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Multi-input multi-output (MIMO) systems combined with orthogonal frequency-division multiplexing (OFDM) gained a wide
popularity in wireless applications due to the potential of providing increased channel capacity and robustness against multipath
fading channels. However these advantages come at the cost of a very high processing complexity and the efficient implementa-
tion of MIMO-OFDM receivers is today a major research topic. In this paper, efficient architectures are proposed for the hardware
implementation of the main building blocks of a MIMO-OFDM receiver. A sphere decoder architecture flexible to different modu-
lation without any loss in BER performance is presented while the proposed matrix factorization implementation allows to achieve
the highest throughput specified in the IEEE 802.11n standard. Finally a novel E8 sphere decoder approach is presented, which
allows for the realization of new golden space time trellis coded modulation (GST-TCM) scheme. Implementation cost and offered
throughput are provided for the proposed architectures synthesized on a 0.13 μm CMOS standard cell technology or on advanced
FPGA devices.
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1. INTRODUCTION

MIMO-OFDM (Multi-input multi-output—orthogonal fre-
quency-division multiplexing) is a very promising com-
munication technique that enables to establish very high
throughput and reliable wireless links. In order to achieve
this goal, space-time (ST) codes are used, since they can con-
jugate both transmission rate and reliability enhancement of
the communication system. ST codes have been considered
for some recently proposed standards such as IEEE 802.11n
WLAN and 802.16e WMAN.

However, the computational complexity of MIMO-
OFDM receivers is much higher than in the single-input
single-output (SISO) OFDM approach; as a consequence the
potentials offered by MIMO-OFDM are still far from being
fully exploited in actual implementations.

Figure 1 depicts the structure of a 2× 2 transmit-receive
antenna MIMO-OFDM communication scheme. At the re-
ceiving side, after the RF/Analog front-end, multiple OFDM
demodulation stages, implemented as FFT processors (one
per antenna) are allocated, followed by the MIMO signal

detector. The adoption of a full-rate and full-diversity ST
code demands specific demapping and decoding capabilities,
which are covered in Figure 1 by the “ST-code decoder and
demapper” block. Finally, a trellis coded modulation (TCM)
channel decoder implements forward error correction.

The MIMO channel is modeled by its impulse response
between each transmit-receive antenna pair. Assuming hi j
represents the time-varying channel fading coefficient be-
tween the jth transmit antenna and the ith receive antenna,
the MIMO channel with Mt transmit and Mr receive an-
tennas is described through a Mr × Mt matrix H , where
hi j∼Nc(0, 1). Transmitted space-time codewords X areMt×L
matrices, where L is the number of channel uses required by
the ST code. Assuming the “block fading” channel model,
each transmitted X will be affected by an independently vary-
ing channel matrix H . Then, the Mr × L received matrix is

Y =HX + Z, (1)

where Z is the additive white Gaussian noise matrix with en-
tries ∼Nc(0,N0).
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Figure 1: ST-Code MIMO System.

When data symbols belong to a Q2-QAM modulation,
it is convenient to represent the codewords X in vectorized
form,where real and imaginary components of the Q2-QAM
are separated in two Q-PAM modulations, resulting in real
component codewords x. Consequently, the channel matrix
H is rearranged in a real-valued matrix H and Y is replaced
with the real-valued y. For a linear ST block code, x can be
obtained as x = Bs, where B is the ST-block code genera-
tor matrix and s is the vectorized data vector with entries
in Q-PAM. Note that (Q-PAM)N with N = 2Mr × L is a
hypercubic-shaped constellation carved from a multidimen-
sional integer grid ZN .

Provided that H is perfectly known at the receiver, the
optimal detector, able to minimize the codeword error rate in
a MIMO channel, is the maximum likelihood (ML) detector,
which solves the problem

ŝ = arg min
s∈(Q-PAM)N

∥

∥y −Ms
∥

∥

2
, (2)

where M = HB and N = 2 × Mr × L. The cardinality of
the search space, QN , depends on the number of receive an-
tennas, the chosen modulation scheme, and the number of
channel uses, while the factor 2 comes from the decomposi-
tion in real and imaginary components.

