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Abstract. The application fields of bytecode virtual machines and VLIW processors overlap in the area of embedded and mobile
systems, where the two technologies offer different benefits, namely high code portability, low power consumption and reduced
hardware cost. Dynamic compilation makes it possible to bridge the gap between the two technologies, but special attention must
be paid to software instruction scheduling, a must for the VLIW architectures.
We have implemented JIST, a Virtual Machine and JIT compiler for Java Bytecode targeted to a VLIW processor. We show
the impact of various optimizations on the performance of code compiled with JIST through the experimental study on a set of
benchmark programs. We report significant speedups, and increments in the number of instructions issued per cycle up to 50%
with respect to the non-scheduling version of the JIT compiler. Further optimizations are discussed.

1. Introduction

Parallel computation is a response to the growing
need for processing speed, which exists in both embed-
ded and high-performance systems. In the embedded
systems field, demanding requirements on power con-
sumption and processing speed are imposed on the de-
sign. In the high performance field, processing speed
is the main goal.

Parallelism can be employed at different levels of
granularity. At fine grain, parallelism is found between
individual instructions that do not have data depen-
dency constraints, while at increasingly coarser grain
one can find parallelism between different iterations of
the same loop, or between different tasks of a system.
An attractive technological solution for achieving speed
with low power is offered by new VLIW processors
designed for embedded systems, but further conditions
are imposed by software considerations.

VLIW processors are the result of a trend to move
computation from runtime (and the hardware) to the

1This work was partially supported by STMicroelectronics.
∗Corresponding author.

compiler: rather than performing instruction schedul-
ing by means of a specialized hardware support, the
compiler is required to provide a scheduled code to the
processor.

Currently, most VLIW-based systems adopt a static
compiler, but additional requirements imposed by soft-
ware considerations in our target domain lead us to-
wards a more dynamic setting. Many applications, es-
pecially in multi-media and communication, operate
with downloadable programs and dynamically linked
libraries. The downloaded program can be a industry-
standard machine language or a machine-independent
bytecode. In both cases the code must be translated to
the native VLIW code and scheduled for instruction-
level parallelization, in order to obtain the required per-
formances. But code transformations should not be
done statically (i.e. ahead of execution) for a number
of well-known reasons, including unacceptable compi-
lation delay and unavailability of dynamically linked
routines. One is left with the possibility of dynami-
cally translating from the downloaded code to the na-
tive scheduled code. But of course many critical fac-
tors affect the final convenience of such solution. The
hardware must be suitable to run the compiler, the com-
pilation algorithms must combine speed and precision,
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the optimizations performed must be chosen for their
cost/effectiveness. This is the technical challenge we
have taken in the long run, to design a dynamic compiler
from Java bytecode to the (HP and STM) Lx VLIW
processor, that would achieve good performance for
typical embedded programs.

The choice of Java as the target language is appro-
priate for our task, thanks to two qualifying features:

– Java is compiled to a machine independent byte-
code, which makes it suitable for downloading
new code from a remote source, which has no
knowledge of the target architecture;

– Java is a popular language, with a strong support
from the industry; it is being favorably consid-
ered for adoption in the embedded and mobile sys-
tems [1,2] as well as in scientific and numerical
computing [3–5].

In both the embedded and the scientific computing
areas, the strongest traits of Java are the popularity with
software developers, the large number of libraries al-
ready available, and most of all the portability features.
On the other hand, the main drawbacks are considered
to be the reduced performances due to bytecode inter-
pretation and lack of optimization in JIT compilers.

Therefore, more parallelism needs to be extracted by
the JIT compilers to make them suitable for adoption
in these fields. While existing techniques from the
static compilers can sometimes be ported over to the
JIT, the risk of unfavorable trade-off between compiler
overhead and performance increase is high, and must
be analyzed through experimentation. However, there
are no implementations of Java bytecode JIT compilers
that can be used for evaluation on VLIW machines.

The JIST (Just-in-time Scheduling Translator) pro-
ject was started to address this issue. As a result,
a complete running prototype has been implemented,
and a summary of design decisions and measurements
can now be reported. They should interest those in-
terested in the performances of Java on a small VLIW
processor, and be also valuable to people working on
dynamical translators in different settings. We focus
on the design aspects that are critical for the intended
target architecture: register allocation and instruction
scheduling; but we also consider the impact and the
management of general issues such as memory disam-
biguation. The measurements are fairly analytical and
allow to pinpoint the cost/effectiveness of individual
optimizations.

The analysis is focused on Java code rather than on
native libraries. This choice is justified by the fact

that libraries are part of the resident system and can
therefore be statically compiled and optimized. More-
over, as the application field of Java becomes wider,
pure-Java libraries tend to become more desirable than
native C libraries, since they are easier to produce for
programmers whose primary language is Java itself.
The ability of the Java platform to effectively use its
native language for expansion of the class library is
also important to avoid cluttering the native libraries
(which are usually shipped with the Virtual Machine it-
self) with features relevant only to a limited application
domain, while allowing the application designer to use
third party libraries within the main application when
needed.

