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A novel training algorithm is proposed for the formation of Self-Organizing Maps (SOM). In the proposed model, the weights
are updated incrementally by using a higher-order difference equation, which implements a low-pass digital filter. It is possible to
improve selected features of the self-organization process with respect to the basic SOM by suitably designing the filter. Moreover,
from this model, new visualization tools can be derived for cluster visualization and for monitoring the quality of the map.

1. Introduction

The self-organizing map, with its variants, is one of the
most popular neural network algorithms in the unsupervised
learning category [1–3]. The topologically preserving map-
ping from a high dimensional space to a low dimensional
grid formed by the SOM finds a very wide range of
applications [4–6]. The SOM consists in an ordered grid
of a finite number of cells i = 1 · · ·D located in a fixed,
low-dimension output array, where a distance metric d(c, i)
is defined. Each unit is associated to a model vector (or
weight) mi ∈ Rn that lives in the same high dimensional
space of the input patterns r ∈ Δ ⊂ Rn, where Δ is
the dataset to be analyzed. The distribution of the model
vectors, after the training, resembles a vector quantization
of the input data with the additional important feature
that model vectors tend to assume, in the input space, the
same topological arrangement of the correspondent cells
in the predefined output grid so that the topology of the
data is reflected into the lattice. In general, the learning
is based on a competitive paradigm, where for each input
presented to the map a best matching unit is selected by
maximizing the similarity between the input and model
vectors. Successively, the winning unit and its topological
neighbours are adaptively updated in order to increase the

matching with the input. The incremental learning algorithm
of the SOM has been established heuristically following this
paradigm, where the matching of the models with the input
is increased by moving all the vectors in the direction of the
present input sample

mi(t + 1) = mi(t) + hci(t)
(

r(t)−mi(t)
)

, i = 1 · · ·D.
(1)

The update step for the cell i is proportional to a time-
dependent smoothing kernel function hci(t), and c is the
winner node

c = argmin
i

{∥∥∥r(t)−mi(t)
∥∥∥
}
. (2)

The model vector represents the center of the receptive field
of the cell. A widely applied kernel is written in terms of the
Gaussian function centered over the winner node

hci(t) = μ(t) · exp

(
−d(c, i)2

2σ2(t)

)
. (3)

The scalar function hci(t) has a central role in the learning
process defined by (1), and a large part of the literature on
SOM is focused on the theoretical and practical aspects of the
different possible implementations of this kernel function.
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The SOM learning rule (1) can be interpreted as an
approximate gradient descent of a cost function related to
the quantization error [7], but it does not possess an exact
cost function for continuous input distributions. In [3]
it is shown that in order to better minimize a distortion
measure the one step rule (1) may be modified formulating
an improved but still approximate minimizing step. Equation
(1) can be related to the asymptotic point density of the
SOM or the so called magnification factor, which relates the
density of the SOM weights to the density of the input data
[8]. In [9], equation (1) is slightly modified in a convex or
concave nonlinear expression achieving a certain control on
the magnification factor. In [10] there is a similar nonlinear
modification of the learning rule, but the focus is on time
series reconstruction. In [11] a rival model penalization is
introduced in the SOM, where the rivals are identified as
those cells that are not direct neighbours of the winner,
except their model vectors are closer to the input than
those of the topological neighbours of the winner. For these
rival cells, the kernel function assumes negative values so
that through (1) their models are moved away from the
input. In [12], a time invariant learning rate is proposed,
and in [13] a long-term depression of the learning rate is
proposed, but with a repulsive kernel function that leads to a
novelty detector. Other works are related to an automatic or
adaptive generation of the parameters μ(t) and σ(t) [14–16].
In the simple approach of [14] μ(t) and σ(t) are obtained
as functions of the worst distance, registered during the
training, between the winner and the input data.

