y-axis indicates the average feature extraction times,
i.e., the average wall-clock times2, for 4 different approaches
(reference deferred computation and hastened computation
on the CPU, and deferred and hastened computations on the
GPU) running on the three selected target devices (i.e., the
Arndale Octa board, Fig. 7a, the Samsung Galaxy Note 3,
Fig. 7b, and the Samsung Galaxy Note 4. Fig. 7c). The x-
axis reports the different CDVS descriptor lengths measured
in bytes (512, 1K, 2K, 4K, 8K, 16K). Average values are
computed over all images. The plots show that the reference
implementation (named “Reference Deferred”) is from 2 to 5
times slower than our OpenCL implementations. This is true
especially for the larger descriptor lengths, as GPUs scale
much better than CPUs when working with larger amount
of data due to efficient massive parallelization. Notice that
the two CDVS reference implementations on the Arndale and
the Note 3 platforms have very similar results, as they embed
the same CPU. Moreover, “hastened” versions are from 10%
to 30% faster than “deferred” versions, and they use less
memory, reducing interference issues on common memory
platforms. This difference is larger for GPU platforms than
for CPU ones.

Fig. 8 presents time breakdowns of our techniques and
comparison with the reference implementation on the Sam-
sung Galaxy Note 3. Similar results have been collected
on the other platforms. The x-axis reports the descriptor
lengths (in bytes), for the reference CPU implementations
(deferred and hastened) and for the GPU versions (deferred
and hastened). The y-axis reports average wall-clock times
of the main phases (KD, OA, FS, LDC). For the hastened
implementation the FS stage has been divided into FS1 and
FS2 (to indicate the time spent before and after, respectively,
the OA phase). The average height of the CDVS reference
CPU bars are about 627 (deferred) and 600 (hastened) mil-
liseconds, whereas the average height of the GPU runs are
238 (deferred) and 189 (hastened).

Fig. 9 presents time breakdowns of our GPU implemen-
tations (deferred and hastened versions) on a pie chart. The
KD stage is strongly influenced by the image size and it is the
most expensive step. Nevertheless, it can be highly optimized
by the concurrent implementation. It approximately needs the
40% of the total time on the GPU on average, whereas this
figure is higher for the CPU implementation. The OA and FS
stages require much less time than the KD stage, but their
concurrent versions are not much faster than the sequential
ones.

Table 1 reports the resulting average speed-up for the GPU
with respect to the CPU. The most expensive phases have an
average speed-up larger than 3 for thee hastened approach,

2The wall-clock time is the time necessary to a (mono-thread or multi-
thread) process to complete its job on a new input image, i.e., the difference
between the time at which an image is completely handled and the time at
which this task started. For this reason, the wall-clock time is also known as
“elapsed time”.

 200

 300

 400

 500

 600

 700

 800

512 1K 2K 4K 8K 16K

T
i
m
e

[
m
s
]

Descriptor Lenght [bytes]

Reference Deferred FS - Arndale CPU
Hastened FS - Arndale CPU
Deferred FS - Arndale GPU
Hastened FS - Arndale GPU

(a) Arndale Octa board.

 200

 300

 400

 500

 600

 700

 800

512 1K 2K 4K 8K 16K

T
i
m
e

[
m
s
]

Descriptor Lenght [bytes]

(b) Samsung Galaxy Note 3.

 200

 300

 400

 500

 600

 700

 800

512 1K 2K 4K 8K 16K

T
i
m
e

[
m
s
]

Descriptor Lenght [bytes]

(c) Samsung Galaxy Note 4.

FIGURE 7: Average wall-clock running times on the entire
CDVS data-set. Times include all CDVS processing steps,
from the original input images to the extraction of compact
descriptors (see Fig. 1).