Hereinafter, in order to consider a currently practical sit-
uation, we will consider a two transmit and two receive an-
tennas system, with a two-channel use ST block code (Mt =
Mr = L = 2). An example of such a code is the golden code
proposed in [1–3] and adopted by the IEEE 802.16e WMAN
standard. We then have N = 8, y, x, and s are 8× 1 real vec-
tors and H is a 8 × 8 real-valued matrix. Thus, when using
16-QAM symbols, the direct computation of (2) results in
the evaluation of 48 = 65, 536 possible solutions.

Due to the high complexity of the exhaustive search,
more efficient methods were proposed. Most of these ap-
proaches rely on the rearrangement of (2). In particular, a
linear transformation such as QR or Cholesky decomposi-
tion allows to rewrite M as the product of two matrices, one
of which is upper triangular [4]. Imposing M = QR, (2) can
be rewritten as

arg min
s∈(Q-PAM)N

∥

∥y −QRs
∥

∥

2 = arg min
s∈(Q-PAM)N

∥

∥QTy − Rs
∥

∥

2

= arg min
s∈(Q-PAM)N

∥

∥ỹ − Rs
∥

∥

2
,

(3)

where we have exploited the orthogonality of Q and ỹ =
QTy .

One of the most interesting consequences of this inter-
pretation is that the exploration of the constellation lattice
can be thought as a tree traversal. This search tree has N lev-
els and each node in a level has exactly Q sons, representing
the points in one dimension of the Q-PAM’s. This traversal
can be done with polynomial complexity adopting the so-
called sphere decoder (SD), [5].

Recently proposed concatenated ST coding schemes [6]
offer a further reliability enhancement by adopting a com-
bined forward error correction approach based on a high
rate bandwidth-efficient trellis coded modulation (TCM)
scheme. This Golden ST TCM (GST-TCM) scheme for 2× 2
MIMO provides a reasonable ML decoding complexity so-
lution by using Viterbi algorithm and a branch metric com-
puter based on several parallel sphere decoders. A modified
sphere decoder is required to support this kind of concate-
nated scheme, which is an unexplored subject of investiga-
tion, from the implementation point of view.

This paper deals with the implementation issues of main
processing tasks that enable the development of MIMO re-
ceivers. A MIMO detector is organized in two key process-
ing tasks, matrix factorization and sphere decoding (or tree
traversal): we then propose efficient architectures for these
two key functions. The latter function is the core func-
tion of a high performance MIMO detector and its hard-
ware implementation tends to be critical in terms of both
throughput and complexity, especially in high data rate sys-
tems.

The matrix factorization task operates on the lattice gen-
erator matrix M. Since the code generator matrix is constant,
the processing must be performed at the channel estimation
update frequency, which can change significantly according
to the scenario and is generally one or two orders of mag-
nitude lower than the signaling rate. However, in a MIMO-
OFDM scheme space, time decoding has to be carried out
independently on each subcarrier, determining a dramatic
growth of the throughput demand even for matrix factor-
ization.

In Section 2, the sphere decoding algorithm is briefly
overviewed, while Section 3 deals with the hardware design
of three key building blocks: a sphere decoder, a matrix fac-
torization architecture, and an enhanced sphere decoder for
GST-TCM. Finally, Section 4 points out the implementation
results achieved for the proposed architectures.
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2. THE SPHERE DECODING ALGORITHM

Sphere decoding algorithms are a family of algorithms origi-
nally proposed to search the closest point to a given one in a
lattice. Their use in wireless communications was suggested
for the first time in [5], where the lattice structure of multidi-
mensional constellation is exploited to find the closest point
to the received vector.

When solving the minimization problem (2), sphere de-
coding algorithms achieve a polynomial average complexity
by exploring only a subset of the solution space [4].

In particular, a hypersphere is constructed around the re-
ceived vector y and only points inside it are taken into ac-
count. This constraint can be expressed as

∥

∥y −Ms
∥

∥

2 ≤ C0, (4)

where C0 is the square radius of the hypersphere [5, 7, 8].
The upper triangular structure of the matrix R in (3) en-

ables every component to be separately considered for the
computation of the distance between the two points. The dis-
tance d2(s) = ‖ỹ − Rs‖2 can also be computed recursively as
follows. We consider the partial metrics

Tl(s(l)) =

⎧
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∣

∣

2

if l = 1, . . . ,N ,
(5)

where s(l) = [sl, sl+1, . . . , sN ], ψl+1 = ỹl −
∑N

j=l+1Rl js j with l =
1, . . . ,N . Since the term

∑N
j=l+1Rl js j = 0 for l = N , then we

have ψN+1 = ỹl. After N steps, the distance d2(s) is obtained
as d2(s) = T1(s).