The common feature of all this SOM variants is that
the structure of (1) is maintained almost unchanged while
different types of hci(t) functions are adopted. Then, they
have different rules to determine the length of the update
step, while the direction of the update step is always imposed
by the input. Consequently, at each step the entire map
moves toward the presented sample (in [11] some rival
models are moved in the opposite direction), without any
memory of the previous update directions. This behaviour
has theoretical support only in the final convergence phase
of the learning [5, 8] when it determines a good local
statistical accuracy, and it controls the magnification factor.
However, during the first phase (when the width of the kernel
is shrinking and the global topology of the input data is
learned), a smoother change of the update step direction
than the one forced by (1) would be a desired feature.

To obtain this feature, in this paper a novel SOM model
is proposed where the learning is accomplished by means
of a higher-order linear difference equation that implements
a predefined tracking filter. In the proposed model, each
cell contains a set of memory vectors in order to take
trace of the past positions of the model vectors and of
the inputs. The update direction is defined by the dynamic
of a properly defined filter that guides the movement of
the model vectors as a combination of the past vectors. In
that way, the proposed model gives a general framework
to define different training strategies, where the basic SOM
is a particular case. Moreover the proposed method has
some new useful additional visualization and data analysis
capabilities. In particular each cell can give more information

such as local density and learning trajectories when higher
order filters are used.

2. Model Description

2.1. Learning Filter. From (1), the new weight depends
explicitly on the present input and on the present weight
position (it is in fact a convex combination of these two
vectors), and there is not a direct dependence on past input
and weight values.

Our idea is to add more degrees of freedom to the
incremental learning equation of the SOM, in order to
improve the relaxation process that takes place during the
self-organization of the model vectors.

This is obtained by adding to the neuron model a
“memory” of the past values of the inputs and model vectors
of the cell. The new weight vector is calculated as a linear
combination of the vectors in the memory. To properly
define this linear combination, it is necessary to employ
a stable, discrete-time filter, which in the following will
be referred as learning filter (LF). Using the Z-transform
formalism, the learning filter is defined by means of its
transfer function G(z)

G(z) = b1zN−1 + · · · + bN
zN − a1zN−1 − a2zN−2 · · · − aN

. (4)

The filter G(z) is implemented by means of a linear
difference equation described by the LF coefficients a =
[a1, . . . , aN ]T , b = [b1, b2, . . . , bN ]T as:

m(t) =
N∑

k=1

bkr(t − k) + akm(t − k), (5)

where r(t − k) represents the input sequence and m(t − k)
represents the output sequence. A rigorous requirement of
the LF is that it has to be a low-pass filter at least of type
1, that is, with unitary static gain: G(z = 1) = 1. This also
means that for a constant input sequence r(t) = r the error
sequence r − m(t) will tend to zero as time goes to infinity.
Hence, the limit limt→∞m(t) = r holds and the LF can track
constant inputs with zero error. Guidelines for the design of
the LF will be described in subsequent sections.

2.2. Proposed SOM Algorithm

2.2.1. Neuron Model. In order to introduce the dynamic of
the LF in the SOM, we associate two matrices (composed by
N column) to each element of index i of the map vectors,
Ri = [ri1, . . . , riN ] and Mi = [mi

1, . . . , mi
N ], where mi

k ∈ Rn,
rik ∈ Rn. The columns of Mi represent the sequence of the
last N values of the weight vector of the cell i, while the
columns of Ri take trace of the last N values of the input
r(t) ∈ Rn to the cell i. Note that r(t) in (1) represents
the sequence of samples randomly selected from the input
distribution during the learning, which are presented to the
whole map. Then, in the basic SOM all the cells receive the
same input at each time step. Conversely, in the proposed
model each cell contains a personalized input sequence Ri,
related to the winning frequency of the cell.
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The n × N memory matrices Ri and Mi represent the
memory added to the neuron model in order to take trace of
the past events. Each cell of the proposed SOM calculates the
value of the model vector at time t as a linear combination of
the memory vectors at time t, through the coefficients of the
LF

mi(t) =
N∑

k=1

bkrik(t) + akmi
k(t)

=
[

Ri(t)
...Mi(t)

]⎛
⎝b

a

⎞
⎠ = Qi(t) · g,

(6)

where the n×2N matrix Qi(t) = [Ri(t)
...Mi(t)] represents the

whole memory of cell i, while the 2N column vector g =
(

b
a

)

contains the LF coefficients. Hence, the model vector mi(t) is
directly calculated—from a given memory matrix Qi(t) and
the LF coefficients g.