16 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

 0

 100

 200

 300

 400

 500

 600

 700

 800

5
1
2
1
k
2
k
4
k
8
k
1
6
k

5
1
2
1
k
2
k
4
k
8
k
1
6
k

5
1
2
1
k
2
k
4
k
8
k
1
6
k

5
1
2
1
k
2
k
4
k
8
k
1
6
k

Method and CDVS descriptor lengths

T
i
m
e

b
r
e
a
k
d
o
w
n

[
m
s
]

KD
OA
FS

LDC

FS1
FS2

Has.GPUDef.GPUHas.CPURef.Def.CPU

FIGURE 8: Average running times for the Samsung Galaxy
Note 3 with time breakdown in the different algorithmic
phases. All times are reported in milliseconds. The 4 his-
tograms report (from left to right) time details for the: (a)
Reference (deferred) CPU algorithm, (b) Hastened CPU
version, (c) Deferred GPU implementation, (d) Hastened
GPU version, All 4 histograms report times for all CDVS
descriptor lengths.

KD: 38%

OA: 24%

FS: 8% LDC: 30%

(a) Deferred FS.

KD: 42%

FS1: 6%

OA: 20%

FS2: 3%
LDC: 29%

(b) Hastened FS.

FIGURE 9: GPU time breakdown: Deferred approach (4
main phases, i.e., KD, FS, OA, LDC) and hastened version
(5 main phases, i.e., KD, FS1, OA, FS2, LDC).

and slightly smaller than 3 for the deferred algorithm. Our
concurrent implementation makes smaller improvements to
the FS and the OA phases whose speed-up is around 2.

Deferred Approach
KD FS OA LDC
2.77 2.41 1.97 2.81

Hastened Approach
KD FS1 FS2 OA LDC
3.48 2.12 2.86 2.12 3.29

TABLE 1: GPU versus CPU Speed-up: Deferred approach (4
main phases, i.e., KD, FS, OA, LDC) and Hastened version
(5 main phases, i.e., KD, FS1, OA, FS2, LDC).

B. COMPARISON AND MEMORY ISSUES
In this section we compare our results with the ones by Duan
et al. [16], and we present some data to justify our idea to
avoid CPU-to-GPU memory transfer as long as possible and
to use the integrated memory. For this reason, in this section,
we mainly concentrate on running times, throughput, and
latency.

CPU/GPU Time [ms] Time [ms]
[16] This paper

Snapdragon 800 − 576.5
CPU Snapdragon 805 − 514.3

Intel Xeon E5-2650 116.7 154.8
Adreno 330 GPU − 158.7

GPU Adreno 420 GPU − 101.5
NVIDIA GTX 1060 5.1 7.9

TABLE 2: Comparison between our approach and data
presented by Duan et al. [16]. The symbol − means that the
data is not available on the original paper.

Table 2 reports a comparison with the data presented by
Duan et al. [16]. In that paper the authors present a CDVS
implementation targeting discrete platforms with cooperating
CPU and GPU cores. To speed-up the process, the authors
also incorporate several optimizations within the standard
CDVS encoder, such as the adoption of deep learning based
approaches. On the contrary, we mainly concentrate on em-
bedded systems with much more limited computing power
and our target is not to optimize single CDVS phases but
to stick to the standard as much as possible while porting
it under a many-core architecture. Moreover, one of our
algorithmic intrinsic features is to avoid memory transfer to
possibly let the CPU work on other issues. Albeit these very
different starting points, we run some experiments to have
some common figures. First of all, we select two common
hardware architectures. Then we show the average running
time to extract different visual descriptors on 1000 images
with resolution (640 · 480) pixels. We report results on
our reference CPUs (Snapdragon 800 and Snapdragon 805),
GPUs (Adreno 330 and Adreno 420), and on the common
platforms (i.e., Intel Xeon E5-2650 v2 2.6GHz CPU and
NVIDIA GTX 1060 GPU). As there are no details on how
the images were selected, we present average results on 10
different sets of 1000 images. Table 2 reports our data.