The paper is organizedas follows. Section 2 presents
a brief account of related work. Section 3 describes the
architecture of the JIST VM and compiler. Section 4
describes the register allocation and scheduling poli-
cies, and the memory disambiguation technique. The
experimental results are reported in Section 5, while
Section 6 draws the conclusions and mentions future
developments.

2. Related works

Early proposals for exploiting instruction-level par-
allelism (ILP) for Java Bytecode where based on
the Java Processor concept [6,7]. Sun Microsystems
MAJC processor [7] was designed to efficiently exe-
cute Java Bytecodes. The pioneering work of Ebcio ğlu
et al. [6] proposed the use of a JIT translator coupled
with a software scheduling algorithm on a processor
that offered instruction level parallelism. The idea was
more of designing a new processor for Java Bytecode
execution than to use a standard VLIW machine, but it
included the possibility of adopting the same algorithm
for different architectures. Our basic scheduling algo-
rithm is rather similar, since both are greedy and sched-
ule each instruction as soon as its operands are ready.
However, as the goal of [6] is more to propose a novel
architecture, their published data ignore the schedul-
ing and code generation overheads for any real archi-
tecture. As far as pure scheduling is concerned, JIST
matches the ideal performances of [6], and provides
experimental results for a real VLIW machine.

Other relevant works deal with general binary com-
patibility problems. One especially significant work
is DELI [8]. The scope of DELI is beyond that of a
Java VM/JIT, providing the ability to emulate different
hardware machines.
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Fig. 1. Lx single cluster architecture.

Of the various Java VMs and JIT compilers [9,10],
LaTTe [11] and microJIT [12] are somehow related to
our own. They are both based on the Kaffe framework,
but they schedule instructions for general purpose RISC
rather than VLIW machines. LaTTe is notable for
linear scan register allocation, while microJIT does a
faster, single pass register allocation.

Focusing on dynamic compilation for VLIW, the
DAISY project [13] involved fast binary to binary trans-
lation, including optimization passes, like copy propa-
gation and instruction scheduling. However, the source
language was the machine code of IBM’s PowerPC,
and the architecture featured simplifying assumptions
such as exception-free execution. DAISY’s instruction
scheduling is more aggressive than our current imple-
mentations, as the scheduled region is a tree region
rather than a basic block.

Earlier works in dynamic compilation for VLIW ma-
chines focused on binary compatibility between dif-
ferent VLIW architecture as [14], or, as DAISY, on
compatibility between traditional RISC machines and
VLIWs. On the other hand, our work is oriented to
a higher level of code compatibility, as allowed by
machine-independent bytecodes.

Yet other projects, such as [15], introduce architec-
tural variants to the basic VLIW designs.

A survey of dynamic compilation issues can be found
in [16].

For the memory disambiguation issue, the work near-
est to our field is [17], which provides an extensive list
of works related to alias analysis.

3. JIST architecture

The target for the JIST project is the Lx processor
family developed by HP and STMicroelectronics [18],
a clustered VLIW architecture. Figure 1, adapted

from [18], shows a single cluster. The single cluster
Lx employed in our project, in addition to the ability
to issue up to four instructions per cycle, allows simple
predicative execution through select instructions.

JIST is based on the Kaffe VM and JIT compiler [19],
a clean room implementation of the Java Virtual Ma-
chine (JVM) specification [20], plus the associated Java
class libraries needed to provide a Java runtime envi-
ronment. It is written mostly in ANSI C, with machine
dependent parts in Lx assembly. It offers three main
execution modes, or engines, from the least to the most
efficient:

intrp A port of the Kaffe interpreter, implements
the Java VM specifications;
jit A port of the Kaffe JIT compiler, version 3,
produces sequential machine code;
jist The scheduling JIT compiler, adds several
scheduling and register allocation options to the
standard jit.

Figure 2 shows the architecture of the JIST VM:
a Java program, compiled to bytecode by an external
compiler, is read by the VM frontend and translated
in the intermediate representation, Kaffe IR. When the
VM is in interpreter mode, each Kaffe IR instruction is
simulated by the intrp engine. The only interaction
with the native instruction set happens at native method
calls, where the parameters of the call must be trans-
lated from the internal representation of Kaffe to the
machine call arguments format.

On the other hand, the JIT compilers translate code
to the Lx native instruction set. The scheduler pass is
only performed in jist.

The generated code and the VM itself are executed
on an Lx ISA simulator.

The jist works in three steps:

1. perform an analysis of the control flow, in order
to generate information for the code generation
and scheduling pass;
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Fig. 2. Execution of Java in JIST.

2. translate each bytecode to native code, perform-
ing register allocation at the same time;

3. schedule the translated code, and emit it.

