Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 978694, 18 pages
doi:10.1155/2010/978694

Research Article

Energy-Efficient Query Management Scheme for
a Wireless Sensor Database System

Guofang Nan'? and Mingiang Li?

I Institute of Systems Engineering, Tianjin University, Tianjin 300072, China
2 Department of Electronics, Polytechnic University of Turin, Turin 10129, Italy
3 Department of Information Management and Management Science, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Guofang Nan, guofangnan@gmail.com

Received 5 November 2009; Revised 6 April 2010; Accepted 3 June 2010

Academic Editor: Xinbing Wang

Copyright © 2010 G. Nan and M. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Minimizing the communication overhead to reduce the energy consumption is an essential consideration in sensor network
applications, and existing research has mostly concentrated on data aggregation and in-network processing. However, effective
query management to optimize the query aggregation plan at the gateway side is also a significant approach to energy saving
in practice. In this paper, we present a multiquery management framework to support historical and continuous queries, where
the key idea is to reduce common tasks in a collection of queries through merging and aggregation, according to query region,
attribute, time duration, and frequency, by executing the common subqueries only once. In this framework, we propose a
query management scheme to support query partitioning, region aggregation and approximate processing, time partitioning and
aggregation rules, multirate queries, and historical database. In order to validate the performance of our algorithm, a heuristic
routing protocol is also described. The performance simulation results show that the overall energy consumption for forwarding
and answering a collection of queries can be significantly reduced by applying our query management scheme. The advantages

and disadvantages of the proposed scheme are discussed, together with open research issues.

1. Introduction

With the development of low-power hardware manufactur-
ing and integration, it is possible to design tiny sensor devices
combining the abilities of sensing, computation, storage, and
communication [1]. These nodes collect sensor data and
communicate with each other, forming a network to monitor
objects, animals, people, temperature, humidity, and so on
in a given area [2]. The appearance of wireless sensor
networks has significantly changed various kinds of remote
sensing applications such as environmental and ecological
monitoring of natural habitats, smart homes, and military
areas in recent years [3].

Due to the facts that sensor nodes are physically small
and must use extremely limited power or energy, the network
lifetime is still a vital problem. Many of the WSN (wireless
sensor network) techniques designed to extend the network
lifetime are concentrated on modified routing protocols
[4-6], in-network processing [7, 8], node sleep scheduling

[9, 10], and aggregation strategies [11-13]. Recent studies
have shown that radio communication is significantly more
expensive than computation or sensing in most existing
sensor node platforms, hence the main consideration is
to minimize the communication overhead of forwarding
queries and transmitting queried data between gateway and
source nodes [14]. Thus, information aggregation is effective
to save energy and extend the network lifetime. According to
the location where aggregation occurs, aggregation strategies
can be divided into two main types: data aggregation
and query aggregation. Data aggregation belongs to the
category of in-network filtering and processing techniques,
which combine the data coming from different sources
and eliminate data redundancy to minimize the number
of transmissions, thus saving energy [15]. Most of the
existing work in this area focuses on data aggregation.
Query aggregation occurs at a query manager node, which
is usually located at the gateway, and has been the subject
of much less research [16]. On the other hand, for many

2 EURASIP Journal on Wireless Communications and Networking

applications, especially those with high query rates, for
example, a large number of very similar queries are issued
to the network within a short period, due to a large number
of users, while the response data to each individual query is
comparatively simple [16]. If we assume that all the queries
are processed individually, this will lead to large amount
of energy consumption due to query dissemination and
data transmission within the network. Therefore, a proper
query aggregation and management scheme should be used
to reduce redundant queries in order to minimize wasted
bandwidth, power, and energy.

The problem of efficient query aggregation on the
gateway side for a sensor database system has been treated
previously in the literature [14, 16-19]. In order to provide
efficient data services for sensor network applications, an
overlay-based query aggregation approach including a query
manager and an effective query aggregation algorithm were
presented in [16]. The former defines the query aggregation
plan that is executed by the latter. In their query model, only
spatial information is aggregated to minimize the number of
queries that are actually sent out. A spatial- and attribute-
based query aggregation method (SAQA) was introduced
in [19], which extends the aggregation to include also
attributes. However, their models assume that most queries
are snap-shot (queries that ask for current value of the
sensors), which may not be the case in practice, because
users sometimes ask for sensor values during a period of
time (continuous query). Similar to their work, several other
models supporting continuous queries were discussed in
[14, 17, 18], which propose two significant ideas: exploiting
common subqueries in a group and using a proper routing
algorithms to minimize the total system cost.

However, there are still two main limitations of the works
mentioned above. One is that there is still some redundancy
in the aggregated queries, due to time duration: for instance,
two queries that ask for the same type of sensing data in the
same region at an overlapping duration can be aggregated
into one. The other is that the historical database is not
fully utilized. We assume that all the (recent) query records
are stored in a historical database located at the gateway
side, where the query manager can check for already present
information before injecting new queries into the network.
Thus, in this paper we propose a complex query optimization
framework to support historical and continuous queries, and
we describe the corresponding query processing scheme.

In contrast to previous work, our contributions can
be summarized as follows. We propose a multiquery opti-
mization framework suitable for historical and continuous
queries. In contrast to previously proposed query optimiza-
tion schemes, the query partition module, the aggregation
module, and the result merging module are also included
in the framework to optimize the objective function. A
storage mechanism of historical query records is kept at the
gateway side, and we propose an algorithm for querying
it. Query partitioning, region aggregation and approximate
processing, time partitioning and aggregation rules, as well
multirate query processing algorithms are presented.

The rest of this paper is organized as follows. Section 2
presents some research works related to ours. Section 3

introduces the multiquery problem. In Section 4, we propose
our energy efficient framework including the query partition
module, query aggregation module, query result merging
module, and historical database module. Section 5 presents
the corresponding algorithms to support our query frame-
work. In Section 6, we present simulation and experiment
results to demonstrate the efficiency of the work and
compare it with other query processing techniques. Finally,
the advantages and disadvantages of the proposed scheme are
discussed, together with open research issues in Section 7.

2. Related Work

Generally, when the gateway node receives queries from
applications by end-users to ask for sensor data they are
interested in, it will directly forward them to the sensor
network according to given query dissemination schemes.
Within the network, the nodes must respond to these
queries in an energy-efficient manner using a variety of in-
network processing techniques and cross-layer optimizations
to report answers to the end-users at the appropriate rates
[20]. A wireless sensor network can be regarded as a
distributed database, due to the fact that sensing information
is often reported from a number of different sources and
is often held in a number of databases that may be
distributed among computing and communication facilities
at different locations [21]. Thus, the previous work related
to this paper consists of two main aspects, namely, complex
query optimization in traditional distributed databases and
multiquery aggregation in wireless sensor databases.