Although, as we have just mentioned, the two strategies
are quite different, and no definitive conclusion can be made,
Table 2 at least shows that our results and the ones by Duan et
al. [16] are somehow comparable. We need more time to run
experiments, but this is not surprising, and from our point
of view, it can be considered as a very good result given
the consideration reported above. Moreover, one of the main
differences is that Duan et al. [16] mainly concentrates on
discrete devices. On these platforms memory copies mainly
involve copying data from the system DRAM towards the
on-board RAM of the graphics adapter, through the PCI stan-
dard. On the contrary, we concentrate on embedded systems,

VOLUME 4, 2016 17

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

 0

 50

 100

 150

 200

512 1k 2k 4k 8k 16k

R
e
l
a
t
i
v
e

e
x
e
c
u
t
i
o
n

t
i
m
e

[
%
]

Descriptor Lenght [bytes] and Interference level

Alone
Int1
Int2
Int3
Int4

FIGURE 10: Relative execution times with different levels of
interference (from no interference at all Alone, to the larger
one Int4) between the CPU and the GPU.

where integrated graphics processors may share memory
on modern platforms. However, these approaches introduce
CPU-to-GPU memory coherency problems when accessing
the same shared memory buffer. As a consequence sharing
memory and avoiding memory copies does not necessarily
lead to performance improvements. To analyze this issue,
and following Cavicchioli et al. [38], we present an analysis
in which we show how the performance of our algorithm
degrades on recent SoCs, when memory is shared among
the CPU cores and the GPUs (see also the considerations
reported at the end of Section III-C).

Figure 10 reports the following experiments. We consider
an Intel i7-6700 SoC platform, featuring an HD 530 Inte-
grated GPU. This platform uses OpenCL 2.0, and this, in
turn, enables shared memory usage. In this platform we ded-
icate the GPUs to run our CDVS algorithm with the different
compression modes (512B, 1KBytes, 2KBytes, 4KBytes,
8KByets and 16KBytes), whereas we run some interference
programs on the CPU cores. The x-axis reports the different
compression modes. For each mode the histogram bars refer
to the different interference programs. Interference programs
perform sequential and random accesses, in read and write
modes, involving an increasing working memory size and an
increasing number of CPU cores. The y-axis indicates the to-
tal relative execution time averaged on all experiments. Data
shows that slow-down of more than 60% may be reported in
some cases.

C. ACCURACY
Accuracy is a primary target for the CDVS standard and
a main issue when working with GPU [39]. To evaluate
the accuracy of our algorithms, we present the CDVS inter-
operability test results. Accuracy results are practically iden-
tical on all platforms. Thus, we just report results for the
Samsung Note 3. We work with 33, 000 images, running
the inter-operability test on the entire CDVS data-set. We
generate about 17, 000 matching-pairs and about 180, 000

no-matching-pairs.
Fig. 11 shows the true positive rate for the 4 different

approaches previously analyzed. The x-axis reports the query
size defined by the CDVS standard. The sizes (1k, 4k) and
(2k, 4k) represent the matching performed with different
descriptor lengths, e.g., 1k descriptors length are compared
with 4k ones. The y-axis reports the true positive rate for the
4 implementations. The high variability of the true positive
rate is due to the intrinsic characteristics of the test model.
Notice that, the monotonicity of the curve should be obtained
by re-ordering the x-axis (as 512, 1K, 1K-4K, 2K, 2K-4K,
4K, 8K, 16K), but we did not perform this operation, as we
decided to adopt the order specified in the original MPEG
proposal. Anyway, the plot shows that the difference between
our implementations and the reference one is less than 2%
for the majority of the modes. Fig. 12 shows the false alarm
rate for the same approaches under the same conditions. In
this case, the difference between our implementations and the
reference one is less than 0.2%. The two graphs prove that the
visual matching systems under test have similar behaviors
in terms of accuracy and that the exact response (i.e., the
pair is matching or non-matching) is given with a very high
probability.

