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ABSTRACT Figuring the network’s hidden abnormal behavior can reduce network vulnerability. This
paper presents a detailed architecture in which the collected log data of the network can be processed
and analyzed. We process and integrate on-campus network information from every router and store the
integrated NetFlow log data. Ceph is used as an open-source distributed storage platform that offers high
efficiency, high reliability, scalability, and preliminary preprocessing of raw data with Python, removing
redundant areas and unification. In the subanalysis, we discover the anomaly event and absolute flow by
three times of standard deviation rule. Keras has been used to classify in-time data collected via a cyber-
attack and to construct an automatic identifier template through the Recurring Neural Network (RNN) test.
The identification accuracy of the optimization model is around 98% in attack detection. Finally, in the
MySQL server, the results of the real-time evaluation can be obtained, and the results of the assessment can

be displayed via ECharts.

INDEX TERMS Data Storage, Ceph, Deep Learning, Cyberattack, NetFlow Log

I. INTRODUCTION
There is no question that in the rapidly moving age of
information the Internet has become an integral component
of human life. Nevertheless, it also masks an unfair network
behavior in the Internet world. Figuring the network’s hidden
abnormal behavior can reduce network vulnerability [1]. In
the past, network traffic information records have been main-
tained in the databases but a range of network connections
have been developed through technological development.
The regular database was hard to cope with the increasing
information [2]. To store these materials, it is critical to
creating a high-performance, reliable, and scalable storage
environment [3].

The increase in hardware machinery and deep learning
have affected cyberattack behavior. In order to tackle this
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danger, advancement techniques and the development of new
policies are required. Monitoring cyber attacks using deep
learning technology will currently be a major problem [4].

In this experiment, we used information from NetFlow
which function includes no packet content and only the
necessary traffic configuration data. The benefit of NetFlow
is the lightweight and fastness of the entire data packet.
Such features could be ideal for extraordinary detection in
a crowded network environment [5].

In this research, our goal is to implement Ceph as a storage
environment, i.e., save the generated NetFlow data, and prac-
tice Keras to analyze the stored NetFlow data, visualize the
NetFlow to monitor, and identify the threat. Specific goals
are listed below:

1) Set up a decentralized Ceph storage environment and
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FIGURE 1: Ceph Architecture.

use CRUSH algorithm to distribute information in a
balanced way;

2) Instantly store the produced NetFlow information in
the Ceph setting as a historical database;

3) Use deep learning to analyze NetFlow information in
real-time and assess various algorithms and designs;

4) Visualize NetFlow data analytical results on the web-

page.

Il. BACKGROUND REVIEW AND RELATED WORKS

In this section, some background knowledge is reviewed for
later use of system design and implementation.

A. BACKGROUND REVIEW

1) Ceph

Ceph [6] is open source software that is extendable to large-
scale storage fields specified by software. It can store large
amounts of data at a lower price, provide the balancing
system, and information reliability. It supports three types of
installations: block storage, object storage, and file system
storage on the same platform to enhance future storage envi-
ronments. The lower layer of Ceph is a clustered storage area.
In the future, when needed, it can only add the nodes to the
cluster using a scale. Ceph has automated repair and manage-
ment features that can improve the efficiency of storage data
placing on system by copying information simultaneously to
different nodes using a CRUSH [7] algorithm. If a cluster
node crashes, it does not affect the entire operation of the
storage system.

Figure 1 depicts the three-layer underlying architecture
of Ceph. The first layer provides the storage of objects,
blocks, and files. The second layer extracts the underlying
data through the RADOS function library. The third layer
comprises a storage space composed of a plurality of RADOS
nodes.

FIGURE 2: RNN Architecture.