2.1. Complex Query Optimization in Traditional Distributed
Databases. The problems of complex query optimization
[22, 23] and multiquery aggregation have been studied in
the traditional database literature for more than 40 years.
The core idea is to exploit the common tasks among groups
of queries and perform them only once to reduce the
execution cost [24, 25]. Most studies emphasized efficiently
generating alternative plans that maximize shared operations
and minimize system cost [26]. Several heuristic algorithms
[24, 27] have been studied to identify common tasks and to
select a plan for each query. In order to solve the multiquery
optimization problem, the partitioning of complex queries
was discussed in [28], which leads to a better interpretation
of complex aggregate queries and a better execution plan.
The author also presented two algorithms to decompose a
complex aggregate query into its group query components,
and the experiments show the validity of complex query
partitioning. The concept of sketch sharing for approximate
multiquery stream processing was presented in [29] to
optimize multiqueries. Given a collection of queries to be
processed over incoming streams, the same sketches over
their input streams are optimized by performing space
allocation and coalescing rules. The final results clearly
demonstrate that sketch sharing is efficient to solve the
multiquery problem, especially with respect to the quality
of query answering. Even though these studies cannot be
directly applied to sensor networks due to the very different

EURASIP Journal on Wireless Communications and Networking 3

storage, communication, and energy constraints, the core
idea about query partitioning and query aggregation is
significant to our work.

2.2. Multiquery Aggregation in Sensor Databases. In order to
provide efficient data services for sensor network applica-
tions, an overlay-based query aggregation approach includ-
ing a query manager and an effective query aggregation
algorithm was presented in [16]. The query manager, located
at the base station, is mainly devoted to defining the
global query aggregation plan, and the query aggregation
algorithm is designed to aggregate and optimize queries
issued by end-users. The corresponding protocols for query
dissemination and data transmission are also included.
Contrary to traditional query processing, in their framework,
queries from applications cannot be directly forwarded to the
network, but are collected and evaluated at the gateway, to be
aggregated if possible according to zone merging rules. Only
the merged queries are delivered to the access node in the
network by an appropriate selection scheme using a query
delivery overlay construction protocol. Finally the queried
data would then be passed back from the access node to
the gateway. However, their aggregation protocol is mainly
based on region operation. As mentioned above, spatial- and
attribute-based query aggregation (SAQA) was introduced
in [19], assuming that most queries are snap-shot queries.
Similar to above work, a kind of multiquery optimization
technique was also presented in [17], which supports multi-
ple users submitting both continuous and snapshot queries.
The query optimizer groups queries from applications with
the same aggregate operator and optimizes each group
separately. All queries gathered during the previous epoch
are sent to the network together for evaluation in the query
preparation phase, and query answers are forwarded back
to the gateway in the result propagation phase. The query
preparation protocol and result propagation protocol are
also described. The effect of multiquery optimization in
sensor networks was discussed in [30] to study the benefit
of exploiting common subexpressions among these queries,
with significant performance improvements. The author
also presented a two-tier query framework for optimizing
multiple queries to improve the service quality of the sensor
networks [18].

A related aspect in sensor networks is query rate. Support
for multiple rates plays a significant role for the performance
of sensor networks. If source nodes disseminate the data
streams to users at the frequency that they request, the
result is very costly in terms of energy. A more efficient
framework to process multirate queries was proposed in [31],
where, the construction of a path-sharing routing tree was
also discussed. Another related aspect is the query/storage
techniques for sensor networks in real applications the
author in [32] describes an effective middleware that was
specifically designed for proactive urban monitoring and
exploits node mobility to opportunistically diffuse sensed
data summaries among neighboring vehicles and to create
a low-cost index to query monitoring data. To make their
works more persuasive, the related protocols were validated

and their effectiveness in terms of indexing completeness,
harvesting time, and overhead are demonstrated. To avoid
the content redundancy and storage imbalance in distributed
storage system, a cooperative storage solution for mobile
surveillance in vehicular sensor networks [33] called VStore
is presented in [34] to maximize the average lifetime of
sensory data in sensor networks.

We conclude this section by observing that there are
two key ideas among these works: exploiting the common
tasks among groups of queries and using proper routing
algorithms to minimize the total system cost. As noted
above, most of these solutions are unaware of query time
duration and historical database. The former is useful to
reduce query redundancy, while the latter contributes to
energy saving. Therefore, this paper presents a generic query
management scheme including query partitioning, common
task optimization exploiting a historical database, and query
result merging to further improve the performance.

3. Problem Definition

We consider a multihop sensor network with one gateway
node at the centre and L sensors distributed randomly
in a rectangular field. The gateway node receives queries
from users and processes them by using its query manager
component, then sends queries into the appropriate regions
of the sensor network. Eventually sensors in the region may
respond to one of the queries. In this paper, we assume that
all the sensors have the same fixed transmission range and
the same minimum connectivity transmission range [35].
We consider a sensor network similar to the network model
used in [1, 35], with the following assumptions

(i) There are L energy constrained sensor nodes that are
distributed randomly in a rectangle-shaped region.
The batteries cannot be changed after the sensors are
deployed.

(ii) Each node, including the gateway node, can obtain its
own location information.

(iii) There is no coverage hole in the sensor network and
all the sensors can communicate with the gateway
node through a routing protocol.

The goal of this study is to reduce the total number of
queries and the energy consumption. Similar to prior work
in [16, 17, 19], we use the following definitions.

Definition 1 (Query Region). Query region R indicates
the geographical area that the application is interested in.
Without loss of generality, we assume query regions to be
a union of rectangular shapes. A two-dimensional query
region element is thus represented by a bounding box,
for example, the minimum and maximum values of the
coordinates. For any query point, its coordinates (x, y)
should satisfy x € [x),x2] and y € [y, y2], where x; and
x, are the minimum and maximum values on the x-axis
of the bounding box, and y; and y, are the minimum and
maximum values on the y-axis of the bounding box.

4 EURASIP Journal on Wireless Communications and Networking

Definition 2 (Query Time Duration). Query time duration T'
is the duration of the query. For example, it is often needed
to continuously report the temperature and humidity value
of the monitoring area from #, to f;, s0 T' = {t; to t,}. It is
noted that if T is a time point, rather than a time duration, it
represents a snap-shot query.