We finally compare our approaches with the reference one
considering pairwise matching test results performed using
the same approach to extract the features, i.e., conversely
to the inter-operability test, described above, the reference
and the query image features are computed by the same
extractor. The objective of this test is to analyze the intrin-
sic characteristics, in terms of accuracy, of our approaches
considering them as stand-alone visual search systems. To
this regard we selected from [40] and [41] data-sets about
2500 images, generating about 10000 matching-pairs and
about 5000 non-matching pairs. Fig. 13 shows the Receiver
Operating Characteristic (ROC3) for the CPU and GPU
implementations on the same benchmark set. Even if we
performed the test on all reference GPUs, we report results
just on the Samsung Galaxy Note 3 device, as the data are
identical in the other cases. Essentially, the x axis reports
the complemented value of the true negative matching rate
(1− TrueNegative, i.e., 1− TN), while the y axis reports
the true positive matching rate (TP). Those values are plotted
for several matching and non-matching thresholds varying
along the curves. The graph shows a sharp knee after which
it remains stable around a y-value of about 0.86. This means
that, for a wide range of threshold values, the number of true
positives (i.e., correct matching results) remains around 86%
(y-value), while the number of wrong negatives (i.e., wrong
non-matching results) stays below 12% (x-value). In other
words, the graph proves that the two visual matching systems
under test have similar behaviors in terms of accuracy, and
the exact response (i.e., the pair is matching or non-matching)
is given with a very high probability.

3A ROC curve is a graphical plot which illustrates the performance of a
binary classifier system as its discrimination threshold is varied (please, see
reference [42] for further details).

18 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

 70

 75

 80

 85

 90

512 1k 2k 1k,4k 2k,4k 4k 8k 16k

T
r
u
e

P
o
s

R
a
t
e

[
%
]

Query size [bytes]

Reference Deferred FS - CPU
Hastened FS - CPU
Deferred FS - GPU
Hastened FS - GPU

(a) Buildings.

 80

 85

 90

 95

 100

512 1k 2k 1k,4k 2k,4k 4k 8k 16k

T
r
u
e

P
o
s

R
a
t
e

[
%
]

Query size [bytes]

(b) Common objects.

FIGURE 11: CDVS data-set: Pairwise matching true-
positive rate.

IX. CONCLUSIONS
Pairwise matching has become a core technology for many
modern scenarios and several common applications. The
extraction of features essential to the matching has received
specific attention by several researchers and by the MPEG.
Following this standard, extracting features from an image
requires several complex and time consuming steps.

In this paper, we show how to efficiently implement
the entire process of descriptors extraction, i.e., all main
stages of the CDVS standard and the ALP detector, on
embedded GPUs. We specifically focus on the more time
consuming and complex phases, namely keypoint detection,
feature selection, orientation assignment, and local descriptor
computation. We discuss strategies and recommendations to
divide the overall workload among different kernels. We
show how to enforce thread regularity. We strive to improve
concurrency and reduce synchronization waiting times. We
present how to design “pagination” or “recovery” tables to
store and access data efficiently from different threads. We
debate how to appropriately store and retrieve all data that
have to be transferred from the CPU to the GPU (and vice-
versa) and exchanged among different kernels.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

512 1k 2k 1k,4k 2k,4k 4k 8k 16k

T
r
u
e

P
o
s

R
a
t
e

[
%
]

Query size [bytes]

Reference Deferred FS - CPU
Hastened FS - CPU
Deferred FS - GPU
Hastened FS - GPU

(a) Buildings.

 0.05

 0.1

 0.15

 0.2

 0.25

512 1k 2k 1k,4k 2k,4k 4k 8k 16k

T
r
u
e

P
o
s

R
a
t
e

[
%
]

Query size [bytes]

(b) Common objects.

FIGURE 12: CDVS data-set: Pairwise matching false-
positive rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12

T
r
u
e

P
o
s
i
t
i
v
e

(
T
P
)

False Positive (FP)

Reference Deferred FS - CPU

Hastened FS - CPU

Deferred FS - GPU

Hastend FS - GPU

FIGURE 13: GPU and CPU Receiver Operating Character-
istics (ROC).

VOLUME 4, 2016 19

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In our approach the entire workload and data flow have
been maintained within the GPU and GPU only. This ap-
proach may lead to some inefficiency, but it also intrinsi-
cally increases concurrency, it avoids repeated data transfer
between different computing units, and it keeps the CPU idle
as long as possible. This in turns enables the CPU to work on
other tasks that may be deemed as necessary on embedded
and power-limited systems.