As an example, a three-level tree for a 4-PAM modula-
tion is depicted in Figure 2. Tl is the distance metric at level l
defined in (5). At every level, the radius constraint (4) must
be verified and satisfied, otherwise the branch is pruned. In
general, the radius is progressively reduced every time a leaf
is reached at a distance that is smaller than current radius.

Several algorithms have been studied in order to make
the tree traversal efficient. First algorithm, proposed by
Fincke and Pohst in [7], needs to chose explicitly an initial
radius.A more efficient solution was proposed by Schnorr
and Euchner(SE) [9]. In this case, the initial radius is se-
lected as the distance from the (ZF-DFE) solution and a
“depth and best first” traversal of the tree is performed. Orig-
inally thought for infinite lattices, the SE algorithm was then
adapted to finite lattices [4, 10].

The SE algorithm has intrinsically variable throughput
and this makes it not very suitable for hardware implementa-
tion. The key to make this algorithm efficient or, at least, with
a predictable throughput, is to make an effective pruning.
Many theoretical studies in recent literature aim at reaching

this goal [11]. A very interesting approach consists in an ef-
fective column reordering, which uses heuristic methods to
reduce the search complexity with limited performance loss
[12]. This technique results in very efficient tree search cir-
cuits but additional area is necessary for the preprocessing
phase.

On the contrary, the approach proposed in this paper is
based on the computational complexity reduction of the tree
search algorithm with no column reordering. This solution is
suitable for a flexible implementation that can adapt to dif-
ferent modulation sizes.

3. VLSI ARCHITECTURES

Implementation architectures for two key building blocks in
MIMO detectors are presented in this section (tree search
processing and matrix factorization). An enhanced sphere
decoder is then described to be applied in the concatenated
GST-TCM scheme.

3.1. Tree search processing block

Given the choice of adopting a fully ML detection algorithm
for (2), several implementation options have been proposed
in the literature.

A first classification can be done with respect to the
choice of real- or complex-valued tree construction. In the
real case, the tree is twice deeper than the complex one. In
complex trees, on the contrary, every node has the square of
the number of sons with respect to the real tree. As an exam-
ple, withMt =Mr = 4 and 16-QAM modulation, a complex-
valued tree construction would lead to a 4-level tree, where
each node has 16 sons, while 8 levels and 4 sons per node
appear in the corresponding real-valued tree. Although [13]
demonstrates that a complex-valued tree results in a lower
number of visited nodes, the construction of a real-valued
tree allows for a more flexible solution, adaptable to different
modulation schemes.

Another classification criterion is with respect to the im-
plementation parallelism:

(i) parallelism at the level of tree exploration;
(ii) parallelism at the level of the metric computation for

all sons of a given node and in the selection of the most
probable son.

The first technique can be adopted only with suboptimal al-
gorithms, while the second approach is not feasible with large
cardinality QAM modulation schemes, as it implies a large
number of concurrent multiplications. Hence, parallelism is
not viable for the implementation of flexible architectures. A
serial architecture, designed for high throughput, can achieve
both flexibility and low area cost.

Detailed descriptions of the proposed architecture can
be found in [14, 15]. The proposed architecture adopts
a real-valued tree construction and a serial organization.
This key advantage offered by this choice is the possibil-
ity of a run-time selection of the modulation scheme. The
system is furthermore adaptable to different transmitting
schemes including the golden code through the use of some
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Figure 2: Tree organization for the sphere decoder. S represent the vector of symbol value in 4-PAM, [−3, −1, 1, 3].
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instantiation parameters, which allow to choose the datapath
width and the number of levels of the search tree.