For the query model in [16, 17, 19], the attribute
information A and frequency information F are two other
important elements to be considered. The attribute infor-
mation indicates the list of attributes that the application is
interested in, and the period information is the inverse of the
frequency at which the data should be reported. In this work
we also consider the query identifier, defined as follows.

Definition 3 (Query ID). Each query must have a query ID
denoted by ID, which is the information used by the gateway
node to analyze and identify which user the query is from.
After the query is injected into the sensor network from
a gateway node, the corresponding information the user is
interested in will be sent back by the routing protocol via
the gateway node to the user, and throughout the process
the query ID is its unique identifier. Furthermore, the query
ID is also used by query partitioning, aggregation, and result
merging.

Definition 4 (Query: Q). A query consists of five types of
information: query ID, query region, query time, attribute
information, and query period, so it can be denoted by a 5-
tuple.

Q= ({ID,R,T,A,F), (1)

where ID is query ID, see Definition 3, R is Query Region, see
Definition 1, T is Query Time, see Definition 2, A is Attribute
information, the list of attributes which the application is
interested in, and F is Query period, at which the attribute
information should be reported.

Example 1. User 1 wants to know the temperature and
humidity of regions R;, R,, and Ry from t; to t, every five
seconds.

So the query g; can be represented as follows:

Q1 = (IDy, {Ry, Ry, Ry}, {1 to t}, {Temp&Humidity}, 5s).
(2)

User 2 is interested in the wind speed of regions R, and
R; from t; to t4 every two seconds. So

Q= <ID2, {Ry, R3}, {t5 to t4},WindSpeed, 25>. (3)

For simplicity, the query ID is omitted in the rest of the
paper, because it is usually related to the header information
of a packet.

In order to produce better execution plans and improve
query performance, performing complex analysis at the
gateway side is essential and requires nontrivial partitioning
and aggregation operations over different attribute sets,
query time durations, and query regions.

Definition 5 (Attribute Partitioning). For each query Q =
(R, T, A,F), the attribute set A can be disjointly partitioned
into several subattribute sets, A = {A|,As,..., A} and A; N
A;N- -+ NAg = 0. Hence also the query Q can be partitioned
into several subqueries:

Q= (R T,AF)
= (Ra T)AI’F> + (Ra T’A23F> (4)
+- -+ (R, T, AL F).

Definition 6 (Query Region Partitioning). For each query
Q = (R, T,A,F), the query region set R can be disjointly
partitioned into several subregions, R = {Ry,Ry,...,R;} and

RinRyn---NR; = 0. Hence also the query Q can be
partitioned into several subqueries:
Q=(R,T,AF)
= (RlaT)A>F>+<R2)T>A)F> (5)

+- -+ (R, T,AF).

Definition 7 (Query Time Partitioning). For each query Q =
(R, T, A, F),the query time set T can be disjointly partitioned
into several subdurations, T = {11, T>,..., Ty} and T1NT> N
-+ +NT; = 0. Hence also the query Q can be partitioned into
several subqueries:

Q = (R) TaA)F> = (RI)TI)A)F> + <R2) T27A)F>

+ -+ (R, Ty A F). ©

Definition 8 (Query Partitioning). Given N queries:
Q1,Qa,...,Qn, the overall objective of query partitioning is
to divide them into disjoint subqueries, in order to find the
common parts between them. Each Q; can be partitioned
into a group of subqueries denoted by set {Q;I,Q}z,...,
Q}K], }. Hence given a query set {Q,Q,,...,Qn}, the output
partition is also a set.

{Qllp QI12) e)QiKl) Qél) QéZ) e)QéKza e 1Q}\71) Q}\]Z) e)QI’\TKN}

N
Z{Qi)QE::Q;VI} M:ZKJ
j=1
(7)

The overall objective of query aggregation is to reduce the
overall energy consumption in both query transmission and
data delivery by eliminating and merging queries whenever
possible. So query aggregation can be divided into two
steps: (1) finding the common subqueries; (2) Merging and
recombination of these subqueries according to query ID,
query region, query time, and query attributes.

Definition 9 (Query Aggregation). Given W partitioned
queries Qj,Q5,...,Qyy, through the aggregation opera-
tion set {Q,Q5,...,Qyy} can be merged into another set
{Q,Q5,...,Qp}(P < W), where each Q/'(1 < i < P)

EURASIP Journal on Wireless Communications and Networking 5

User queries Query manager Users
/ N 4 N
Query 1 ——>| Query collector | e User 1
Query 2 l User 2
| Query partitioning }—|_> I ag
<< Query evaluation =
|C0mm0n task evaluation|£Y/
| Query agi/regation | | Query result merging |L
Query n f User n
— —

Sensor networks

FIGURE 1: Query management framework.

represents the output of query aggregation. Motivated by
[16], we also define the + as the aggregation operator, that
is, Q' = Q1+ Q5+ -+ Q}y means that Q/'(1 <i < P) is
aggregated from the partitioned queries Q}, Q5,. .., Qyy.

4. Query Management Framework

In this section, we present our framework and a number
of components for multiquery optimization at the gateway
side. Our framework quantifies the performance impact of
processing multiple queries with our query management
scheme. To perform an effective decision making to produce
a better query plan is vital in an energy-efficient query
management system, and the core of such system is a query
management scheme and a historical database which stores
historical query records and consolidated data from the
sensor network, supporting complicated queries that return
interesting information [36]. The basic idea of the proposed
query optimization framework is to minimize the number
of queries injected into the sensor network by querying the
historical database and aggregating queries to improve the
query processing performance.

Our energy-efficient framework for multiquery opti-
mization in sensor network is built upon a number of
components, including query collector, query partitioning,
common task evaluation, query aggregation, query result
merging, and historical database, and the first five compo-
nents are integrated into a query manager. Query collector
collects queries from different users within a given time
duration. The complex queries are partitioned into several
subqueries by the query partitioning module. We evaluate
these subqueries and recognize the common tasks between
them in a centralized way through the process of common
task evaluation. The process of query aggregation eliminates
the duplicate common tasks of a collection of queries
through merging and aggregating them according to query
region, query attribute, query time duration, and query
frequency. Query result merging collects the answers from

both the sensor network and the historical database, merges
them according to the query ID, and sends them back to the
users.

The historical database contains records of user queries
and query results. These are often captured automatically
by the system and may be manually complemented or
annotated by the database manager after query answers are
sent back to the query manager. A query record, as described
in this paper, is one type of interaction history which
specifically records user queries. It typically contains search
queries, result sets, and relevant contextual information,
such as user profiles, system settings, and statistics. By
searching the historical database, full or partial query results
may be obtained without sending these queries into the
sensor network, thus saving energy and reducing network
traffic.