2.2.2. Network Training Procedure for the Proposed Model.
Given the vectorial input data to analyze r ∈ Δ ⊂ Rn, we first
create the output grid array of the SOM, and then choose the
neighbourhood arrangement, defining the distance function
d(c, i) between two cells of indexes c and i. Then, we design
the linear difference equation of order N that drives the
learning process, and suitably define the coefficients a =
[a1, . . . , aN ]T , b = [b1, b2, . . . , bN ]T of the numerator and
denominator of the low-pass LF G(z) in (4).

Initial values for the memory vectors Qi(0) can be
selected at random, and the so-called linear initialization,
that uses the principal axes of the input distribution, can give
some benefit as in a classical SOM.

When a new input sample r(t) is presented to the map
during the training the winner unit c is selected as the node
that has the nearest model vector mi(t) to the input sample
r(t)

c = argmin
i

{∥∥∥r(t)−mi(t)
∥∥∥
}
. (7)

The receptive field of the cell i is given by the Voronoi region
of the model vector

mi(t) = Qi(t) · g. (8)

Then, the memory of the cells needs to be updated in order to
take trace of the new sample. If each neuron is considered as
a standalone filter, without neighborhood collaboration, the
update of the memory matrices is a straightforward one-step
time shift of the memory vectors

Ri
+(t) =

[
r(t), ri1(t), . . . , riN−1(t)

]
,

Mi
+(t) =

[
m(t), mi

1(t), . . . , mi
N (t)

]
,

Qi
+(t) =

[
Ri

+(t), Mi
+(t)

]
.

(9)

To include the neighborhood collaboration in our model, we
consider the following update expressions:

Ri(t + 1) = Ri(t) + hci(t)
(

Ri
+ − Ri(t)

)
,

Mi(t + 1) = Mi(t) + hci(t)
(

Mi
+ −Mi(t)

)
,

(10)

and the global memory matrix

Qi(t + 1) = Qi(t) + hci(t)
(

Qi
+(t)−Qi(t)

)
, (11)

where the Gaussian neighborhood function is calculated as

hci(t) = μ(t) · exp

(
−d(c, i)2

2σ2(t)

)
. (12)

In that way, only the memory of the winner and its
topological neighbors have to be updated, whereas the
memory of the units that are far from the winner remain
almost unchanged.

2.2.3. Update Direction and Convergence. The neighbour
collaboration is accomplished by means of an adaptive
update of the “memory” of the neurons. Neurons that do not
recognise the input pattern will not update their memory,
while the memory of the neuron that recognise the pattern
is updated together with the memory of its topological
neighbours. It is known that in order to have the self-
organization of the model vectors the update has to increase
the similarity with the input pattern [3]. In our scheme,
the model vectors are a linear combination of the memory
vectors, as the update direction of the model vectors is
determined by (6) and (11). Substituting (11) in (6), we have
the following implicit expression of the updated prototypes:

mi(t + 1) = mi(t) + hci(t)
(

mi
+(t)−mi(t)

)
. (13)

Then, the model vector is updated in the direction of mi
+(t),

which is the next value of the LF output in the case of the
absence of neighbourhood cooperation

mi
+(t) = Qi

+(t) · g

= b1r(t) + a1mi(t) +
N−1∑

k=2

bkrik(t) + akmi
k(t).

(14)

It is central to point out the similarity of the implicit update
expression (13) of our algorithm with the classic SOM
update rule (1). In the classic SOM update rule (1), the
target vector is represented by the randomly selected input
pattern r(t), which is the same for all the cells, whereas in
the update expression (13) the same role is played by the
vector mi

+(t), which represents a target pattern different for
each cell, defined as a linear combination of the memory
vectors and the actual input sample and model vector. In
particular this combination is given by an LF that is designed
in order reduce the error r(t)−mi