The SE algorithm adopts the “depth and best first” traver-
sal of the tree and the minimization of |ψl+1−Rllsl| is required
according to the problem formulation given in (5). The com-
putation of the |ψl+1 − Rllsl| values for all possible sl tends
to become infeasible when the order of the modulation in-
creases due to the large number of required operations. Core
of the proposed approach is the selection of the sl that mini-
mizes |ψl+1 − Rllsl| by means of the division ψl+1/Rll.

In particular, the iterative evaluation of (5) is rearranged
in two steps. At the first step, the value ψl+1 is received as
an input from the previous iteration and the desired sl for
the analyzed node is directly obtained through the division
ψl+1/Rll; moreover, the output ψl is calculated for the selected
sl as ψl = ỹl−1 −

∑N
j=lR(l−1) j s j . The second processing step

receives ψl and Tl, to actually compute Tl−1, according to (5).
The two operations are performed by units U psi Unit and
Metric Compute in Figure 3, where memories required to
store ψl amounts and Tl metrics are also shown.

It is worth noting that the result of the division ψl+1/Rll
is rounded to the closest Q-PAM constellation points
±1,±3, . . .. As a consequence, a general purpose hardware

divisor is not necessary and the required operation can be ex-
ecuted by means of the first log2Q steps of a successive sub-
traction divider [16]. This divider has a very simple archi-
tecture that employs only shifts and subtractions; although
it tends to be very slow for a complete division, this solution
can be effectively used when only a few shift and add elemen-
tary operations are required.

In a high throughput sphere decoder, a new Tl metric
must be evaluated at each clock cycle. In order to achieve
this target, the two steps exploit a pipelined architecture. Ad-
ditionally, an alternative metric must always be ready, also
when a pruning of the tree occurs; therefore, in the proposed
architecture, two “candidate” nodes are selected in parallel
when processing a given father node. The first one is a direct
son of the current node, selected by the U psi unit of Figure 3
by descending along the tree. The “alternative” node, selected
by U psi Step Unit, is placed at a higher level in the tree and
it is chosen when the branch has to be pruned, that is when
the current metric exceeds the best current metric evaluated
in the tree traversal. The procedure adopted to select the al-
ternative node is described below.

In the U psi Unit, the evaluation of the direct son of the
current node makes use of the division ψl+1/Rll and the result
is approximated either by defect or by excess to the nearest
PAM constellation point: the best choice for sl is given by (see
Figure 4)

sl(1) =
ψl+1

Rll
+ Δl, (6)

where Δl is the correction term. The sign of Δl is exploited to
select the second (and following) nearest point in the PAM
constellation, according to the following rule:

sl(k) = sl(k−1) − (−1)k sign(Δl) (k − 1)A, (7)

where A is the distance between two consecutive points.
Thus, U psi Step Unit simply computes (7) to find the

second most probable value of sl. Figure 4 shows the se-
quence of alternative nodes selected at a given tree level, after
the occurrence of pruning.

Summarily, we have the following.

(i) The division approach achieves low complexity and
flexibility in terms of supported modulation schemes.
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Figure 4: Method used to select alternative nodes in U psi step unit.

(ii) The concurrent evaluation of two “candidate” nodes
provides a significant speed-up to the inherently serial
SE sphere decoding algorithm and has a limited impact
on complexity.

3.2. Matrix factorization

Understanding of throughput requirements is fundamental
in the architectural study of this processing block. The IEEE
802.11n WLAN standard, which adopts space-time coding,
implies that a new channel estimation is performed when-
ever a packet arrives; this means that the number of matrix
factorizations ranges from a minimum of 64 in a time period
of 36 microseconds, to a maximum of 128 in 28 microsec-
onds.

In the design of the matrix factorization block, a first
choice between householder transformations and Givens-
rotations-based algorithms [17] has to be made. The lat-
ter approach results in a sequence of rotation operations
that cancel elements under the main diagonal of the matrix.
Givens rotations require a larger number of floating-point
operations compared to householder transformations; nev-
ertheless they may be implemented using parallel systolic ar-
rays and for this reason they are usually preferred for hard-
ware implementation.

Every single processing element (PE) of the systolic array
must perform the angle calculation and the rotation to cancel
the matrix elements. Several alternatives exist to accomplish
these two tasks, and the most common ones are

(1) computation of sine and cosine of the angle by means
of operations including square roots and divisions;

(2) direct angle calculation and rotation using CORDIC
processors [18].