In order to eliminate the duplicated common tasks, when
the gateway node receives queries from end-users to ask for
sensor data they are interested in, the query manager collects
and processes them first to produce an optimal query plan for
a collection of queries. The processing of the initial queries is
as follows (See Figure 1).

Step 1. Query collector receives queries from the applications
within a given time duration.

Step 2. Check all the collected queries. If a complex query is
included, partition it into subqueries according to the query
partitioning scheme, as described more in detail below.

Step 3. For each partitioned query, search the historical
database for the queried data; (1) if the historical query
records fully meet one query requirements, the correspond-
ing query records are directly sent to the query result merging
module; (2) if the historical query records have no relation
with the query requirements, that is to say, these queries
cannot be answered by historical database, thus, the queries
have to be evaluated with other queries to find common

6 EURASIP Journal on Wireless Communications and Networking

subqueries between them; (3) if the historical query records
partially meet the query requirements, the query is reduced
to the part that cannot be answered by historical database
according to Definition 7.

Step 4. The queries not answered by historical database are
evaluated to exploit their common tasks.

Step 5. Aggregate these queries and eliminate the duplicated
parts among them, and then produce an optimal query plan.

Step 6. Route the queries to the appropriate regions to
achieve the query results.

Step 7. Query results from both the historical database and
the sensor network are merged according to query ID, and
forwarded to the end-users.

Step 8. In order to ensure the accuracy and reliability of the
data stored in the historical database, only the elementary
queries without aggregation, together with their data, are
stored into the historical database.

The query manager translates the application queries
to the format that sensor network understands. Generally,
the outputs of the query manager are complex queries
which may include several attributes, regions, frequencies,
or different time durations [16]. For each complex query,
the query manager calculates an access point of the queried
region which is defined as the geometrical centre of the
region in this paper. A heuristic routing protocol is also
adopted by multihop transmission from the gateway node
to the access point, by which the sensor node closest to the
access point called access node receives the complex query,
reroutes it to the other sensor nodes in the region. When
data is sent back from the sensor nodes, the reverse process is
used.

We can summarize the main features of the framework as
follows:

(1) The system provides an energy efficient query man-
agement framework for sensor networks, which
allows their components to effectively cooperate with
others to manage and optimize the complex queries
received from users.

(2) It uses a historical database, which makes full use
of query records and their results. It is especially
suitable for the applications with many queries and
comparatively simple query answers.

5. Query Management Scheme

The query management scheme is designed to support the
framework described in Section 4. It includes schemes for
partitioning the initial queries according to time and region
partitioning and aggregation rules, approximate processing,
multirate processing, historical database query, and routing
protocol.

5.1. Initial Query Partitioning. Query region, query time,
and query attributes are three important components to be
considered when analyzing how different queries overlap in
terms of these three components. In the query framework
that we discussed in this paper, the historical database is a
vital part for the users to directly access the sensing data that
they are interested in at the gateway side, without the need for
the queries to be transmitted to the sensor networks. But the
historical database only includes the data reported by a subset
of past queries, since not all the sensing data are transmitted
from the sensor network to the historical database in time or
kept forever. Sometimes the historical database cannot fully
answer one query, but some subqueries may be answered
in terms of query regions, query time, and query attributes.
In order to fully utilize the data in the historical database,
we partition a collection of queries according to specific
granularity. Another important aspect of query partitioning
is that it is useful for the query manager to evaluate the
common subqueries.

For example, one query asks for the temperature and
humidity value of region R;, R; and Ry from # to £, and from
t3 to t4 every five seconds, so it can be represented as follows:

Q = ({Ri, Ry, Ry}, {ty to ty,t3 to 14}, {T&H}, 55). (8)

Here, a step-by-step partitioning strategy is adapted (See
Table 1).

5.2. Region Aggregation and Approximate Processing. Query
region is the most significant component in our framework,
and it is the main criterion to select sensor nodes for query
execution and data forwarding. Therefore, all the queries
sent to the sensor networks should follow the regional
priority rule, meaning that region overlap is the first and
foremost criterion to decide about query merging. Other
types of operations, including query time merging, attribute
aggregation, and multirate query processing, are all based
on the fact that these operations occur approximately in the
same region. Otherwise, there is no advantage in aggregating
the queries. The regional priority rule is also adopted even if
we search the historical database to check the previous query
record for one query. For instance, consider two queries
Q: = (Ry, {0 to 10}, H,2s) and Q, = (R, {0 to 10}, H, 2s).
If their query regions are completely different, even though
the query time, attribute, and query frequency of Q; are in
full accord with that of Q, it is useless to merge the two
queries.

Adopting the main idea in [16] about query region
processing, we divide the rules of processing query region
into two basic types: approximate region aggregation and
overlapped region aggregation.

Consider two queries Q; = (Ry, {4 to 20}, H,2s) and
Q; = (R, {0to 10}, H,2s), if Ry and R, satisfy Ry C Ry,
sending out both queries to the sensor network would be
redundant as the result of Q; can be inferred from that of Q,.
So the rule of approximate region processing can be defined
as follows (this case is also suitable for searching historical
database for a single query). If R; in one query Q; and R,

EURASIP Journal on Wireless Communications and Networking 7

TABLE 1: Process of query partitioning.

Initial query

Region partitioning

Time partitioning Attribute partitioning

(Ry, {t; to t,t3 to t4}, {T&H}, 55)

({R1, Ry, Ry}, {th to 1y, 13 to t4}, {T&H Y, 55)

<R4> {tl to t2>t3 to t4}7 {T&H}>55)

(Ry, {t to t, t3t0 14}, {T&H5s},)

(Ry, {1 to 1}, T, 5s)
(Ry, {t to ©},H,5s)
(Ry, {t3 to t4}, T, 5s)
(Ry, {t5 to t4}, H, 5s)
(Ry, {t1 to t4}, T, 5s)
(Ry, {t; to i}, H, 5s)
(Ry, {t3 to ts}, T, 5s)
(Ry, {t5 to t4}, H, 5s)
(Ry, {t1 to 1}, T, 5s)
(Ry, {t to 1}, H, 5s)
(Ry, {t3 to ts}, T, 5s)
(Ry, {t3 to t4}, H, 5s)

(Rl, {tl to tz},{T&H},5S)

(Ry, {t3 to t4}, {T&H}, 55)

(RZ) {tl to tl}) {T&H}755>

(RZ) {t3 to t4}) {T&H})55>

(R4) {tl to tZ}) {T&H}>55>

(R4; {t3 to t4}) {T&H}>5S>

in the historical query record satisfy R, C R, the result of
Qi can be inferred from the historical query record.