2) Keras

Keras [8] is a deep learning open-source library in Python
that runs on TensorFlow, CNTK, or Theano. In the develop-
ment of Keras, accelerated experimentation is promoted. It is
designed to be easy to use, modular and expandable. Keras
has already trained the model’s input layer, hidden layer, and
output level, so it can perform quick and easy operations, and
only the right parameters need to be added. Keras supports
both convolution and recursion neural networks and can be
trained on CPUs and GPUs by using deep learning models.

3) Recurrent Neural Networks

For the data highly correlated in space and time series,
RNN(Recurrent Neural Network) [9] is used. In conventional
neural networks, all inputs and outputs are independent from
each other. This method may not be suitable for all time series
data circumstances. In cases where previous data must be
retained to inform the results, this sort of problem can be
resolved by using RNN. The concept of RNN is to cyclically
transfer its own network data. The output of the network is
based on previous calculations so that a wider range of time
series input structures can be handled. Figure 2 describes the
Recurrent Neural Networks Architecture.

4) Long Short Term Memory Network
Long Short Term is a unique form of RNN that adds data
about "long-term addiction" via memory function [10], pri-
marily to fix the issue of gradient disappearance and gra-
dient explosion during long-sequence practice. There is an
additional Cell state updated with the moment compared to
the overall RNN. To determine memory storage and use, the
Forget Gate, Input Gate, and Output Gate are used. Figure 3
shows the Long Short Term Memory Network architecture,
while Figure 4 represents the LSTM internal structure.
When controlling the transmission status through three
Gates, it is necessary to remember the essential long-term
data and forget the insignificant data. It can fix the issue in
training of gradient disappearance and explosion. Nonethe-
less, the training difficulty is increased due to the enhanced
amount of introduced parameters. The equation of LSTM is
described in the equation 1-3 as follows:

d=od+2r0z )]
h' = 2° tanh(c") )
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FIGURE 3: LSTM Architecture.

-
-

e

+ @‘

] tanh

%0)

w0

\1 17

FIGURE 4: LSTM Internal Structure.

y' =o(W'h) (3)

5) Gate Recurrent Unit
A sort of cyclic neural network is also the Gate Recurrent
Unit (GRU) [11] [12]. During long-term sequence practice,
the same as LSTM, it is necessary to address the issue of
gradient explosion and gradient disappearance. The GRU
simplifies an Update Gate for the LSTM Input Gate and
Forget Gate. Compared to LSTM, one parameter is used that
can accelerate the execution during practice and decrease
memory utilization. GRU can also produce outcomes com-
parable to LSTM regarding the outcomes. GRU’s practicality
will be higher, given the hardware’s computing power and
time cost. Figure 5 presents the Gate Recurrent Unit Network
architecture, while Figure 6 represents the GRU internal
structure.

The equation of GRU is defined in the equation 4-7 as
follows:

z=o(xU* 4+ 541 W?) )
r=o(xU" + s W") 5)

h = tanh(z,U" + (s4_1 o r)W") (6)
si=(1—2)oh+z081 %
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FIGURE 5: GRU Architecture.
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FIGURE 6: GRU Internal Structure.

6) Grafana

Grafana is an open-source visualization tool that is most often
used with Graphite, InfluxDB, Elasticsearch, and Logz.io.
Essentially, it is a mobile graphite-web substitute that helps
users to build and edit dashboards. This tool provides a single
parser that allows easy metric and function editing. Consid-
ering the Grafana quick customer-side render, the users can
design detailed charts with smart axis formats (such as lines
and points) even over long periods using Flot as a default
option.

7) Bootstrap

Bootstrap [13] is a collection of open-source front-end frame-
works for the creation of web pages and applications, includ-
ing frameworks for HTML, CSS, and JavaScript, offering
typography, forms, buttons, navigation and numerous other
elements and extensions for JavaScript. The graphical con-
tent and database of the same page can be presented on the
phone or screen via the CSS3+JQuery website technology.