The main advantage of the sine and cosine approach is
that primitives can be optimized resulting in an efficient,
although expensive, implementation. The second technique
is less expensive, but outputs are generated with longer la-
tencies and data dependency between operations. The very
high throughput required by this application can hardly be
achieved by iterative CORDIC-based algorithms. Other al-
ternatives have to be explored to reduce the latency of ev-
ery single processor. Among the square root-free algorithms,
the squared Givens rotations (SGR) proposed by Dölher
[19] constitute a good compromise between complexity and
speed [20, 21].

Let us indicate with a = (0, . . . , 0, ak, . . . , an) the row of an
n × n matrix, where a 0 must be introduced in the kth posi-
tion and with r = (0, . . . , 0, rk, . . . , rn) another row having the

same number of leading zeros; the standard Givensrotations
(StdGR) algorithm employs this set of updating equations to
cancel the element ak:

a = q−1(−akr + rka), r = q−1(rkr + aka),

q =
√

r2
k + a2

k.
(8)

The SGR algorithm takes advantage of the observation
that rk = q introduces the matrix U = diag(R) · R and ex-
ploits the relations u = rkr and u = rkr. Then, to simplify
the notation, the new vectors v = a /

√
w and v = a /

√
w are

introduced for some w,w > 0. After some algebra, we can
express (8) with a new set of updating equations:

u = u +wvkv, v = v − vk
uk

u,

w = wuk / uk.
(9)

When compared to StdGR, SGR algorithm shows half
the number of multiplications and no square-root operation.
The updating sequence can be arranged in a systolic array of
PEs performing the aforementioned computations.

The PE array can be arranged according to different
structures, namely the triangular (TA), square, and linear
(LA) shapes: each of them shows a different percentage of PE
reuse and a different throughput. Slightly different functions
are then associated in the array organization to boundary and
internal PEs.

Figure 5 pictures a generic systolic array layout, able to
perform QR decomposition of a 4 × 4 matrix. The identity
matrix must enter the systolic array immediately after the
matrix to be processed, in order to produce the Q matrix.
During the processing of the input matrix M, the coefficients
of Q are already computed and stored in the internal regis-
ters.

Depending on (9), boundary and internal processing el-
ements must behave differently when a diagonal element of
the matrix enters a node. In Table 1, the computations per-
formed by the nodes in the different operating modes are
listed. In the table, Reg and Reg2 are two registers needed to
store the parameters between different steps. The subscript
in indicate that a parameter takes origin from the preced-
ing PE in accordance with the connections in Figure 5, while
subscript out indicates that a parameter takes origin in the
current PE. It must be also noted that the parameter wout is
updated only in diagonal mode, while in the other modes it
maintains the registered value.

The internal processing element (IPE) appears to be the
most computationally intensive block of the entire system.
Figure 6 depicts the architecture of the IPEs derived from
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Figure 5: Systolic array for QR decomposition of a 4× 4 matrix.

Table 1: Operations performed by the PE’s.

Boundary PE

Mode Operation

Diagonal Reg ⇐ Yin; Xout ⇐ Y 2
in ·win

Nondiagonal Reg ⇐ Reg; Xout ⇐ Yin · Reg ·win

Internal PE

Mode Operation

Diagonal
Reg ⇐ Yin; Reg2 ⇐ Yin

Xin
; wout ⇐ win · Xin

Xin + Y 2
in

Xout ⇐ Xin + Y 2
in ·win

Yout ⇐ Yin − Yin

Xin
· Xin

Nondiagonal
Reg ⇐ Reg; Reg2 ⇐ Reg2, wout ⇐ wout

Xout ⇐ Xin + Yin · Reg ·win

Yout ⇐ Yin − Reg2 · Xin

Table 1. Although the divisor has a latency of two clock cy-
cles and two divisions are needed in the diagonal mode, a
proper overlapping with the nondiagonal mode guarantees a
total latency of three clock cycles.