If any two queries Q; = (R;,T;,A,F;) and Q; =
(R;j, T}, Aj, F;), are such that R; and R; satisfy R; C Rj, then
they can be merged to

Qisj = <Rj,{Ti>Tj})Ai)Fi>- 9)

Like the rule of approximate region processing, the rule
of region overlapped aggregation can be defined as follows.

If any two queries Q; = (R;,Ti,Ai,F;) and Q; =
(Rj, T}, A, F;), are such that R; and R; satisfy R; N R; = R;;
and SrinR;/SR,UR; = B, then the two queries can be merged to

Qirj = <Rij) {Tinj})AiaFi>- (10)

Here, B is a constant, 0 < f < 1, Sgnr;/Srur;is the
region overlapping degree, namely, the ratio between the
intersection and the union area of R; and R;.

5.3. Multirate Query Processing. In a multirate query system,
the sensor network serves multiple queries to send data at
different frequencies to users. The data sources disseminate
the data streams to the users at the frequencies they request.
In order to reduce the amount of transmitted data, we can
modify the data streams according to a multirate processing
rule which is illustrated as follows.

For example, user 1 requests the data from all the nodes
in region R with period F,. At the same time, user 2
requests the data from all the nodes in the same region with
period F,. Without loss of generality, we find an appropriate
time unit such that all frequencies can be represented as
integers. Without aggregation, the gateway node initiates
independently each data query by sending out a query
request to the data sources; the query request is routed to
the appropriate source nodes within the queried region, and
the source nodes will start sending data back to the gateway
node. However, this method is prone to produce redundant
data transmission.

Query times of user 1 Query times of user 2

Redundant query times

FIGURE 2: Example of multirate query.

Let F;(1 < i < n) be the requested periods of all the user
queries to the same region R. Then the aggregate period F of
these n queries can be described by the next equation.

F = GCD(Fy, F,. .., F,), (11)

where the GCD (Greatest Common Divisor) function
returns the greatest common divisor of one or more integers;
for instance, if a sensor network is used for collecting
the temperature of the environment, user 1 might need
the temperature every 2 minutes, and user 2 might need
the temperature every 3 minutes. Assuming that these two
queries are issued at time 0, this will result in a multirate
query in the sensor network. Given that F; = 2, and F, = 3,
F = GCD(F,,F,) = 1, a simplistic method would request
data at times 0,1,2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, and so on,
while it can be seen clearly that the data sent at time 1, 5, 7,11
are not needed (See Figure 2).

To avoid the redundant queries resulting by multirate
processing, the query time interval is set by each user at one
of several discrete values, according to the next equation.

F=2¢k=1,2,...,i...). (12)

For instance, if a sensor network is used for collecting
the temperature of the environment, user 1 might need the
newest temperature every 2 minutes, and user 2 might need
the newest temperature every 4 minutes. Assuming that these
two queries are issued at time 0, this will result in multirate
queries in the network, for with periods, F; = 2, and F, = 4,

8 EURASIP Journal on Wireless Communications and Networking

Query times of user 1 Query times of user 2

6|81012141618202224

FIGURrE 3: Example for processing redundant data.

F = GCD(F,, F,) = 2, demanding data at times 0, 2, 4, 6, 7,
8,10,12,... (See Figure 3). Thus no redundant query time is
produced.

The choice of query time interval is based on two aspects:
(1) each user selects a discrete time interval according to
his requirement, based on the rate of change of the sensed
quantity and the user’s required precision; (2) for any
two time intervals, one is exactly divided by another, so
no redundant query time is yielded, which therefore saves
energy consumption in data transmission.

5.4. Time Partitioning and Aggregation Rules. Consider
the case where the gateway receives the query Q =
(R, {0 to 10}, H,2s), that is, the user wants to know the
humidity value of region R from t; = 0 to t, = 10
every two seconds, while there is information about the
humidity value of region R from ¢; = 0 to t;, = 4 only
every two seconds in the historical database. Hence we
partition the query in time, as Q; = (R, {0 to 4}, H,2s) and
Q2 = (R, {4 to 10}, H, 2s), so that without sending Q, to the
sensor networks, the queried information is available in the
local historical database.

As we discussed in the query framework, the partitioned
queries are not directly evaluated and aggregated, but used
for direct search in the historical database to check whether
there are historical query records that partially or fully satisfy
each partitioned query.

Consider another case where the gateway nodes receives
two queries Q; = (R,{0to10},H,2s) and Q, =
(R, {6 to 20}, H, 2s) from two different users. There exists a
common time interval {6 to 10} between the two queries.
Therefore, the common query time interval can be found by
partitioning these two queries as follows:

Q; = (R, {0 to 10}, H, 2s)

= (R, {0 to 6},H,2s) + (R, {6 to 10}, H, 2s),
Q; = (R, {6 to 20}, H, 2s)

= (R, {6 to 10}, H,2s) + (R, {10 to 20}, H, 2s),

Qi + Q> = (R, {0 to 20}, H, 2s).
(13)

Query time aggregation only occurs in the sub-query evalu-
ation process, if any two different queries have a common
time interval and have the same query region and query
attributes. In our query management scheme, the rules of
time partitioning are designed to follow exactly these two
cases.

5.5. Search of Historical Database. One of the most impor-
tant components of the framework illustrated in Figure 1
is the historical database. Storage techniques for query
processing in sensor networks can be divided into two
categories, one storage method is to send raw data of sensors
to the gateway through a network routing tree rooted at
the gateway node. Another possible storage approach is
local storage, for example, sensors collect and store data
local. When queries are injected from gateway node, sensors
send back their reply [37]. However, two traditional storage
techniques mentioned above cannot be directly applied to
the scenario of energy effective multiple similar queries. The
first method is more costly because energy is needed for
sending data to the gateway where it may never be used,
while the second method does not insert query records
into historical database. Therefore, in this paper, in order
to ensure the accuracy and reliability of the data stored in
the historical database, only the elementary queries without
aggregation, together with their answering data, are stored
into the historical database, when a partitioned query arrives,
the historical database is checked to see if the query had been
executed previously, by searching the historical database, full
or partial query results may be obtained without sending
these queries into the sensor network, which is helpful to
energy saving and data accuracy.