The translation is performed at method grain, that is
each method is entirely translated in a single activation
of the translator, and the translation takes place when
the method is invoked for the first time.

Figure 3 shows how a sequence of Java Bytecodes
(the same as in [6]) is translated, first to the Kaffe IR
and then to the Lx native code. Finally, the schedule
obtained is highlighted by the machine issue cycle.

Figure 3 shows how the Kaffe IR generate separate
IR instructions for computation and stack management
(see the explicit pop and Stack access operations). Due
to the register allocation phase, most copies between
Java stack and locals can be removed, so that only rele-
vant computation is actually performed in the generated
code. The scheduler then allows the issue of multiple
instructions in a single cycle, e.g. the two additions in
Fig. 3.

The scheduling and register allocation algorithms
are the main improvement over the original Kaffe VM,
along with the memory disambiguation phase, and will
be described in detail in the next section.

4. Dynamic optimization

This section describes the optimization passes we
have developed for the JIST compiler, namely register
allocation, instruction scheduling, and memory disam-
biguation.

4.1. Register allocation

Recall that the Kaffe VM offers a two-step regis-
ter allocation policy. First, it tries to allocate as many
variables as possible to global registers. These bind-
ings are guaranteed to hold across basic blocks, so that
there is no need for spills at basic block boundaries.
Then, short lived variables are allocated to non-global
registers with a least recently used policy.

The number of global registers is a parameter of the
allocation algorithm, and it affects the performances of
the translated code as the number of spills needed at the
basic block boundary varies. Experiments conducted
during the development of JIST proved that 6 to 8 global
registers are needed to minimize the spills.

In our case, the Lx architecture provides a large num-
ber of registers – 64, minus those used for special pur-
poses, such as the stack pointer. Therefore, even after
allocating enough global registers, a large number of
registers are available for additional optimization.

Since the Kaffe register allocator does not change
an allocation unless it is forced to do so, a consid-
erable number of false dependencies are created by
the allocation and code generation phase. In order to
avoid a costly post-scheduling reallocation phase, we
replaced the Kaffe allocator by a different allocation
policy, called cyclic register allocation, that allocates
a new register every time a value is written. This re-
moves the false dependencies, and gives the scheduler
more opportunities for out-of-order execution.

Figure 4 shows how the cyclic register allocation
affects the translation flow and the quality of produced
code. The first two columns on the left report the Java
code of two consecutive instructions and its translation
into a simplified version of bytecode. For each bytecode
instruction it is shown its semantics,as list of operations
on the Java Frame: for example, the bytecode add
means that the addition must be performed using the
two topmost operands on the Java Frame, removing
them from the stack and then pushing the result. On
the fourth column, the emitted native code is listed. It
can be noticed that each register is associated to a Java
Frame slot. The arrows explain how the Kaffe classic
register allocation policy works: it tries to maintain as
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ADD $r1 = $r16 + $r17

Fig. 3. Example of translation and scheduling of a sequence of Bytecodes.

long as possible a relation between a slot and a register,
in this case between the deepest slot of the Java Frame
and the register $rx. This mapping policy generates
a Write After Read (WAR) dependency, between the
third and the second instruction, that can be removed
using the cyclic register allocation. The last column
highlights how this technique is applied: when the
deepest slot is rewritten, it is associated to the first
available register, which will be different from $rx. In
this case, since there are no data dependencies between
the second and the third instruction, the scheduler can
switch them.

However, the cyclic register allocation has one weak
point, that is it may force the code generator to pro-
duce extra spills, as more registers are in use. This
phenomenon has limited impact on the spills that are
created at branches, since the values that need to be
preserved are kept in global registers, but it has some
impact when a call is produced that was not in the Java
Bytecode control flow, as, for example, is the case for
operations supported through library functions, such as
the 64 bit integer and the floating point operations in
the Lx processor. We will revisit this issue in Section 5.

4.2. Instruction scheduling

The scheduling algorithm is the critical part of any
compiler for a VLIW architecture, since it conditions
the exploitation of instruction level parallelism. In
a dynamic compiler, there is a trade-off between the
schedule quality and the scheduling time. Therefore,
only fast instruction scheduling algorithm are deemed
acceptable is this context.

There are two main classes of scheduling algorithms,
those that work at basic block level and those that con-

sider also control flow structures. We chose to imple-
ment a basic block scheduler for two main reasons: it is
required for the development of more powerful sched-
ulers, and it can guarantee low scheduling times. A
survey of the different scheduling algorithms can be
found in [21].

Our scheduler implements a greedy algorithm, based
on the operation scheduling paradigm, and applying
the As Soon As Possible (ASAP) strategy. The opera-
tion scheduling method chooses, at each iteration, an
instruction from a ready set, and tries to insert it into the
partial schedule, while preserving compatibility with
data dependencies and resource constraints. In our
case, the next available instruction is the last instruction
generated by the JIT Translator and the scheduler tries
to schedule it in the earliest possible position.