The method proposed in [22] is adopted to realize the
division operation. Using the a Taylor series, the divisor (Y)
expressed on 2m bits is decomposed into two m-bit groups,
higher (YH) and lower bits (YL). Since (YH)2 � (YL)2, we
can write

X

Y
= X

YH + YL
= X(YH − YL)

Y 2
H − Y 2

L

	 X(YH − YL)
Y 2
H

(10)

with maximum fractional error < 2−2m. This divisor takes
two clock cycles to complete the division on 16 bit fixed-

R
eg

2

R
eg

win

Yin

∗

Xin

Xout+/−

:

Youtwout

LDLD

LD

LDLD

Figure 6: Block diagram of internal PE.

point data [23]; it requires a multiplier, an adder/subtracter,
and a 256 8-bit entries LUT to store the inverse of Y 2

H . The
overall complexity of the internal PE is therefore given by two
16 bit multipliers, two adders/subtracters and a LUT.

In this paper, we considered 8 × 8 real matrices as re-
quired by the 2× 2 MIMO system with two channel uses per
codeword. With a plain triangular architecture, which allows
to obtain the highest throughput, a new matrix can enter the
array after 16 steps (8 for computing R matrix and 8 for Q),
that is every 48 clock cycles. In order to factorize 64 matri-
ces in 28 microseconds we need to maintain the clock period
shorter than 9 nanoseconds, while a period of 4.5 nanosec-
onds is required to factorize 128 matrices.
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3.3. Enhanced sphere decoder for E8 lattices

In this section, we address concatenated bandwidth efficient
coding schemes for MIMO channels, where a space-time
code with nonvanishing determinant is used as inner code
and an outer trellis code is concatenated to further increase
the reliability of the communication [6].

This TCM exploits the basic idea of partitioning the inner
constellation; at each channel use, a signal is selected from
one of the partitions. In standard TCM for AWGN channels,
the Euclidean distance between points in the same subset is
made as large as possible [24]. Full rank ST code design is
based on the maximization of the minimum determinant

Δmin = min
X /=̂X

det
[

(X− ̂X)(X− ̂X)†
]

, (11)

where X, ̂X are distinct codeword matrices. This pseudo-
distance replaces the role of the Euclidean distance. In [6]
Δmin is optimized using set-partitioning that increases the
minimum determinant with the partitions. The Z8 lattice
structure of the inner golden code is used, so that sublat-
tices and their cosets are used as partitions. The outer con-
volutional encoder guarantees that signals are selected prop-
erly from different cosets. Among the possible 8-dimensional
sublattices considered in GST-TCM, we choose the Gosset
lattice E8 (the densest packing in 8 dimensions [25]).

Any received point has to be decoded to one of the 16
possible cosets of E8 compounding Z8. The decoder needs
to compute the branch metrics of the inner code to perform
Viterbi ML decoding of the concatenated codeword. This is
obtained by ML lattice decoding of the received vector in
each coset of the E8 sublattice.

In order to decode the E8 lattice, we consider that E8 ⊂
Z8 and adapt the classical sphere decoder (as that in [14])
operating on Z8.

Consequently, this decoding problem can be solved by
thinking of E8 as a punctured Z8 lattice and setting proper
constraints to discriminate the relevant points E8 within Z8.
This means that at a given tree level, the integer signal vec-
tor cannot assume all values; actually it is constrained by the
selections that have already been made at upper levels.

These constraints can be derived directly from the con-
struction A of E8 based on the (8,4,4) extended Hamming
code [6]. Let c = [c0, . . . , c7] denote one of the 16 binary
codewords that are used as coset leaders of 2Z8 to obtain E8.

Taking into account that the tree must be traversed start-
ing from the last dimension, we have

c =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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c7 = free,

c6 = free,

c5 = free,

c4 = c7 ⊕ c6 ⊕ c5,

c3 = free,

c2 = (c4 ⊕ c3) · c5,

c1 = (c4 ⊕ c3) · c6,

c0 = (c4 ⊕ c3) · c7.

(12)

Level = 5

Level = 4

Level = 3

s4 = −3 s4 = −1 s4 = 1 s4 = 3

Figure 7: Cross-section at levels 4 and 3, assuming c7 = “1,” c6 =
“0,” c5 = “1” and c4 = “1” we obtain c4 = c7 ⊕ c6 ⊕ c5 = “0” while
c′4 = c4⊕c4 = “1” where c is the output of the convolutional encoder
and represents a coset leader of 2Z8 in E8 and c is a coset leader of
E8 in Z8.