The motivation of storing historical data is to support
historical data queries for various applications and most
of existing approaches to historical data storage of sensor
networks are distributed [38]. The proposed storage mech-
anisms are mainly focused on local storage of historical data.
Therefore, in this paper, we propose a centralized storage
method that stores historical query and their answers at the
gateway side, which makes queries processing more efficient
in terms of energy consumption by using historical database.
Since a query consists of five types of information as defined
in Section 3, we also use it as the basic data format for
the historical database. Thus, the query manager translates
the user requirements and their answers into the format
according to query definition. For instance, one query asks
for the temperature of region R, from ¢, to t, every 2 seconds,
Q1 = (Ry, {t to 12}, T,2s), and R; can be represented by
two zones [0,20] and [0,10], which means that for any point
(x,y) € Rysatisfles0 < x <20and 0 < y < 10,4 = 2,1, =
10. Assumed that three sensors (node 1, node 4, and node
10) in this region, for each sensor, the location information
and the temperature value at time 2, 4, 6, 8, 10 should be sent
back to the gateway node. After the gateway node receive the
answers for Qy, it creates a storage index for Q; based on the
received data as Figure 4 shows. Clearly, query Q; and their
answers are stored in the historical database.

We compare each partitioned query with each recorded
query, only if the query region, query attribute, query time
duration, and query frequency satisfy R; C Rj, Vi = V;, F; >
F; and T; N T; # ¢, that is, if full or partial results can be
obtained from historical database. The algorithm is as follows
in Algorithm 1.

As for the partial query result, consider the case where
the gateway receives the query Q = (R;, {0 to 10}, H,2s),
that is, the user wants to know the humidity value of region

EURASIP Journal on Wireless Communications and Networking

Input: a simple query and a historical query record set with n queries.
Output: initial simple query or partial query results and sub-query or query results Begin

/I record Qj = (R;, V.
lfR, C Rj and V= Vj and F; > Fj

Qi =(R,V,, T, = T;n T}, F)

else
Qi = (R, Vi, T}, Fy)
end if
else
Qi = (R, Vi, T}, Fy)
end if

/I compare the initial query with historical query record
/] (the initial query Q; = (R;, V;, T}, F;) and any historical query
i» T}, F;) use the same query model.)

if T; C T}, Q; output full results, else output partial results

ArcoriTHM 1: Query historical database.

Temperature value
region Ry [0,20][0, 10]
T = {2to 10}
F=2s

Node 1 Node 4 Node 10
t=2 25.1 25.2 25.3
t=4 25.1 25.1 25.1
t=6 25.2 25.2 25.3
t=38 25.1 25.1 25.2
t=10 25.2 25.1 25.3

FIGURE 4: An example storage structure for historical queries.

R from t; = 0 to t, = 10 every two seconds, while there
is information about the humidity value of region R; from
f{ = 0tot, = 4 only every two seconds in the historical
database. Hence we partition the query in time, as Q; =
(R,{0 to 4},H,2s) and Q, = (R, {4 to 10}, H,2s), if R; C
Rjor R; = Rj, so that without sending Q; to the sensor
networks, the queried information is available in the local
historical database, thus, partial query result of Q can be
obtained.

5.6. Query Aggregation Scheme. The main idea of the pro-
posed query aggregation scheme is to exploit and eliminate
the duplicated common tasks of a collection of queries for
minimizing the cost of processing multiple queries. However,
a number of system considerations have to be taken into
account to apply it to a real sensor network. In this section,
we develop a multiquery optimization scheme for these

queries according to query region, query attribute, query
time interval, and query period.

The input of the query aggregation scheme is a set of
partitioned queries Q from users, each partitioned query
Qi € Q is denoted by (R;, V;, T;, F;), where R; represents
the query region, V; represents the query attribute, T; is the
query time interval, and F; is the query period. It is noted
that these partitioned queries has been compared with each
recorded query stored in the historical database, only those
queries cannot be answered by the historical query records
have to be evaluated with other queries to find common
subqueries between them by our proposed query aggregation
scheme. The output of the query aggregation scheme is
another set of queries Q" where each query Q; € Q'(1 <
i < M)(M < N) is denoted by (R, V';, T/, F), where
R/ represents the combined region, V;’ represents the query
attribute set, T’ is the new query time interval, and F;" is
the query period determined from several initial queries.
According to Definition 9 and the region aggregation and
approximate processing rules, Q is approximately equal to
Q' in that the rules of approximate region aggregation and
overlapped region aggregation are applied to our query
aggregation scheme.

The operator QuerAggregation() is used to perform the
aggregation function, which is the main idea of the proposed
query aggregation scheme to exploit and reduce the common
tasks among groups of queries Q, then recombine them into
another set of queries Q’. For any two partitioned queries
Qi and Q; in Q, QuerAggregation() offers the algorithm to
merge Q; and Q; into one to perform optimization if these
two queries satisfy all of the next 4 conditions. First, if R;
of Q; and R; of Q; can be overlapped, that is, R; " R; # ¢
and R; N R; = R;j, meanwhile, the region overlapping degree
of R; and R; satisfy SrinR;/SRUR; = B, which means that
only those queries asking for information of the approximate
same region may possibly be merged into one and the
aggregated region is R;j. Second, if two partitioned queries
ask for the same or different attribute information of the
approximate same region, they can be possibly merged into
one. If V; of Q; and V; of Q; are the same attribute, that

10 EURASIP Journal on Wireless Communications and Networking

query time interval and F; is the query period.

Begin:
fori=1toN -1
forj=i+1toN

Ri) Vi> Ti> Fi
end for
end for

queries

Input: Q; = (R;, V,, T;, F;) and Q; =
Output: Q" = (R/, V/', T/, F/') and Q;" =
Begin:
if R; N Rj # (P and SRiij/SR,-uRj = ﬂ
ifvi=V;
T; =TV T,
Vi=Vi=V;
F]f = GCD(F;, Fj) // Multirate processing
R; =R, NR;
Qt’ = ¢; Qj,
else /| 'V; 7ﬁ V;
if Ty = T;

=$: Q) =
else /| T; # T
Qi, = (Ri,> Vvi’)Ti,>Fi’)
Q' =«(R;,\ V', T/, F}")

end if
end if
else//RiNR; = ¢
Q' =(R/,V/,T/,F")
Q' =(R/,V{, T{",F}")
end if

Input: A set of partitioned queries Q from users, each partitioned query Q; € Q is denoted by
(R;, Vi, Ty, F;), where R; represents the query region, V; represents the query attribute, T; is the

Output: A set of queries Q" where each query Q;" € Q'(1 < i < M)(M < N) is denoted by
(R, V';, T/, F'), where R’ represents the combined region, V;’ represents the query attribute set,
T, is the new query time interval and F;" is the query period determined from several initial queries.