The scheduler scope is limited by a scheduling win-
dow, which guarantees an upper bound to time com-
plexity, as the number of potential positions (or slots)
to check for an instruction is limited by the schedul-
ing window length. Within the window, the current
instruction is first allocated to the last time slot, shift-
ing the window if the instruction cannot fit. Then, the
algorithm, described in Fig. 5, attempts to move the
current instruction up in the window, stopping when a
dependency is reached, and skipping time slots where
the current instruction cannot be allocated due to lack
of resources. Branch instructions are always scheduled
last in the window, and the window is flushed when a
basic block ends. The window size is a parameter of
the algorithm. We tested the scheduler with window
sizes ranging from 2 to 20. The optimum size for the
benchmarks described in Section 5 was found to be 8.

Figure 6 explains how the scheduler works, showing
a real case of instruction stream reordering, under data
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Fig. 4. Example of cyclic allocation politics.

void schedule(instr *cur_instr) {

if (check_deps(cur_instr, index) ||

arch_constraints(cur_instr, last(sched_win)))

shift(sched_win, 1);

sched_time = last(sched_win);

if !is_branch(cur_instr)

for (index = last(sched_win);

index < first(sched_win);

index = index - 1 ) {

if (check_deps(cur_instr, index)) break;

elsif (!arch_constraints(cur_instr, index))

sched_time = index;

}

emit_instr(cur_instr, sched_time);

}

Fig. 5. Basic instruction scheduling algorithm.

dependencies and resources constraints. We have con-
sidered a VLIW machine that can consume four ALUs
and only one Load Store Unit (LSU) at each clock cy-
cle. Moreover, in this example, we have limited the
shifting window size at two.

At stage (a) the shifting window is empty and the
scheduler can insert the incoming instruction, mov
$ra=0, in the first slot of the first bundle. The next in-
coming instruction, mov $rb=4, is scheduled in par-
allel with the first one, filling the second slot of the same
bundle: this is legal because there are no data conflicts
between the two instructions (b). The third instruction
of the stream, add $rc,$ra,$rb, which adds $ra

and $rb and put the result in $rc, can be scheduled
only in the second bundle, as shown in (c). This is due
to a Read After Write (RAW) dependency between the
current instruction, which reads registers$ra and$rb,
and the previous instructions that write the same regis-
ters. For the same reason, the next incoming instruc-
tion, mov $rx=$rc, can be scheduled only at clock
cycle three: since there is no room into the scheduling
windows, it will be shifted (d); this means that, from
now on, the scheduling algorithm cannot reach the first
bundle – it will be impossible to use the free slots of
that bundle. The last two instruction (e,f) could be
scheduled in parallel, even though there is a Write After
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mov $ra = 0 mov $rb = 4 

mov $ra = 0 mov $rb = 4 

mov $ra = 0 mov $rb = 4 

add $rc,$ra,$rb

mov $rx = $rc 

mov $ra = 0 mov $rb = 4 

add $rc,$ra,$rb

mov $rx = $rc 

mov $ra = 0 

add $rc,$ra,$rb

mov $ra = 0 mov $rb = 4 

add $rc,$ra,$rb

mov $rx = $rc 

ld $rw = 0[$rz] ld $rw = 0[$rz]

st 8[$rz] = $ry

(c) (d)

(b)(a)

(e) (f)

Fig. 6. Example of shifting windows and ASAP policy.

Read (WAR) data conflict between st (store) and
ld (load): the execution model imposes that the write
result steps be executed, within the same clock cycle,
after the read operand steps. However, we must sched-
ule the sixth instruction after the fifth, because only one
load/store unit is available per clock cycle.

The algorithm presented hereabove is able to cap-
ture much of the ILP available in the basic block: we
tested it offline against a traditional list scheduler, and it
did not show a significant degradation in performances.
However, it has no ability to detect and exploit paral-
lelism across different basic blocks.

A second scheduling option was therefore added,
where the algorithm can move instruction across a
branch boundary by predicating them. Move instruc-
tions are transformed into select instructions with the
same predicate as the branch crossed.

Other instructions that write a register are split into
two parts, as shown in Fig. 7, where the first part exe-
cutes the operation, and writes to a temporary register,
while the second part is a predicated move between
the temporary and target register. In this schema, the
scheduling window is not flushed at the end of a basic
block if an opportunity for inter-basic block scheduling
is detected.

Usually, only instructions that do not modify the con-
trol flow nor raise exceptions can be moved. However,
instructions that raise exceptions can be moved if they

have a non-excepting equivalent, which is then used in
their stead. This modifies the semantics of the program
to a certain extent, so the global scheduler can be only
applied if this change – i.e., not raising an exception
when a load instruction fails – is acceptable.