+(t) to zero in the case of a
continuously repeated input sample r(t) = r. In this sense,
the similarity of the model vector with the input sample
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is increased when the model vector moves in the direction
defined by (13). A necessary requirement of every kind of LF
to have this property is that they need to be at least of type
1 [17]. This requirement can be translated in a constraint
on the coefficients of the LF G(z)a = [a1, . . . , aN ], b =
[b1, . . . , bN ]. If an LF is of type 1, then

N∑

k=1

bk +
N∑

k=1

ak = 1, (15)

which is equivalent to require a unitary static gain G(1) = 1.
This means that the linear combination in (6) is an affine
combination of the vectors rik, mi

k, k = 1 · · ·N and, in the
case that ai, bi ≥ 0, it becomes a convex combination. This
yields some possible geometrical interpretations of (6). In
the classic SOM, the space for the weight update is the
segment between the weight and the present input sample.
In the proposed scheme, the new weight can move in the
higher dimensional space given by the affine combination,
defined by the LF coefficients of the 2N vectors [ri1, . . . , riN ]
and [mi

1, . . . , mi
N ].

Another important remark is related to the fact that the
target vector sequence mi

+(t) can be seen as the output of
a filter G(z), where the input is related to the stochastic
sequence r(t). Therefore, using an LF with static gain G(1) =
1 corresponds to require a filter which maintains the first-
order moment of the stochastic process r(t), which is also
the mean value of the input distribution. In fact, it is known
that the mean value of the output sequence mi

+(t) of a linear
filter G(z) is related to the mean value of the input stochastic
sequence r(t) by the following relationship:

E
{

mi
+(t)

}
= G(1) · E{r(t)}, (16)

where the symbol E{·} represents the expectation. As a
result the static properties of the input distribution are
well represented by the sequence of target vectors mi

+(t),
and moving the prototypes as in (13) reduces the distance
to the input distribution. Consequently, the local stability
and convergence of the proposed model are assured by the
stability and static gain features of the learning filter, while
the global behaviour of the map follows the same heuristic
principle of the basic SOM. In particular, to have the global
convergence of the model vectors it is necessary that hci(t) →
0, when t → ∞, and it is necessary to respect the well-known
convergence conditions of the Robbins-Monro stochastic
approximation method [2].

In the proposed model, the function hci(t) can be
defined similarly to other self organizing paradigms as vector
quantization, neural gas [18], or SOM, obtaining analogous
self organization behaviours.

As a final result of the proposed model a new self
organizing algorithm is defined by (6), (7), and (11). Very
stable and robust self organization activities of the model
vectors are observed when executing (6), (7), and (11) if the
LF G(z) is carefully designed.

2.3. Guidelines to Design the Learning Filter (LF). In this
section we describe general principles for a useful design of

the LF. We first describe the LF that gives the basic SOM.
To reproduce the classical SOM in our model, we have to
consider, for example, the kernel function

hci(t) = μ(t) exp

(
−d(c, i)2

2σ2(t)

)
, (17)

where we consider the following annealing schemes [3]:

σ(t) = σmax − (σmax − σmin)t
T

, t < T1,

σ(t) = σmin, t ≥ T1,

μ(t) = μmax −
(
μmax − μmin

)
t

T
, t < T2,

μ(t) = μmin · T
t

, t ≥ T2,

(18)

and T1,T2 are, respectively, the decreasing times of the kernel
width and of the learning rate.

The exact SOM equations are obtained from (6), (7), and
(11) considering the following first-order learning filter LF1:

G(z) = α

z + α− 1
, (19)

where α ∈ (0, 1) is a global “learning constant.” By
substituting the coefficients of the LF1 in (19) into (6) we
have that (6), (7), and (11) become formally equivalent to
the basic SOM. Hence, the basic SOM algorithm is included
in our framework and it can be obtained by using the first-
order LF1. The learning constant α, which determines the
bandwidth of the learning filter, in this contest acts as a global
attenuation constant of the learning factor μ(t).

A second-order learning filter LF2 has the form

G(z) = b1z + b0

z2 − a1z − a0
. (20)

Filters coefficients can be chosen so that the learning filter
(20) is a low-pass filter with the same normalized cut-off
frequency ω0 ∈ (0, 1) (−3 db band) of filter (19). In this
case, the same global attenuation of the learning factor can
be expected and the advantage of filter (20) on the classical
SOM (19) is the enhanced filtering action obtainable by the
higher-order update equation.