Table 2: Synthesis results at 0.13 μm technology for SD and matrix
factorization blocks.

SD Matrix factor

Core Area
[GE]

61 k 198 k

Max. Clock
[MHz]

213 223

Throughput at
SNR= 20 dB

148.6 Mbps 16-QAM 4.63 Mmat/s

If, at level i, ci is free, then the signal can assume any value
in the original QAM constellation, otherwise its value is con-
strained.

In order to perform the ML detection, we have to derive
the proper evolution of the received signal among the differ-
ent sublattices. In particular, we can define c as the output
of the convolutional encoder, which is related to the current
state of the encoder, and c as one of the 16 coset leaders of E8

in Z8. Combining c with the coset leader c, we obtain a bi-
nary vector c′ = c⊕ c that gives the 256 distinct coset leaders
of 2Z8 in Z8. Thus, all c′ vectors identify the actual allowed
points inside Z8. From the practical point of view, c is fixed
for the considered E8 decoder, while the allowed and inter-
dicted values of the signal si depend on the value of c′. If c′i
= “0,” then si can take the values [. . . ,−7,−3, 1, 5, . . .], other-
wise it can take the values [. . . ,−5,−1, 3, 7, . . .]; the bounds
of this sets depend on the constellation used for the trans-
mission. It is worth noting that, when ci is free, c′i can assume
both the values 0 and 1, leading si to assume any value in the
original PAM constellation.

Figure 7 shows levels 3 and 4 of a tree for the sphere de-
coding of 4-PAM systems: solid lines are practicable edges,
while dashed lines correspond the interdicted ones. For this
cross-section, we assume c7 = “1,” c6 = “0,” and c5 = “1,” re-
sulting in c4 = “0,” c4 = “1,” and c′4 = “1.” Therefore, values
[−1, 3] are allowed in this example. At level 3, instead, c3 is
free, and as a consequence c′3 can assume both values “0” and
“1” and the four branches are all admissible.
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Table 3: Comparison results for SD building block.

SD Our [26] [27]

Antennas 2× 2 per two channel uses 4× 4 4× 4

Modulation 4,16,64-QAM 16-QAM 16-QAM 16-QAM

Detector Depth-first sphere Depth-first sphere K-best sphere

BER perf. ML ML Quasi-ML

Tech. μm 0.13 0.25 0.25 0.35

Core area GE 61 k +preproc. 56 k +preproc. 117 k +preproc. 91 k +preproc.

Max. clock 213 MHz 109 MHz 51 MHz 100 MHz

Throughput @ SNR= 20 dB 148.6 Mbps 16-QAM 83 Mbps 73 Mbps 52 Mbps

Table 4: FPGA synthesis results for matrix factorization building block.

Tech. μm xc4vlx200 xc2v1000 xc4vlx200

Handled matrices 8× 8 Real 4× 4 Complex 4× 4 Complex

Array TA LA SE

no. of PEs 32 4 2

fclk MHz 89 101 115

Area
8321(9%) 1666 Slices (32%) 9117 Slices (10%) +

92 DSP48 4 BRAM (10%) 22 DSP48 (23%) + 9 BRAM (3%)

Throughput 1.85 Mmat/s 0.45 Mmat/s 0.15 Mmat/s

0 5 10 15 20 25 30

Eb/N0

1e − 04

0.001

0.01

0.1

1

B
E

R

“BerQAM4-floating”
“BerQAM16-floating”
“BerQAM64-floating”

“BerQAM4 71 9F”
“BerQAM16 71 9F”
“BerQAM64 71 9F”

Figure 8: Proposed system performance with different modula-
tions.

The proposed scheme allows to realize with a unique cir-
cuit the branch metric computer unit required in the Viterbi
algorithm necessary for the decoding of the Z8/E8 TCM
transmission scheme in [6]. Note that, at each stage of the
trellis, 16 different E8 decoders are required.

The adopted architecture is very similar to the architec-
ture described in Section 3.1 and in [14]. The only difference
is the additional functional block, the “constraint maker,”
able to realize (12).