4.3. Memory disambiguation

One of the major constraints in instruction schedul-
ing is imposed by aliasing of memory location. Ba-
sically, the memory is considered as a single location
for the purpose of deciding whether the scheduler can
move an instruction without having it overwrite a da-
tum needed by another operation, or read a datum that
has not yet been written [17].

Since alias analysis based on flow is computation-
ally intensive, we perform memory disambiguation on
binary code. In this case the names of addresses are
of the type k[$rx], where k is a constant, $rx is called
base register, and the memory address is computed as
k + contentOf($rx).

Our instruction inspection technique works within a
basic block, and aims at reaching two different goals:

– recognize names that are always alias and apply,
if possible, a copy propagation pass;

– detect names that are not alias and then exploit
the collected information to remove scheduling
constraints between instructions using them.
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BR $b0 target

ADDI $r1 = $r2 + 1

NOP

NOP

BR $b0 target

ADDI $t1 = $r2 + 1

SELECT $r1 = $t1 on $b0

(a) (b)

Fig. 7. Crossing a BB boundary.

As for the first goal, we exploit the interface provided
by jit3 of Kaffe to handle copy propagation: the
analysis information that two slots of the java stack
are aliases is passed to the Kaffe framework, so that
the register allocator attempts to map them to the same
register; if the attempt is successful any copy is not
translated to native instructions, thereby performing
dead code elimination on the fly.

For the second goal, we collect information about
names that are never alias, exploiting the following
sufficient conditions for two memory locations to be
non-conflicting:

1. they use distinct offset from the same base regis-
ter: k1[$rx1] �= k2[$rx2] ⇐ x1 = x2 ∧k1 �= k2;

2. one uses a register known to point to the stack
and the other uses a register known to point to
the global data area: k1[$rx1] �= k2[$rx2] ⇐
($rx1 = sp∧$rx2 �= sp)∨($rx2 = sp∧$rx1 �=
sp), where sp is the current stack pointer value;

Specifically, we use information on the store and load
operations created by basic block prologues and epi-
logues, which always write and read values to and from
stack locations that are never alias due to condition 1.

This form of local alias analysis gives the scheduler
more freedom to move memory operations for out-of-
order execution.

5. Experimental evaluation

This section presents the experimental results and
their interpretation.

In order to understand the effect of scheduling and
optimization on performances, we have run several
benchmarks with a range of input data sizes, and we
have extracted two quantities:

1. The asymptotic speedup obtained by the four
jist-i versions versus unscheduledjit execu-
tion, an indicator of the maximum performance

improvement obtained by optimization and run-
time scheduling;

2. The break-even point of each jist-i and jit,
defined as the minimum problem size allowing
the compiler to provide an increase in perfor-
mance that recovers the degradation caused by
optimization and scheduling times.

A few words are needed to justify the set of bench-
marks and the experimental setting. Benchmark suites
for embedded Java application were not readily avail-
able, and in any case their significance would be subject
to criticism because most embedded systems include
special hardware devices and native libraries. More-
over it was impossible to run large Java applications
on the Lx simulated machine with reduced Java li-
brary support available, therefore we decided to per-
form measurements on smaller programs or kernels, in-
cluding both basic algorithms and operations relevant
to embedded systems.

We also decided to cut the lengthy start-up time of
the VM, from our measurements, by running the bench-
marks over a lightweight, reduced version of Kaffe JIT,
called JitBasic, which allows the execution of almost
any Java method with the exclusion of I/O primitives.
Including start up times would have distorted our data
by measurements of code not generated by JIST. How-
ever a few runs were also performed with the full Java
VM, to compare the performance of the interpreter and
the other execution engines.

We have selected a mix of artificial benchmarks and
real world application kernels. For example, some of
our routines implement numerical methods usually per-
formed in image and digital signal processing. Image
processing is representative of typical applications of
embedded systems.

The benefits highlighted by the results can be re-
produced on methods having the same computational
complexity and working on the same type of data. We
also expect that our results indicate a practical limit, in
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Table 1
Maximum size of parameters

Benchmark Parameters Max Size

Matrix N, the matrix order N = 120
Cholesky S, the number of iterations; N, the matrix order S = 100, N = 1000
LZcompr N, length of the array N = 4000
Mean N, the matrix order; S, the number of iterations N = 300, S = 3
Gauss N, the matrix order; S, the number of iterations N = 300, S = 3
Dijkstra N, the number of vertices of the graph; S, the number of iterations N = 1000, S = 4
Sieve N, interval’s right bound; S, the number of iterations N = 40000, S = 100
BubbleSort N, length of the array N = 4000

term of performance improvements, valid for all VLIW
architectures comparable with Lx.