Experimental results on CDVS standard image data-sets
shows that our solutions have a speed-up up to 3x over
the CDVS Test Model CPU implementation. Moreover,
pairwise-matching experiments clearly show that our parallel
implementations are very close to the test model one in terms
of accuracy.

REFERENCES
[1] B. Girod, V. Chandrasekhar, D. M. Chen, N. Cheung, R. Grzeszczuk,

Y. A.Reznik, G. Takacs, S. S. Tsai, and R. Vedantham, “Mobile visual
search,” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 61–76, 2011.
[Online]. Available: http://dx.doi.org/10.1109/MSP.2011.940881

[2] L-Y. Duan and F. Gao and J. Chen and J. Lin and T. Huang, “Compact
descriptors for mobile visual search and MPEG CDVS standardization,”
in IEEE International Symposium on Circuits and Systems (ISCAS13),
Beijing, China, may 2013, pp. 885–888.

[3] K. Cordes, B. Rosenhahn, and J. Ostermann, “Localization accuracy of
interest point detectors with different scale space representations,” in
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Seoul, South Korea, August, 2014, pp. 247–252.

[4] T. Lindeberg, “Discrete derivative approximations with scale-space prop-
erties:a basis for low-level feature extraction,” Journal of Mathematical
Imaging and Vision, vol. 3, no. 4, pp. 349–376, November, 1993.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision
(ICCV99), vol. 2, Washington, DC, USA, September, 1999, pp. 1150–
1157.

[6] G. Francini, A. Garbo, S. Quer, M. Balestri, G. Cabodi, C. Loiacono, and
D. Patti, “Accurate and efficient visual search on embedded systems,” in
Third International Conference on Advances in Computing, Communica-
tion and Information Technology (CCIT), Birmingham, United Kingdom,
April, 2015, pp. 61–66.

[7] A. Garbo, C. Loiacono, S. Quer, M. Balestri, and G. Francini, “Cdvs
feature selection on embedded systems,” in IEEE International Conference
on Multimedia and Expo Workshops (ICMEW), Turin, Italy, July, 2015,
pp. 1–6.

[8] G. Wang, B. Rister, and J. R. Cavallaro, “Workload analysis and efficient
opencl-based implementation of sift algorithm on a smartphone,” in IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
Austin, TX, USA, December, 2013, pp. 759–762.

[9] M. Suarez, V. M. Brea, J. Fernandez-Berni, R. Carmona-Galán, D. Ca-
bello, and A. R. Vázquez, “A 26.5 nj/px 2.64 mpx/s cmos vision sensor
for gaussian pyramid extraction,” in 40th European Solid State Circuits
Conference (ESSCIRC), 2014, pp. 311–314.

[10] P. Leyva, G. Doménech-Asensi, J. Garrigos, J. Illade-Quinteiro, V. M.
Brea, P. López, and D. Cabello, “Simplification and hardware implemen-
tation of the feature descriptor vector calculation in the sift algorithm,” in
24th International Conference on Field Programmable Logic and Applica-
tions (FPL), 2014, pp. 1–4.

[11] K. Lee, S. Lee, and W. Oh, “Accelerating local feature extraction using
two stage feature selection and partial gradient computation,” in Asian
Conference on Computer Vision, 2014, pp. 366–380.

[12] S. Zhang, R. Wang, Q. Wang, and W. Wang, “Accelerating cdvs extraction
on mobile platform,” in IEEE International Conference on Image Process-
ing (ICIP), Quebec City, QC, Canada, September, 2015, pp. 3837–3840.

[13] O. J. Arndt, T. Linde, and H. Blume, “Implementation and analysis
of the histograms of oriented gradients algorithm on a heterogeneous
multicore cpu/gpu architecture,” in IEEE Global Conference on Signal and
Information Processing (GlobalSIP), 2015, pp. 1402–1406.

[14] I. A. Doush and S. AL-Btoush, “Currency recognition using a smartphone:
Comparison between color sift and gray scale sift algorithms,” Journal of
King Saud University-Computer and Information Sciences, 2016.