4. IMPLEMENTATION RESULTS

Sphere decoder performance in the 2 × 2 golden code sce-
nario described in Section 1 is reported in Figure 8 in terms
of bit error rate (BER) versus SNR, for 4-, 16-, and 64-
QAM modulations. Fixed-point results are also plotted for
the case of a 16-bit data representation (7 bits for integer and
9 for fractional parts): in accordance with [23], these results
prove that, for this particular application, 16-bit representa-
tion is sufficient to achieve the floating-point performances
and thus it has been adopted for all the processing blocks here
described.

The proposed architectures have been synthesized on a
0.13 μm commercial CMOS standard cell technology with
synopsys design compiler. The synthesis results are presented
in Table 2: the sphere decoder synthesis results here listed are
obtained with a flexible architecture able to decode 4 to 64
QAM modulations, while the matrix factorization block has
been realized with a triangular array architecture (Mmat/s
indicates millions of matrices processed in a second). It must
be noticed that synthesis results differ from those in [14], al-
though referred to the same implementation, due to the use
of different synthesis libraries.

For comparison purposes, the tree search block has been
also synthesized on 0.25 μm CMOS Standard cell technol-
ogy (Table 3): we then compare our architecture to the ML
implementation described in [26] and the quasi-ML imple-
mentation in [27]. It must be noted that two different imple-
mentations are presented in [26], one is ML, while the other
has close to ML BER performance: as the latter implementa-
tion adopts a completely different approach and maps a sub-
optimal algorithm, only the first implementation figures are
included in Table 3 for comparison purposes.
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Analyzing data in Table 3, it can be observed that our
rearranged approach for the sphere decoder with a single
metric computation per cycle allows a significant complex-
ity reduction (approx. 50% for 16 QAM modulation) with
respect to parallel structures. At the same time, thanks to the
pipelined architecture, we can achieve a remarkable average
decoding throughput without any highly specialized struc-
ture. Moreover, our flexible decoder is not limited to a single
modulation scheme, but it can adapt to different modula-
tions (4-, 16-, and 64-QAM).

Fair comparisons to other implementations cannot be
done for the matrix factorization block, as published solu-
tions adopts completely different architectures. For the sake
of completeness, we report here two FPGA developments,
[21, 28], which implement the SGR algorithm. The main
features of these architectures are summarized in Table 4,
together with the synthesis results of our solution mapped
onto a Xilinx Virtex4 (xc4vlx200) FPGA device. Both [21, 28]
carry out the computation of 4 × 4 complex matrices, while
we process 8× 8 real-valued ones. This means that, while the
single PE complexity will be greater in the complex scenario,
the number of PE the data flow pass through is twice and
with the basic TA topology, while for a 4×4 matrix there will
be 8 PEs, and 32 PEs are required for 8× 8 a matrix.

Another difference among these implementations is re-
lated to the processing topology; while our solution adopts
a TA processing topology with 32 PEs, [28] makes use of a
linear array (LA) organization with 4 PEs and two single PEs
are used in [21], one for boundary processing and the second
one for internal processing.

A further difference with respect to [28] is that in our
implementation weight w is updated according to (9) while
in [28] it is fixed to a constant value.

In conclusion, the standard cell version fully reaches both
the 64 matrices in 36 microseconds and the 128 matrices in
28 microseconds goals and the throughput of the proposed
approach compares favourably to that of the other imple-
mentations showing high performances at a limited addi-
tional cost. On the contrary, the FPGA implementation en-
ables only to reach the 64 matrices in 36 microseconds.

The E8 decoder, instead, adopting the same architecture
as the Z8 sphere decoder presents a comparable complexity.
A little increase in area is due to the addition of the func-
tional block “constraint maker,” leading the overall complex-
ity to 62 kGates, and the maximum achievable frequency to
196 MHz.

5. CONCLUSIONS

The hardware implementation of key building blocks in a
MIMO-OFDM receiver has been presented. The analysis of
the blocks shows their high level of complexity, which justi-
fies the ASIC design approach. The sphere decoder architec-
ture enables to manage different modulations without any
loss in BER performance while the proposed matrix factor-
ization algorithm and arrangement allow to achieve the high-
est throughput specified in the 802.11n standard. Finally, the
design of an enhanced sphere decoder, capable of supporting

E8 decoding in a ST-TCM concatenated schemes, has been
proposed.
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