The benchmark set is composed of the following
routines:

– Integer matrix multiplication algorithm(Matrix);
– Cholesky’s floating point matrix factorization al-

gorithm (Cholesky);
– LZ compression algorithm on an array of bytes

(LZcompr);
– Mean filter algorithm (Mean);
– Gaussian filter algorithm (Gauss);
– Dijkstra algorithm to compute minimum dis-

tance between two vertices in a direct graph
(Dijkstra);

– Sieve of Eratosthenes algorithm (Sieve);
– BubbleSort algorithm on an array of bytes

(BubbleSort);

All the benchmarks are parametric with respect to
either the size of the problem, the number of iterations,
or both. Table 1 lists the parameters for each bench-
mark, and shows the maximum value of the parameters
used in the experiments.

A general issue to be discussed is how the arithmetic
for floating point and 64-bit integer is implemented.
For the intended applications of the Lx processor, float-
ing point computation is either not needed or provided
through a coprocessor, which is not available in the
simulator. For 64-bit integers, the current implementa-
tion of JIST uses emulation via software calls for mul-
tiplication and division. For this reason, the benefits
are limited for benchmarks working on floating point
data, like Cholesky. The introduction of a Floating
Point Unit should make the results comparable with
what obtained for integer data.

The reported execution times (ms) refer to an Lx
processor working at 250 MHz.

5.1. Interpretation vs. JIT compilation

The first set of results concern the performances of
the basic JIT compiler (jit) with respect to the inter-

preter (intrp). The interpreter benefits from compile-
time scheduling, as all parts of the VM written in C are
compiled with a production – level compiler targeted
to the Lx. On the other hand, code generated by the ba-
sic version of the JIT compiler is not scheduled, which
gives an additional edge to the interpreter.

Figure 8 reports the performances of the
BubbleSort benchmark on the full Java VM. Except
for small values of the parameter, the performances
of the interpreter are so much slower that it quickly
became impossible to gather experimental data. Data
for the other benchmarks are consistent with those pre-
sented here and with previous literature [22], with the
performance gap between intrp and jit fast grow-
ing with the problem size. The interpreter is therefore
an efficient solution only for short running benchmarks
(less than 1 s in the BubbleSort case), where the
total execution time is dominated by the cost of the
virtual machine startup.

5.2. JIT optimizations

The next results concern the speedup obtained on
baseline (jit) with four different versions of jist,
all running on JitBasic, to separately analyze the im-
pact of different optimization. As shown in Table 2
the first (jist-1) only adds basic block instruction
scheduling, the second (jist-2) adds both schedul-
ing and optimized register allocation, and the third
(jist-3) adds inter-basic block scheduling as de-
scribed in Section 4.2, coupled with a different policy
of window flushing. The last optimization performed
is memory alias disambiguation (jist-4), which al-
lows the scheduler to remove several false dependen-
cies between couples of memory operations (loads and
stores).

Figures 9 and 10 show the performance and speedup
for the BubbleSort benchmark. As the number of
iterations grows, the performance gap between the ba-
sic jit and the optimized versions increases. The
speedup chart shows that, in this case, the scheduled
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Table 2
jist and jit configurations

Instruction Register Memory
Scheduling Allocation Disambiguation

jit none basic no
jist-1 intra-BB basic no
jist-2 intra-BB optimized no
jist-3 inter-BB optimized no
jist-4 inter-BB optimized yes

code is slower than the unscheduled one only for small
problem sizes. The impact of register allocation is
also highlighted, as the two jist version that benefit
from optimized register allocation achieve a maximum
speedup higher than 20%, while the standard Kaffe
register allocation cannot reach 15%. The jist-3
JIT performs always better than the jist-2 engine,
achieving near 30% speedup over jist-1.

Figure 11 summarizes the maximum speedups
achieved during our tests, corresponding to the high-
est values of the parameters, specified in Table 1. The
corresponding simulated runtimes (ms) are reported in
Table 3.

Notice that the results are consistent with those
shown in the BubbleSort case (Fig. 10), except for
the jist-3 JIT which is always able to compensate
its overhead, but the benefits reached are not always
significant. This is due to the fact that, currently, the
jist-3 works on rather small regions of code. How-
ever, the results achieved on benchmarks like Bubble
and LZcompr lead us to believe that method inlin-
ing and a more aggressive inter-basic block scheduling
policy could make the jist-3 JIT beneficial on most
benchmarks.

In order to further evaluate the impact of register
allocation, we have traced the data dependency con-
straints which were detected during scheduling. We no-

ticed that the cyclic register allocation reduces the data
dependencies among registers; in the Matrix bench-
mark, for example, the false dependencies are reduced
by 81%.

Table 5 provides a report of the data dependency
constraints that were detected during scheduling of
Matrix. The attempts to write in register that needs
to be preserved (WREG) are false dependencies and are
addressed by the cyclic register allocation policy. The
other classes represent constraints on condition regis-
ters (WBREG and RBREG) and memory (WMEM and
RMEM), and true dependencieson registers RREG. The
register allocation is able to reduce the number of false
dependencies on registers (WREG).