Due to their well-known “optimal” characteristics of gain
and bandwidth reported in circuit analysis, we use discrete
low-pass Butterworth filters [17] as LF in many numerical
experiments obtaining good results. With this choice, the
only free parameters of the LF are the order N of the
filter and the cut-off frequency ω0 [17]. Figure 1 shows two
different 20 × 20 maps trained with two different values of
ω0, by using a second-order low-pass Butterworth filter. The
input distribution is clustered in four regions with uniform
distribution in R2 as in Figure 1. Trained model vectors are
the nodes of the depicted grid. With a high value of ω0 = 0.8,
the final distribution of model vectors in Figure 1(a) shows
a better fitting (or regression) of the input distribution. For
a lower value of ω0 = 0.1, the map has a more interpolative



Advances in Artificial Neural Systems 5

behaviour shown in Figure 1(b). This is due to the fact that
with smaller values of ω0 the learning rate factor decreases
more rapidly, while the decrease of the neighbourhood width
is unchanged. Then, it is possible to select suitable values
of ω0 depending on the particular data to be analyzed with
the SOM. For example, usually a more interpolative map
is desired for cluster analysis. In a basic SOM, this can be
achieved by generating different maps changing the initial
values of the learning factor μ(t) or by taking a greater final
value of the neighbourhood width σ(t). In the proposed
framework, we utilize the learning velocity constant ω0,
which defines the band of the learning filter, to obtain maps
with different interpolative behaviours, instead of operating
on the annealing scheme of the learning rate factor μ(t).

3. Visualization Tools

The proposed method add a new feature to the SOM
algorithm, by taking into account the old values of the
model vector and of the input during training and using
this information when updating the model vectors. When the
training is completed for each cell i, we have an n×2N matrix
Qi = [ri1, . . . , riN ,mi

1, . . . ,mi
N ]. The centres of the receptive

fields of the cells are obtained from (6) as mi = Qi · g, but
more useful information can be extracted from the memory
matrices Qi. Vectors mi

1, . . . , mi
N can be interpreted as the

last N values of the model vector during training, so that
they give information on the final learning trajectory and
on the velocity of the model vector of the cell i. The vectors
ri1, . . . , riN are related to the last N values of the input to
cell i during training, so that, in general they give a rough
indication of the receptive area of the cell.

By the numerous performed simulations, it comes out
that, from these vectors mi

1, . . . , mi
N , useful information can

be extracted for visualization purposes. If the LF is of order
N ≥ 2, the following quantity can be computed for each cell
after the training of the network:

ei = 1
N − 1

N∑

k=2

mi
k−1 −mi

k. (21)

The norm of this vector gives the average lengths of the
distances between subsequent vectors mi

k. It comes out from
simulations that ‖ei‖ is related to the point density of the
input in the Voronoi region of the cell i. In particular,
this norm is smaller for higher-density regions, and vice
versa. When ‖ei‖ is visualized in the output grid, defining
the colour of the unit, a visualization map similar to
the U-matrix [19] is obtained and we call the proposed
visualization the E-matrix. The U-matrix is obtained by
visualizing the distances between the model vectors of
adjacent units while the E-matrix is obtained by considering
information given by each cell itself, without considering the
topological neighbourhood. Examples of the usefulness of
this visualization tool are given in the next section.

A second visual aid on the map is obtained by considering
the direction of the normalized vectors ei/‖ei‖, that indicate
the final direction of the trajectory of the model vector
during training. This direction is defined in the input space

(a) ω0 = 0.8

(b) ω0 = 0.1

Figure 1: Distribution of the model vectors of two different maps
trained with two different values of the cut-off frequency ω0, using
a second order Butterworth learning filter.

and can be translated in the output map space by finding,
within the neighbours of the cell i, the one whose model
vector ei is “pointing to”. This is achieved by first finding, for
the cell i, all vectors di

q = mq − mi, q ∈ Λi, where Λi is the
set of the direct neighbours of cell i, and then computing

ui = argmax
q

⎛
⎝〈 ei

‖ei‖ ,
di
q∥∥∥di
q

∥∥∥

⎞
⎠, q ∈ Λi, (22)

where 〈·, ·〉 denote the dot product. Then, in the output map
grid, an arrow can be traced that connects the cell i to the
cell ui, and we call the proposed visualization the A-matrix.
This reveals to be a useful tool for visualizing the zones of
attraction, or contrarily the empty zones of the map.