8) ECharts

ECharts [14] is a free Javascript chart library, smoothly
running on PCs and mobile devices. ECharts is today com-
patible with most browsers, and the underlying layer is based
on ZRender’s lightweight class Canvas library. It provides
visualization charts of information that are intuitive and
extremely customizable.
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B. RELATED WORKS

In a document released by Knowledge-Base Systems [15],
Hongyu Liu et al. suggested an immediate port-to-port de-
tection technique using PL-CNN (i.e., a classification tech-
nique based on a convolutional neural network payload)
and PL.-RNN (Neural Network-Based Payload Classification
Method) to detect attacks. Without feature engineering, the
two methods learn feature representation from the original
payload and support end-to-end detection. In this paper, we
recognize that in complexity and time-consuming, more pre-
cise, and faster detection, deep learning can be distinct from
traditional machine learning function engineering. In [16],
Tae-Young Kim et al. suggested a C-LSTM neural network
to detect anomalies in network traffic data efficiently. This
feature is a technique to extract time and space information
from the initial data automatically. It can attain very excel-
lent anomaly detection efficiency in network traffic data by
extracting the CNN'’s spatial characteristics and the LSTM
model’s temporal characteristics. In [17], Markus Ring et al.
suggested a new technique to produce pseudo-NetFlow in-
formation based on the generation of an anti-neural network
(GAN), which can produce excellent outcomes for detection
and generation. The primary challenge is that GAN can han-
dle only ongoing characteristics, and NetFlow generally has
various characteristics of classification. Therefore, the au-
thors suggests three distinct techniques of preprocessing and
applies this technique to the information set of CIDDS-001.
Experiments demonstrate that high quality can be produced
by two of the three techniques. Tuan A Tang et al. proposed a
flow-based anomaly detection system that uses deep learning
[18]. Jihyun Kim et al. built a deep learning model that
applied long-term memory architecture (LSTM) to recurrent
neural networks (RNN) and trained using the 1999 KDD
Cup dataset [19]. The obatined results confirm that the deep
learning technique is valid for IDS by performance testing.
In [20], Rui Fu et al. applied the LSTM and GRU techniques
to predict traffic flow and assessed the efficiency of both
methods. They discovered that LSTM and GRU NNs perform
better than ARIMA and that GRU NNs perform a little better
than LSTM NNs and generally converge quicker than LSTM.

Considering that the findings of techniques for botnet
identification are not generally contrasted, Garcia et al. pro-
vided two techniques of botnet detection, i.e., BClus and
CAMNEP [21]. They compare three botnets using actual
information sets using several methods of detection, such
as BClus, CAMNEDP, and BotHunter. Moreover, the authors
analyze the effect on each technique of botnet activity and
if each technique can be best suited to separate information
sets of the botnet stage. It is useful to note that the findings
obtained in [21] have been taken into account in our botnets
testing concepts. In the solution introduced in [22], Zhang
et al. suggested a new technique for identifying anomalous
conduct in network performance information, consisting of
two machine learning algorithms: Boosted Decision Tree
(BDT) and easy Feedforward neural network structure. The
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authors evaluate and compare each algorithm’s efficiency. It
is crucial to perceive that, in the tests carried out in [22], the
information set’s conduct does not fulfill expectations.

Many scientists use machine learning techniques to de-
tect cyber-attacks by classifying payloads. For instance, in
[23], Wang K et al. proposed a payload-based intrusion
detection method. On the contrary, Rafat Kozik et al. used
the flexibility of cloud-based architecture, as well as the
latest advances in the field of large-scale machine learning,
for shifting computationally more expensive and demanding
operations [24] [5]. Going to the cloud to conduct traffic
classification effectively using edge computing capacities,
based on complex ELMs (extreme learning machine models)
pre-built on the cloud, can decrease the overhead efficiency
on edge devices. The detection of anomalies is the practice
of recognizing objects or occurrences that do not conform
to the anticipated conduct or are not linked to other items in
the dataset. For these reasons, the authors of [24] present a
technique for combining NetFlow with an Extreme Learning
Machine (ELM) classifier trained in the distributed setting
of the Apache Spark framework. The approach proposed by
the authors uses the Map-Reduce model to extend the ELM
classifier’s training process and to conduct malware detection
algorithms based on NetFlow. The findings reported on the
benchmark data set show that the suggested ELM-based
NetFlow assessment can be regarded as a reliable tool for
network event detection.