(Q',Q}) = QueryAggregation(Q;, Q;) // for any two queries, aggregate them according to

/1 description of query aggregation scheme (Q;’, Q) = QueryAggregation(Q;, Q;) for any two initial

Algorithm (Q//, Q') = QueryAggregation(Q;, Q;)
(RJ bl VJ bl TJ bl F)

=(R;,V;', T/, F;") Il Merging two queries into one

(R, V', T, F;') Il Merging two queries into one

Tj’>Fj,>

ALGORITHM 2: Query region, attribute, and time- and frequency-based query aggregation scheme.

is, V; = Vj, the attribute in merged query is Vi, otherwise,
the attribute in merged query is V; U Vj, therefore, two
or more answers to different attributes information can be
obtained through forwarding only one combined query into
the sensor network. Third, if two partitioned queries ask
for the same attribute information at the same or different
time interval of the approximate same region, and if T; of
Q; and T; of Q; are the same time interval, that is, T; = T},
the time interval in merged query is T;, otherwise, the time
interval in merged query is T; U T}. Forth, if two partitioned
queries ask for the same attribute information at the same
or different time interval of the approximate same region
with different frequencies, and if F; of Q; and F; of Q; satisfy
the condition we set in Section 5.3, the frequency in merged
query is GCD(F;, F;).

The proposed query aggregation scheme is given in
Algorithm 2.

5.7. Routing Protocol. The process of query dissemination
and data transmission is greatly influenced by energy
considerations. Multihop routing will often consume less
energy than direct communication [39]. Here, we adopted
the main idea of GPSR (greedy perimeter stateless routing)
in this paper. GPSR [40] is a geographic routing protocol
that eliminates the need to maintain state information while
performing routing, and assumes that every sensor node in
the field knows the geographical location of its neighbors. In
this paper, we also assume that sensors including the gateway
node know the geographical location of all sensor nodes
within their power range [41]. Therefore, path selection

EURASIP Journal on Wireless Communications and Networking 11
________ [A ________T________T________I________T_____I
. Octets: 1 2 | 1 1 4t020 10,5,6, 10, 141 1 | | i
__________________________________ e e ____'f______l
Frame | Sequence | Addressing I?elé(llllrliryy Command | Command FCS i MAC !
1
_control | momber | felds | eader | P | PAod | 7 e
! MHR ! MAC payload ! MER !
it e L e T Fo——--- 4————————————_——_—_—_—_—_—— e !
I PHY dependent 1 1 | 6+ (4to 34) +n |
______ I
Start of Frame/ ! | |
i | frame | length | | layer |
qa delimiter | reserved 1 | I
| SHR 1 PHR | PHY payload i

FiGure 5: MAC command frame and the PHY packet.

p is the destination;
Output: next hop node n;
Begin

for=1tom

end for

Input: n, is the current routing node;

1y, My, ..., Ny are m neighboring nodes of ..

Computes distance from nodes in its RT to access point, d; = d(P, n;)

n; is the next hop node which satisfies minimum {d;}

ArLcoriTHM 3: Next hop selection scheme within neighbours.

in this work is the reverse process of GPSR. Each node
in sensor network maintains a RoutingTable (RT) which
contains information about the nodes from which the node
has heard directly, that is to say, the RT of one node maintains
the information about all its neighboring nodes. When a
packet arrives, for each hop between the gateway node and
the access point, a node chooses its neighbor within radio
range that is closest (in terms of geometric distance) to the
access point as the next hop destination and forwards the
message to it. When data is sent back from the sensor nodes,
the reverse process applies.

After all the paths from the gateway node to each sensor
node in the field are confirmed, the whole routing of the
sensor network is build. In this approach, if a sensor node
is selected to be the next potential routing node, but it has
been in the routing path, it should go back to the last step
and select another neighboring node inferior to routing node
selected in last step. The purposes that we use GPSR-based
routing scheme is to compare the total energy consumption
with other query processing techniques, there are many
routing protocols to handle both query packets and data
packets, and they all performs better in energy consumption
under our query management scheme in our previous study,
we adopt GPSR-based routing scheme in this paper only
because it is easy implemented.

6. Performance Evaluation

We first describe the assumed system settings and the energy
model used to evaluate the proposed query management
scheme, and then discuss the simulation results.

6.1. System Setting and Energy Model. In this section, we
evaluate the performance of the proposed scheme via
simulations. Unless otherwise specified, we assume that
200 sensor nodes are randomly scattered in a field with
dimensions 200 X 200 where the gateway node is located
at position x = 100, and y = 100. We assume that the ratio
radius for the sensor nodes is 20 m. Every result shown is an
average of 25 experiments, each using a different randomly
generated position for each node. In addition, all the queries
are randomly generated by a query generator.

To validate the performance of the proposed scheme, we
consider a static and homogeneous sensor network. In our
simulations, we calculate the query packet and data packet
size according to the IEEE 802.15.4 standard, as shown in
Figure 5. The size of the preamble sequence is 4 bytes, the
size of the start of frame delimiter is 1 byte, the size of the
addressing field is 4 bytes and the size of the auxiliary security
header is 0 bytes. As a data delivery model, we simulate a
query-driven sensor network in which sensor nodes report
information only if a query occurs.

In our simulation, we utilize a simple model [1, 16, 42,
43] for radio hardware energy dissipation, where the energy
dissipation is mainly from transmitting and receiving data.
The energy consumption of transmitting each k-bit packet is

calculated as
Etx(k> d) = Eelec - k +Eamp k- d” (14)

The energy consumption of receiving a k-bit packet is
calculated as

Erx(k) = Eelec) k) (15)

12 EURASIP Journal on Wireless Communications and Networking

TaBLE 2: Simulation parameter settings.

Parameter Meaning

N, Number of queries collected from users

Ny Number of query records in the historical database

Nim Number of queries which can be fully answered by the historical database
Nphm Number of queries which can be partially answered by the historical database
N, Number of aggregated queries

E4 Energy consumed by the DF method for N, queries collected from users

Exne Energy consumed by the HDQF method for N, queries collected from users
Enta Energy consumed by the HDQA method for N, queries collected from users

SRinRy/SR;UR,
axb

Region overlapping degree: ratio of the overlapping area to the union area

Region size with length a and width b

B A constant used to select two queries to be aggregated when Sk, r,/Sr,ur, > 8

where d is the message transmission distance between the
sender and receiver, k is the packet size, and « is a value
between 2 and 4; and in this paper, @ = 2, Eeec = 50 nJ/bit,
Eamp = 100 pJ/(bit m?).