Some considerations are necessary about the Break
Even Point (BEP). This quantity is the size of the prob-
lem for which the costs of scheduling and optimiza-
tions are balanced. Table 4 shows the BEPs between
jist-4 and jit executions. For these experiments,
we performed a single iteration of each method (i.e.,
we set the S parameter to 1, where applicable), vary-
ing only the size of input data. We can notice that
the obtained values are reasonably small; for exam-
ple, Lempel-Ziv compression reaches its BEP for data
smaller than 1 KB.

Concerning parallelization, one should keep in mind
that the average number of instructions issued at each
clock cycle (IPC) for C code performing the same oper-
ations as in our benchmarks ranges between 1.6 and 1.9
depending on the benchmark. Table 6 reports the IPC
for the longest runs of each benchmark program. The
IPC shown include two delays: explicit latencies, and
therefore cycle spent performing no-operation instruc-
tions (nop); and processor stalls due to cache misses and
mispredicted branches, which explains the low figures.
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Table 3
Benchmarks performances for the highest values of the parameters (ms)

Benchmark jit jist-1 jist-2 jist-3 jist-4

Matrix 2087.55 1707.96 1551.45 1551.31 1422.68
Cholesky 563.08 543.83 527.78 524.62 521.90
LZcompr 1438.13 1309.43 1311.87 1242.43 1085.12
Mean 811.66 706.51 649.22 643.09 586.85
Gauss 892.51 732.46 681.38 674.21 608.63
Dijkstra 2421.39 2148.19 2036.43 2005.64 1859.09
Sieve 1895.95 1625.40 1495.99 1488.68 1489.24
BubbleSort 2262.80 1973.85 1843.89 1747.32 1586.12
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Fig. 10. Speedup of the BubbleSort benchmark using jit as comparison.

We can notice that Cholesky is the only benchmark
with IPC always greater than one. The phenomenon
can be explained saying that Cholesky works on
floating point data, and the floating point operations
are simulated via software call to functions which have
a good degree of parallelism, since they are statically
compiled.

Table 7 shows the frequencies of each instruction

class (Memory, Arithmetic-Logic and Branch) in the
benchmark programs. These figures are measured on
the longest benchmark runs, in order to reduce the im-
pact of the JIT compiler code in the instruction statis-
tics. The ALU entry represents both the standard ALUs
and the multipliers, since multiplication are infrequent,
between 1% and 3% depending on the benchmark.
Data for the Cholesky benchmark is biased by the large
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Table 4
Single run BEPs between jist-4 and jit

Benchmark BEP

Matrix N = 47
Cholesky N = 350
LZcompr N = 1010
Mean N = 140
Gauss N = 132
Dijkstra N = 250
Sieve N = 38000
BubbleSort N = 370

Table 5
Data dependencies

Matrix Kaffe Cyclic
RegAlloc RegAlloc

WREG 73 9
RREG 179 166
RBREG 24 24
WBREG 0 0
WMEM 38 41
RMEM 0 9

use of floating point operations, and therefore statically
compiled native methods.

The data clearly show a dominance of memory in-
struction, which becomes important if these frequen-
cies are weighed on the number of functional units able
to serve them. The Lx Processor simulated in the ex-
periments has a single memory unit and four ALUs. In
spite of the introduction in jist-4 of memory disam-
biguation, the load/store unit remains the bottleneck of
the system. One way to overcome it, other than by ex-

tending the hardware configuration, could be to employ
more powerful alias analysis, in order to solve false
dependencies on memory. However, this solution costs
an additional alias analysis pass and its effectiveness
remains to be measured.

The scheduling overhead of jist-4 (all optimiza-
tions added) is about 0.5% of the runtimes of Table 3, a
rather negligible fraction, even though it is 25% of the
overall compilation cost.

To give a metric of cost efficiency of the im-
plemented optimizations, we propose a normalized
cost/benefit ratio. Let Oi,p be the overhead of an
optimization pass jist-i on benchmark program p,
Pi,p(N) be the execution time depending on prob-
lem size N, O0,p be the compilation overhead of jit,
and P0,p(N) be the execution time on jit. Let
Si,p(N) = P0,p(N)/Pi,p(N) be the speedup with re-
spect to jit and Ci,p = O0,p/Oi,p the slowdown
due to the optimization cost. Let S i,p be the value
for maxN (Si,p(N)). Then Ri,p = Ci,p/Si,p is the
cost/benefit ratio for jist-i on program p. Since R i,p

is normalized with respect to cost and benefit for jit
on program p, we can obtain an average R i, which
ranges from R1 = 0.95 to R4 = 0.86 (standard devi-
ation are always less than 0.08). In conclusion the in-
crease in cost of the various jist-i is always smaller
than the increase in performances they can provide. It
remains for future investigation to discover where the
law of diminishing returns starts to operate for more
aggressive optimizations.
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Table 6
Instructions issued per Clock Cycle