The preprocessing of data is commonly acknowledged
as a significant phase in anomaly detection. Davis et al.
[25] reviewed the data preprocessing techniques used by the
anomaly-based Network Intrusion Detection System (NIDS),
focusing on what network traffic features are being used
and what specific constructs and selection methods are being
used. In [26], Hofstede et al. explain all stages of Net-
Flow’s traffic output and typical traffic surveillance settings,
covering all stages of NetFlow traffic surveillance. A new
unsupervised technique of identification of anomalies was
suggested by Duygu Sinanc Terzi et al.in [27]. This solution
aims to determine the anomaly on a particular IP created by a
UDP flood attack. This strategy is applied in case studies on
government NetFlow information.

Our experimental set up split into two sub-features analy-
sis, anomaly detection and cyberattacks identification. In this
case, deep learning was used to build a model of recognition
attacks.

lll. SYSTEM DESIGN AND IMPLEMENTATION

A. SYSTEM ARCHITECTURE

In the Ceph storage setting, the Python language was used to
automate the download and storage of full NetFlow campus
information. With the use of Python for evaluation and judg-
ment and through Matplotlib to visualize the information, we
can evaluate and optimize the proposed model. Moreover, it
is possible to save MySQL live analysis outcomes. Finally,
the proposed system uses ECharts to show outcomes of
customized assessment and combine Bootstrap to generate
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FIGURE 7: System Analysis Process.

responsive web pages. Figure 7 shows the system analysis
process of the proposed system.

Four virtual machines were built as Monitor, OSD, and
MDS for the Ceph storage environment in the vSphere ESXi
environment [28]. As nodes for distributed storage of Ceph, a
Monitor and three OSDs are used. Python reads the informa-
tion in real-time for pre-processing information directly. The
Keras library is used through the Python language to analyze
the pre-processed data, and the results of the analysis are read
and written through the sqlalchemy package into the MySQL
database. The findings are finally presented on the webpage.

B. SYSTEM SERVICES

The services supplied by our scheme include information
collection, data storage, preprocessing of information, data
analysis, and visualization of information.

1) Data Collection

A collection of information gathered by campus routers is
used to generate the entire NetFlow campus information.
The Python program frequently captures and stores NetFlow
information updated every 5 minutes in the Ceph storage
setting.

2) Data Storage
NetFlow information is split into two components in the
Ceph storage setting. One component is the present time’s
real-time information region, and the other portion is the
past period’s historical information region. When updating
NetFlow information, Ceph Monitor will immediately crawl
new information. The captured real-time information will
be maintained for information pre-processing and analysis
in the fast-paced Ceph Monitor system. After the end, the
data will be moved to the distributed storage historical data
area consisting of three Ceph OSDs. The time cost of storing
and handling information in the historical information region
can be significantly decreased by prioritizing information
processing in Ceph Monitor.

The CRUSH algorithm is used to calculate the PG-ID to
be stored in each data in the section where Ceph data is
stored and then to calculate the stored OSD position. OSDs of
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different sizes will have different weights, and when stored,
the data will be allocated taking into account the weight.

3) Data Preprocessing

This information can not be used straight for data analysis
when a fresh piece of real-time data is downloaded. In order
to enhance the data quality, we need to filter out essential
information areas and remove noise that can influence the
outcomes of the assessment. We need to transform the in-
formation into a standardized format because the units used
for the information are not identical. With LabelEncoder [29]
or OneHotEncoder [30], some information formats need to
be converted to a format that can be analyzed. Lastly, the
information is sorted into the input type for evaluation of the
in-depth assessment model.