4. Numerical Results

We consider now various examples of input distributions in
order to evaluate the performance of the proposed algorithm
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and the effect of changing the filter order N and cut-off
frequency ω0.

To show the characteristics of the proposed model, we
will consider some features of the convergence phase and
compare them with data obtained with the basic SOM. To
evidence the effects of the newly introduced filter, we will
adopt the same kernel function hci(t) by choosing the same
annealing schemes for σ(t) and μ(t).

The total number of presentations used along our
experiments is 100000. The presented results show typical
trends of several tests performed by the authors. To assess the
quality of the map, two indexes are used: quantization error
and distortion measure.

Quantization error is calculated as

QE(Δ) = 1
‖Δ‖

∑

r∈Δ
‖r−mc‖, (23)

where ‖Δ‖ denote the cardinality of the input dataset.
Quantization error indicates how close the model vectors are
fitting the data, but does not take into account the ordering
state of the map. The following empirical distortion measure
DM(σ) is used:

DM(Δ, σ) = 1
‖Δ‖

∑

r∈Δ

D∑

i=1

wci(σ)
∥∥∥r−mi

∥∥∥, (24)

where wci(σ) = exp(−d(c, i)2/2σ2). Unlike the quantization
error, the distortion measure DM(Δ, σ) considers the SOM
topology and we have DE(Δ, σ) → QE(Δ) when σ → 0. The
minimization of QE is the goal of vector quantization, while
the SOM can be regarded as a computational intelligence
algorithm that aims to minimize the distortion measure
DM(Δ, σ) for some σ > 0. It is known that the SOM only
minimizes DM(Δ, σ) approximately, whereas the effective
minimization of DM(Δ, σ) is extremely heavy numerically
[3, 20, 21].

4.1. Analysis of a Gaussian Distribution. In the first exper-
iment, we consider that the input belongs to a Gaussian
cluster Δd

g ∈ Rd centred in the origin of the axes and with
unitary variance. In this experiment, we intend to show the
effects of the application of our method on the quality of
the obtained maps, by using a Butterworth (BW) LF and
changing the bandwidth of the filter and the filter order.

A classic 20 × 20 SOM with hexagonal neighbourhood
has been trained where model vectors have been initialized
using random initialization.

We also trained a set of maps with our method by
adopting different learning filters. Training uses the same
number of steps and the same learning parameters employed
for the basic SOM, but the learning filter is a low-pass
Butterworth filter, and a different map is trained for various
values of the cut-off frequency ω0 ∈ (0.1, 0.8) and filter order
N = 2, 3, 4, 5. Each training procedure is repeated several
times with different random initializations in order to avoid
possible topological defects, and to obtain statistically signif-
icant results. Figures 2 and 3 show the averaged quantization
error QE(Δ10

g ) and distortion measure DM(Δ10
g , 1) at the end
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Figure 2: Averaged quantization error of trained maps with
Gaussian input. Butterworth LF are used for different values of the
filter order and bandwidth.
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Figure 3: Averaged distortion measure of trained maps with
Gaussian input. Butterworth LF are used for different values of the
filter order and bandwidth.

of the training of each trained map, when the dimensionality
of the Gaussian input is d = 10.

We calculate also the percentage relative gains (PRG),
shown in Figure 4, of the results obtained with the proposed
method with respect to the classic SOM both for the averaged
quantization error and distortion measure. The PRG are
defined as

PRGQE = 100
QE
(
Δ10
g

)SOM −QE
(
Δ10
g

)BWLF

QE
(
Δ10
g

)SOM ,

PRGDM = 100
DM

(
Δ10
g

)SOM −DM
(
Δ10
g

)BWLF

DM
(
Δ10
g

)SOM .