Benchmark jit jist-1 jist-2 jist-3 jist-4

Matrix 0.54 0.67 0.74 0.74 0.80
Cholesky 1.08 1.13 1.17 1.18 1.19
LZcompr 0.52 0.58 0.58 0.61 0.70
Mean 0.75 0.90 0.99 0.99 1.09
Gauss 0.75 0.95 1.04 1.04 1.15
Dijkstra 0.66 0.75 0.79 0.81 0.88
Sieve 0.59 0.67 0.72 0.78 0.73
BubbleSort 0.52 0.60 0.64 0.67 0.74

Table 7
Instruction class frequencies

Benchmark MEM ALU BRU

Sieve 46% 40% 14%
Matrix 50% 42% 8%
LZcompr 48% 37% 15%
Mean 42% 49% 9%
Gauss 40% 51% 9%
Cholesky 28% 59% 13%
BubbleSort 46% 42% 12%

5.3. Comparison with related approaches

There are several different ways to optimize Java
programs: in addition to JIT compilers, Ahead-Of-Time
(AOT) compilers, Java processors and native libraries
are all used to this end.

AOT compilers [23] move the compilation of the
Java bytecode ahead of the start of the execution. While
this can provide a degree of reduction of the compila-
tion overhead, the benefit can only be obtained if the
program can be compiled before it is executed – that is,
if the need to execute the program is detected early, the
program is fully available (there is no need for dynami-
cally loaded libraries), and sufficient space is available
in memory to hold the compiled program. If these re-
quirements are not met, AOT compilation is no better
than JIT compilation. Our results are therefore useful
even in AOT settings.

Java processors [24] are specific pieces of hardware
that execute Java bytecode. They may provide large
improvements in performances, but cannot take advan-
tage of the large amounts of redundancy in Java code,
and are not normally able to exploit parallelism. More-
over, Java processors only execute subsets of the Java
bytecode language.

Native libraries, interfacing with Java programs
through the Java Native Interface (JNI) are a viable,
efficient way to deal with performance requirements in
Java programs. However, the use of native libraries
directly conflicts with one of the strongest points for
the adoption of Java: native libraries are not portable,

since they are written and compiled for a specific ar-
chitecture.

6. Conclusions and future work

We have described JIST, a Java bytecode compiler
targeted to the HP/STM Lx processor, a small VLIW
chip used for embedded systems. This research project
was planned in order to assess the performances of Java
programs on such inexpensive processors. Effective in-
struction scheduling and register allocation approaches
have been chosen, and their performances systemati-
cally evaluated for a set of small but significant bench-
marks. Due to the choice of the Kaffe JIT compiler,
the scheduler operates on basic blocks. As a first step
towards more global scheduling, we have also studied
code movement across blocks. Another step towards
more aggressive optimization is the introduction of a
simple form of memory disambiguation, which allows
a more effective use of the single load/store unit. The
cost effectiveness of the optimizations has been mea-
sured both one by one and collectively. The overall
picture fills a gap in the available literature on dynamic
compilation and confirms the validity of bytecode JIT
translation for simple VLIW targets.

Through the optimizations implemented in JIST,
scheduled code can achieve maximum speedups rang-
ing from 20% to 45% in terms of the execution time
with respect to sequential code. These results, though
obtained by dynamic transformations, are comparable
with those achieved by static compilers that do not ex-
ploit parallelism between different iterations of a same
loop: a recent survey [21] reports that the performance
improvement achieved on multiple instruction issue
processors by statically scheduling basic blocks may
range from 20 to 50%. Moreover, our code generator
and scheduler can achieve the performance described
in [6], in the ideal case assumed therein. More improve-
ments should be obtainable through more aggressive
transformations.
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Currently, we are building two extensions to our Vir-
tual Machine and JIT compiler:

– A global scheduling framework, aiming at the
implementation of a scheduling algorithm akin
to Trace Scheduling [25] or Superblock Schedul-
ing [26];

– A selective compilation and optimization frame-
work, to enable the VM to select between compiled
and interpreted execution of each method, and to
activate optimizations only on the kernel regions
of a method, based on information from profil-
ing and compiler hints (from the Java to bytecode
compiler).

Future research will also experiment additional
global scheduling algorithms, and other optimizations
such as method inlining. The final goal is to dis-
cover the border line where the optimization costs out-
weigh the benefits for typical embedded application
benchmarks. Another direction for future works in-
volves evaluating the combination of VLIW architec-
ture and dynamic compilation of portable bytecode, as
the building blocks of non-homogeneous distributed
systems. This direction would combine the effective-
ness of VLIW architectures in exploiting instruction –
level parallelism with the capabilities of dynamic com-
pilation to provide a virtualized view of the architec-
ture, allowing for a degree of object-code compatibility
not normally available in VLIW.
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