4) Data Analysis

The data analysis section is split into two sub-features:

o Anomaly detection Since the flow fluctuates periodi-
cally in days, the present time unit flow will be near to
the past day’s unit flow [31]. Moreover, a decent range
will fulfill the rise in the amount of consecutively broken
traffic. So it will be split into two components when per-
forming anomaly detection. The first portion compares
the past day’s unit flow rate, and if the flow rate rise is
higher than 100%, it will be considered abnormal. The
second part calculates the difference between the current
time and the previous time and determines the flow
difference average and standard deviation within 30
days. In the event of very general distribution, a three-
sigma rule will include at least 88.8% of the information
in the range of three standard deviations. As a mild
abnormal flow rate, we determined the unit flow rate of
more than three standard deviations and determined that
the unit flow rate of more than five standard deviations
was a significant abnormal flow rate by the empirical
rule. Through the above two techniques, when abnormal
traffic happens, we can rapidly discover the moment.

o Cyberattack Identification The Attack Identification
section will be used to train processed information using
RNN model. The loss price, the precision value, and the
training time of the three techniques evaluate the output
of the distinct kinds of assault.

5) Data Visualization

Concerning data visualization, we connect to the MySQL
database via PHP to get the JSON format data, then process
and load the data via JQuery and Ajax. Finally, the loaded
data is displayed via the ECharts custom chart. Through the
above method, the front and back information can be readily
visualized. Lastly, to obtain Responsive Web Design that is
consistent with different devices, the webpage is coupled
with the Bootstrap framework.
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TABLE 1: Computing Environment.

[ Name T CPU RAM [ Disk [ OS
[ ESXi [ 6CPUs x Intel(R) Core(TM) i7-3970X 3.50GHz | 64G__ | 2T*6 | ESXi-650 |

TABLE 2: Virtual Machine Environment.

Name CPU RAM | Disk | OS

master 6 vCPUs | 40G 1.5T | Ubuntu 16.04
ceph-osdl | 2vCPUs | 4G 2T Ubuntu 16.04
ceph-osd2 | 2 vCPUs | 4G 2T Ubuntu 16.04
ceph-osd3 | 2 vCPUs | 4G 2T Ubuntu 16.04

C. DATA IMPLEMENTATION
In this work, under one physical host running ESXi, we set
up four virtual machines, one as the primary computing node
and the other three as the Ceph environment storage nodes.
This cluster represents a full NetFlow analysis scheme. It
includes Ceph, Tensorflow, Keras, and LAMP internal soft-
ware. ESXi offers a remote monitoring interface such as the
physical host’s CPU, memory, and hard disk usage. More-
over, the use of virtual machines and activities is recorded.
Ceph mgr offers the tracking of clusters in Ceph, such as
health clusters, current usage, OSD practice, and data related
to I/O. A relational database for MySQL as a data store
for outcomes of real-time data analysis is developed. The
figure below indicates complete flows for successive periods,
complete packets, and complete bytes.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL ENVIRONMENT

Using a physical machine fitted with ESXi, this experiment
shows the physical machine environment in tablel. This
physical host involves as Ceph clusters with four virtual
machines, one for Ceph Monitor and three for Ceph OSD2.

B. HISTORICAL FLOW CHANGES

We obtained the gathered real-time information for the pro-
cessing of statistics for the implementation of historical in-
formation. Moreover, the total number of traffic sent for each
period, the total amount of traffic used and the total size of
the transport packet and the average number of items have
been calculated. Figure 8 displays the complete flow change
graph for 30 successive days.

It can be discovered the difference in traffic between each
period and the previous time through historical information.
By plotting the flow difference over time, we can see that, at
certain moments, there are unusual flow changes. They are
the point in time in which it is necessary to pay attention to
when these traffic variations happen. Figure 9 demonstrates
the variation of the flow difference for 30 consecutive days.