(25)

It can be observed that the QE decreases when the filter
bandwidth ω0 is increased, while the QE increases when the
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Figure 4: Percent relative gain with respect to the classic SOM
quality indexes. Solid line: DM relative gain. Dashed line: QE
relative gain. The line at the zero level represents the classic SOM
performance.

Figure 5: Model vectors of classic SOM for a clustered distribution.
The distortion measure is 0.672.

filter order is increased. Hence, the better QE are obtained
for high-filter bandwidth and low-filter order. For higher
values of ω0 the BW filters of order 2 and 3 can reach
better QE than the classic SOM. The opposite situation
can be noticed observing the DM curves. Increasing the
filter bandwidth, for ω0 > 0.3, the DM decreases, while it
improves by increasing the filter order. The use of the BW
learning filter of order N = 5 leads to trained maps with
better DM than classic SOM for all the used values of the
filter bandwidth. The trade-off between QE and DM is a
common problem that arises in the formation of SOMs. The
proposed algorithm furnishes new instruments to directly
control the quality of the map. Augmenting the filter order
for fixed filter bandwidth produces maps with improved
distortion measure but affects the quantization error, while
increasing the filter bandwidth produces opposite trends.
Depending on the particular analysis to be carried out,
different weights can be given by the user to these features

Figure 6: Model vectors of a map trained with a fourth order
Butterworth learning filter. The distortion measure is 0.572.

of the map. If a map that strictly fits the data is crucial than
the minimization of quantization, error is the priority and
filters with high bandwidth and low order can be used. If a
smoother mapping is needed than higher-order filters can be
used. Furthermore, it is noticeable that every BW filter has a
range of bandwidth where both QE and DM perform better
than the classic SOM. In this sense, we can state that the
proposed model gives better self-organization performances
than the basic SOM.

If the main scope of the SOM analysis is cluster
visualization, then, the use of higher-order filters brings
enhanced visualization results when the E-matrix or the A-
matrix visualization tools are used as shown in the following
examples.

4.2. Analysis of a Clustered Distribution. In the second
experiment, we consider that the input distribution is formed
by two clusters in R2, where the cluster 1 has a uniform
probability density function p(x ∈ 1) = 1/3 and the cluster
2 has a uniform probability density function p(x ∈ 2) = 2/3.

A classic 20 × 20 SOM with hexagonal neighbourhood
has been trained where model vectors have been initialized
using random initialization. The final state of the model
vectors after 100000 presentations is shown in Figure 5. In
the trained map, an undesired curvature is present in the grid
distribution of the model vectors at cluster 2. This is due to
the fact that the two principal axes of the input distribution
have different lengths, while the map has a 20 × 20 square
dimension. In this case, a rectangular map may behave better,
but we may be interested in searching a 20 × 20 map that
does not exhibit this kind of distortion. In classic SOM, this
can be done by adjusting the learning parameters that define
hci(t), then it is not a trivial task to choose these parameters
in order to improve the map quality. On the other hand,
in the proposed method we can obtain the desired feature
by suitably selecting the filter order and cut-off frequency
as shown in the previous example. By using a Butterworth
filter of order N = 4 and cut-off frequency ω0 = 0.4, without
changing the annealing schemes for the kernel function, the
map in Figure 6 is obtained.
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Figure 7: Trajectory vectors eim in the input space relative to the
map in Figure 6.

Figure 8: U-matrix of the map of Figure 6.

The model vectors shown in Figure 6 are the centers of
the receptive fields mi calculated as in (6). At the end of
the training, we also have, for each cell i, the vectors rik(t),
mi

k(t), k = 1 · · ·N . In this 2D example they can be visualized
directly in the input space. In particular, for each cell i, the
trajectory vector ei is calculated as in (21) and it is shown as
an arrow that starts from mi.

Figure 7 shows the vectors ei for the map in Figure 6. The
trajectory vectors clearly indicate the zones of attraction of
the input space. In the classic SOM, each cell has one model
vector and this kind of visualization is not possible.