[15] C. Lee, C. E. Rhee, and H.-J. Lee, “Complexity reduction by modified
scale-space construction in sift generation optimized for a mobile gpu,”
IEEE Transactions on Circuits and Systems for Video Technology, 2016.

[16] L. Y. Duan, W. Sun, X. Zhang, S. Wang, J. Chen, J. Yin, S. See, T. Huang,
A. C. Kot, and W. Gao, “Fast mpeg-cdvs encoder with gpu-cpu hybrid
computing,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp.
2201–2216, may 2018.

[17] G. Francini, S. Lepsoy, and M. Balestri, “Selection of local features for
visual search,” Image Communication, vol. 28, no. 4, pp. 311–322, 2013.

[18] T. Lindeberg, “Feature detection with automatic scale selection,” Interna-
tional journal of computer vision, vol. 30, no. 2, pp. 79–116, 1998.

[19] L. Y. Duan, V. Chandrasekhar, J. Chen, J. Lin, Z. Wang, T. Huang,
B. Girod, and W. Gao, “Overview of the mpeg-cdvs standard,” IEEE
Transactions on Image Processing, vol. 25, no. 1, pp. 179–194, jan 2016.

[20] M. C. Doggett, “Texture caches,” IEEE Micro, vol. 32, pp. 136–141, 2012.
[21] S. Bianco, D. Mazzini, D. P. Pau, and R. Schettini, “Local detectors and

compact descriptors for visual search: A quantitative comparison,” Digital
Signal Processing, vol. 44, no. Supplement C, pp. 1–13, 2015.

[22] A. P. Witkin, “Scale-space filtering: A new approach to multi-scale de-
scription,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP84), San Diego, CA, USA, March, 1984.

[23] S. Chen, J. Qin, Y. Xie, J. Zhao, and P. Heng, “A fast and flexible sorting
algorithm with cuda,” in Proceedings of the 9th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP2009),
Taipei, Taiwan, June, 2009, pp. 281–290.

[24] M. Lu, B. He, and Q. Luo, “Supporting extended precision on graphics
processors,” in Proceedings of the Sixth International Workshop on Data
Management on New Hardware (DaMoN2010), Indianapolis, Indiana,
USA, June, 2010, pp. 19–26.

[25] M. Burtscher and K. Pingali, “An efficient cuda implementation of the tree-
based barnes hut n-body algorithm,” in GPU computing Gems Emerald
edition, Burlington, USA, 2011, 2011, pp. 75–92.

[26] M. E. Lalami, D. El-Baz, and V. Boyer, “Multi gpu implementation of
the simplex algorithm,” in Proceedings of the IEEE International Confer-
ence on High Performance Computing and Communications, Banff, AB,
Canada, September, 2011, pp. 179–186.

[27] G. Lowe, “Concurrent depth-first search algorithms based on tarjan’s al-
gorithm,” International Journal on Software Tools for Technology transfer,
vol. 18, no. 2, pp. 129–147, 2016.

[28] C. Johnson, L. Barford, S. M. Dascalu, and F. C. Harris, “Cuda implemen-
tation of computer go game tree search,” in Information Technology: New
Generations: 13th International Conference on Information Technology,
Las Vegas, Nevada, USA, April, 2016, pp. 339–350.

[29] Z. S. Hakura and A. Gupta, “The design and analysis of a cache architec-
ture for texture mapping,” ACM SIGARCH Computer Architecture News,
vol. 25, no. 2, pp. 108–120, 1997.

[30] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying gpu microarchitecture through microbenchmarking,” in
IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS). IEEE, 2010, pp. 235–246.

[31] L. Y. Duan, J. Lin, J. Chen, T. Huang, and W. Gao, “Compact descriptors
for visual search,” IEEE MultiMedia, vol. 21, no. 3, pp. 30–40, jul 2014.

[32] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. L. B. Kim, , and
P. Dubey, “Fast sort on cpus and gpus: a case for bandwidth oblivious simd
sort,” in Proceedings of the ACM SIGMOD International Conference <on
Management of Data, 2010, pp. 351–362.