C. ABNORMAL ANALYSIS RESULT

From previous experiments, we found that the change in total
flow will be consistent with the periodicity under normal
conditions, and the change in the difference in flow will meet
the specific interval. Through the two points above, we can
discover the time points that do not fulfill the regular stream
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FIGURE 8: Total flow change graph for 30 consecutive days.
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FIGURE 9: flow difference variation for 30 consecutive days.

adjustments and the significant flow difference shifts and
mark these time points for the manager to perform subse-
quent inquiries. By comparing the total number of traffic at
the same time as the previous day, we check whether the
total number of traffic at the current time is abnormal. If
the present time’s complete traffic volume is higher than 1.5
times the previous day’s total traffic volume, the present time
point and complete traffic volume will be marked. We will
discover the median and standard deviation for 30 successive
days in the abnormal flow difference portion. According to
the three-time standard deviation rule, outliers with more
than three standard deviations can be found rapidly and
marked as medium flow difference modifications, higher than
five. The default deviation is labeled as a shift in elevated
flow. Figure 10 shows the result of the abnormal analysis.

D. CYBERATTACK IDENTIFICATION RESULT
Cyberattack identifications are classified through Python’s
possible attack data and note the types of possible attacks.
The accumulated data is integrated as a training set for attack
identification, as shown in Figure 11. It has been used Keras
to establish the RNN deep learning model, as shown in
Figure 12. Subsequently, it has been trained and verified the
finished training set through the Mean-Square Error (MSE)
[32] as the evaluation criteria for the training loss value, as
shown in Figure 13 and Figure 14. Parameter adjustment and
optimization are performed without affecting the accuracy
based on the equation 8, and the training cost is reduced, as
shown in Figure 15 for 1 ms per step.

_INC 0 @
MSE = E E(ytrue - ypred) (8)
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FIGURE 11: Attack Classification Result.

E. GRAFANA METRIC PERFORMANCE

In this section, we present the metric measurement using
Grafana. Figure 16 describes the Ceph monitoring status,
while Figure 17 shows the time-series of Network Log.

F. VISUALIZATION OF RESULTS

Finally, the analysis results and attack identification were
stored the real-time data in the MySQL database. It has been
used PHP to load MySQL data and visualize the results
through ECharts, and the Bootstrap framework to render on
web pages of various mobile devices. Through this method
we can monitor the instantaneous traffic changes, as depicted
in Figure 18. Moreover, the network usage of colleges and
dormitories is shown in Figure 19.

V. CONCLUSIONS AND FUTURE WORKS

This work provides a fully open-source software architecture
that incorporates processing, evaluation, and monitoring of
NetFlow logs. By using the Ceph architecture to store ever-
increasing historical information, it can achieve the ability to
obtain massive storage at a comparatively low cost. In terms
of detecting cyberattacks, we use deep learning to build a
model of recognition of attacks that can achieve recognition
acceleration faster than traditional machine learning. Also, by
updating the model through an updated continuously attack
database, it can achieve greater precision. Finally, through
the ECharts design page, help the decision-maker quickly
recognize the network problem.

Some exploits lack vital features and cannot be recognized
correctly, subject to the initial information constraints, and
multiple cyberattacks are challenging to define. In the future,
we hope to gain more in-depth information and use the ever-
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Layer {(type) Output Shape Param #
dense_1 (Dense) (None, 128) 1152
dense_2 (Dense) (Hone, 256) 33024
dense_3 (Dense) (Hone, 3) 771

Total params: 34,947
Trainable params: 34,947
Non-trainable params: @

FIGURE 12: RNN Model Architecture.
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FIGURE 13: Training Loss Result.

increasing role and equipment to find out more critical fea-
tures to detect further cyber attacks. Besides, in the historical
information segment, the reading assessment is slow, limited
by hardware and network speed. We hope to be able to
apply standardized machine requirements and decentralized
computing architecture to achieve faster efficiency with high-
speed networks.
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