Now let us consider the visualization of the map on the
output grid. A popular tool for visualizing the clusters on
the map is the U-matrix. We calculate the U-matrix and
the E-matrix for the map of Figure 6 obtaining Figures 8
and 9, respectively. Also the A-matrix, the projections of
the trajectory vectors in the output space, is displayed in
Figure 9. The E-matrix in Figure 9 shows the norms of the

Figure 9: E-matrix (colors) and A-matrix (arrows) of the map of
Figure 6.

vectors ei of Figure 7, and the A-matrix shows their directions
projected on the topographic surface. The U-matrix gives
information of the distances between neighbouring model
vectors, whereas the E-matrix gives information of the final
trajectory of the model vector of each cell independently. The
figures show that similar information can be extracted by
the two matrices, attesting that the trajectory vectors ei of
the interpolative units (model vectors that remain between
clusters) have higher final values than units that fall inside
more dense areas. This confirm that the E-matrix can be used
as a cluster visualization tool. Furthermore, it has additional
features with respect to the U-matrix since some information
on the map quality can be derived from E-matrix observing
how the model vectors fit the underlying distribution.

4.3. Analysis of the 4D Anderson’s Iris Dataset. We show
now the potentiality of the proposed method for visualizing
4D data, analysing the well-known Anderson’s Iris dataset
[22]. This dataset is composed of 150 patterns of four real
variables, and each pattern belongs to one of three different
classes. A first map obtained from a classic SOM of grid
dimensions 40 × 10 and a second map obtained by using a
second order Butterworth LF are considered. Note that the
number of neurons is higher than the number of samples in
the data, then the SOM is used as a nonlinear regression-
interpolation method. We consider here results that show
similar quantization error and the distortion measure of the
two maps. Therefore, equivalent information is achievable
from the final distribution of the model vectors as shown in
Figure 10. However, it is important to evidence the situation
of a very short training length duration, where the number
of presentations is limited to one or two epochs. In this case,
the U-matrix does not give significant information, as can be
seen from Figure 11(a), but from the E-matrix and trajectory
vectors a rough, but correct, indication of the presence of
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Figure 10: (a) U-matrix of the map trained with the classic SOM. (b) E-matrix of the map trained with a second-order Butterworth LF. (c)
Calibration of the map in (b).

(a) (b)

Figure 11: (a) U-matrix, and (b) E-matrix of a map trained with a short training duration.
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two zones of attraction is easily obtained, as shown in Fig-
ure 11(b). Then, from this “rough” information it is possible
to change some map parameters (number of neurons, filter
order, etc.) and immediately optimize the learning process.

5. Computational Aspects

Considering the numerical complexity of the proposed
model, it is important to note that the more demanding
operations are the comparisons needed to find the winner
unit. In the proposed model, the search of the winner is
accomplished as in classical SOM, so that if no shortcut win-
ner search is used, the numerical complexity is o(D2) where
D is the number of map units. The proposed model increases
the number of updating operations per unit: when the classic
SOM needs 1 scalar-vector multiplications at each update
step, the proposed method needs 4N + 1 scalar-vector mul-
tiplications, so that the increase of the computational load
is linear with the filter order N . With regard to the memory
requirements, the proposed model needs 2N times the mem-
ory needed by the classic SOM. The increased requirements
of computational resources are acceptable when the order of
the filter is kept below N = 10, whereas the benefits of the
proposed model are noticeable even for N = 2 or N = 3.

6. Conclusions

The presented work shows the feasibility of implementing
the SOM learning with a higher-order difference equation
that takes into account the data of the previous steps of
the update process. The incremental update rule proposed is
based on a discrete difference implementation of a suitably
designed low-pass digital filter. The proposed model is a
framework that allows the flexibility to design different learn-
ing strategies for the incremental training of various algo-
rithms related to vector quantization, including the topology
preserving methods such as SOMs. It is shown that this
approach allows a simple and flexible control of the SOM for-
mation. This gives better performances indexes with respect
to a classical SOM at a cost of a slightly higher computational
cost. Moreover, the memory of previous data used in the filter
implementation can be used at the end of the training for
visualizing the training trajectories. This novel visualization
tools are very useful to understand the dynamic of the map
formation and can be used for visual cluster analysis.
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