[33] K. Lee, S. Lee, S. I. Na, S. Je, and W. G. Oh, “Extensive analysis of feature
selection for compact descriptor,” in The 19th Korea-Japan Joint Workshop
on Frontiers of Computer Vision, Incheon, South Korea, January, 2013, pp.
53–57.

[34] D. G. Lowe, “Distinctive image features from scale-invariant key-points,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[35] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, M. Makar,
R. Grzeszczuk, and B. Girod, “Improved coding for image feature location
information,” in SPIE, vol. 8499, San Diego, CA. USA, August, 2012, pp.
1–10.

[36] “Mpeg-cdvs group,” http://wg11.sc29.org, accessed: 2015-03-01.
[37] “Mpeg-cdvs group,” http://pacific.tilab.com/www/datasets/download/

Dataset-20120210/, accessed: 2015-03-01.
[38] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference

characterization between cpu cores and integrated gpus in mixed-criticality

20 VOLUME 4, 2016

http://dx.doi.org/10.1109/MSP.2011.940881
http://wg11.sc29.org
http://pacific.tilab.com/www/datasets/download/Dataset-20120210/
http://pacific.tilab.com/www/datasets/download/Dataset-20120210/

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2870283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

platforms,” in 22nd IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), sept 2017, pp. 1–10.

[39] G. Cabodi, A. Garbo, C. Loiacono, A. Quer, and G. Francini, “Efficient
complex high-precision computations on gpus without precision loss,”
Journal of Circuits, Systems and Computers, no. 0, 2017.

[40] Telecom Italia, “The cturin180 test set,” http://jol.telecomitalia.com/
jolvisible/cturin180/?lang=en, accessed: 2016-15-01.

[41] Computer Vision Laboratory, “Zurich building image database,” http:
//www.vision.ee.ethz.ch/showroom/zubud/index.en.html, accessed: 2014-
10-01.

[42] F. Oberti, A. Teschioni, and C. S. Regazzoni, “Roc curves for performance
evaluation of video sequences processing systems for surveillance appli-
cations,” in IEEE International Conference on Image Processing (ICIP99),
Kobe, Japan, October, 1999, pp. 949–953.

ALESSANDRO GARBO received his M.S. de-
gree in software engineering from the Politecnico
di Torino, Italy, in 2003, and his Ph.D. degree
in software engineering from the Dipartimento di
Automatica ed Informatica of the same University,
in 2007. He worked as post-doctoral researcher at
the Computer Engineering Department at Politec-
nico di Torino with Professors Gianpiero Cabodi
and Stefano Quer for 10 years. He is currently
working as Senior Researcher in Nuance where he

contributes in the research and development of new algorithms in speech
synthesis. His research interests include vision algorithms for automotive
applications, eye/gaze tracking, traffic video detection, image processing,
and pattern recognition. He is active in the computer vision field using
embedded system for tracking and machine learning.

STEFANO QUER received a M.S. in Electronic
Engineering from Politecnico di Torino in 1991,
and a Ph.D. degree in Computer Engineering,
from the Ministry of University and Scientific and
Technological Research in Rome in 1996. He has
been a Visiting Faculty in the Department of Elec-
tronic Engineering and Computer Science of the
University of California in Berkeley. He has been
an intern with the “Advanced Technology Group”
at Synopsys Inc., Mountain View, California, and

with the “Alpha Development Group” at Compaq Computer Corporation,
Shrewsbury, Massachussetts. He has been a Compaq Computer Corporation
consultant. He is currently professor with the Department of Control and
Computer Engineering at Politecnico di Torino, Torino, Italy. His main
research interests include systems and tools for CAD for VLSI, formal
methods for hardware and software systems, and embedded systems. Other
activities focus on the development of sequential and concurrent algorithms
and on optimization techniques able to achieve acceptable solutions with
limited resources.

VOLUME 4, 2016 21

http://jol.telecomitalia.com/jolvisible/cturin180/?lang=en
http://jol.telecomitalia.com/jolvisible/cturin180/?lang=en
http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html