The energy consumed for processing queries and sensing
data is usually a very small portion of the total (in a
common scenario, the energy consumed to process 100
million instructions is comparable to the energy required to
transfer 10 bits of data). Therefore, we do not take it into
consideration.

It is also important to note that the radio channel is
symmetric, which means that the cost of transmitting a
message from A to B is the same as the cost of transmitting a
message from B to A [44].

In order to analyze the performance of our query man-
agement scheme, we compare the following query processing
approaches [19] with our historical database supported
query aggregation scheme (HDQA)

Direct forwarding (DF): in this approach, the gateway
node just simply forwards queries to the sensor network
without any aggregation.

Historical ~database supported query forwarding
(HDQF): In this approach, the gateway node acts as a
centralized database system that for each query, searches the
historical database first, then forwards it to the network.

In this paper, all the initial queries are produced by
a Random Query Generator (RQG) that conforms to
Definition 4.

6.2. Simulation Results. We conduct four sets of experiments
with the objective of evaluating the impact of the number of
queries collected from users, the number of query records in
historical database, and the ratio of the overlapping area to
the union area and the region size. Table 2 summarizes the
simulation parameter settings for all the experiments.

Before evaluating the impact of these parameters on the
proposed query management scheme, we obtain Nym, Nphm,
Na, Eds, Ens, and Eng, through 25 experiments using our
algorithm, with the following parameters setting:

Ny = 50; Nj = 500; B = 0.3;a x b =20 x 10. (16)

The values of Ens and Eyr obtained by the other two
methods and the improvement of Eng VS Ens and En,, VS Egf
are also listed in Table 3. We ran each algorithm 25 times.

Table 3 summarizes the overall performance of the
proposed algorithm. Notice that the energy consumption
of HDQA is smaller than that of both DF and HDQFE
HDQA reduces the energy consumption between 15% and
37% (26% on average) with respect to HDQF, and between
31% and 52% (42% on average) with respect to DE. The
energy reduction comes from both historical query and
query aggregation; Table 3 also shows an average of 6.64
queries which can be fully answered by historical database,
an average of 7.84 queries which can be partially answered by
historical database and an average of 7.44 aggregated queries.
However, the variance of the values of Nym, Nphm, and Ny
obtained from our algorithm is high, because the initial
queries and the historical query records are all randomly
generated.

6.2.1. Impact of Query Number. By varying the number of
queries collected from users, we can validate the impact
of the query number on the performance of the proposed
query system, and further control query redundancy and
data reduction after aggregation. For example, a small
number of queries have the less probability to be aggregated,
while an extremely large number of queries has more
redundancy among them, therefore, more aggregation will
occur. In this simulation, we fix N, = 500, = 0.3,
and a x b = 20 x 10. The query number N, varies from
40 to 100.

Figure 6 compares the impact of N; to Num, Nphm,
and N, using the proposed method. Observe that Nhm,
Nphm, and N, increase with N, since more queries are
processed by thus query manager and thus Nym, Nphm, and
N, also increase. Moreover, the increase of Nym, Nphm and
N, with N, is nearly linear. Figure 7 compares the energy
consumption using the three approaches presented above.
Of course, energy consumption increases with N, since
more queries are processed. However, the HDQA approach
achieves a better energy usage when compared to the other
approaches.

EURASIP Journal on Wireless Communications and Networking 13

TasLE 3: Comparison of the Energy consumption obtained by HDQA, DF, and HDQE.

No. Nim Nphm N, E4r (Mn]) Eyr (Mn]) Epr, (Mn]) Improvement Ep, VS Eps (%) Improvement Ep, VS Eq4f (%)

1 5 6 5 6676 5607 4489 20 33
2 12 6 9 6574 4602 3619 21 45
3 7 8 6 5769 4500 3404 24 41
4 9 9 10 6317 4612 3137 32 50
5 6 10 3 6074 4738 3836 19 37
6 10 12 8 6233 4114 3464 16 44
7 10 10 7 6756 4729 3855 18 43
8 4 7 10 7312 6215 4030 35 45
9 6 12 6 6877 5227 4022 23 42
10 3 6 13 6121 5387 3524 35 42
11 8 12 7 6724 4841 4043 16 40
12 8 7 6607 5352 3892 27 41
13 7 8 6251 4938 3295 33 47
14 4 6 7 7512 6310 4365 31 42
15 5 11 8 6231 4923 3461 30 44
16 6 3 6 5539 4708 3683 22 34
17 7 8 5 6245 4871 3293 32 47
18 6 8 8 6472 5177 3532 32 45
19 6 5 6 7259 6025 4540 25 37
20 4 7 5 6115 5197 4074 22 33
21 10 9 5 6392 4539 3661 19 43
22 7 11 11 7279 5168 3501 32 52
23 7 8 6548 5304 3718 30 43
24 2 7 6518 5866 4472 24 31
25 7 11 6809 5243 3257 38 52
24] 14000
2 | 13000 -
= 20 = 12000
ERRTS = 11000 A
£ 16 | § 10000 -
Zﬁj 14 - g 90001
ZE 12] %‘ 8000 -
3 10 2 7000 -
2 4] 26000 A
Z§ .] S 5000 -
. 4000 -
, 3000 +— : : : : : :

! ' ' ! ! ! ! 40 50 60 70 80 90 100
40 50 60 70 80 90 100

Number of llected fi
Number of query collected from users Hmber o query coflected from users

—a— DF
Nom HDQF
—e—
Nebm —Ao— HDQA
—A— N, Q

FiGuRe 6: Impact of Ny, on Nam, Npsm and Nysms Na- FIGURE 7: Energy sensitivity of total query.

6.2.2. Impact of Historical Query Record. In this experiment, then evaluate the total energy consumption by HDQA, DF,
we first evaluate the impact of the number of historical query =~ and HDQE. Here, we fix N, = 50, 8 = 0.3,and axb=20x10.
records on Nim, Nphm and N, obtained by our algorithm, and The historical query record Nj, varies from 400 to 1000.

14 EURASIP Journal on Wireless Communications and Networking

Number of Njm, Nphm and Ny

400 500 600 700 800 900 1000
Number of historical query record
—a— Npm
—@— Nphm

+Nu

F1GURE 8: Impact of Nj, on Ny, Nphm and Nj.

—— .

6500 -

6000 -

5500 -

5000 A

4500 -

4000 -

Energy consumption (Mn])

3500 -

3000 T T T T T T T
400 500 600 700 800 900 1000

Number of historical query record

—a— DF
—e— HDQF
—A— HDQA

FIGURE 9: Energy sensitivity of historical query record.

TaBLE 4: Setting query region size.

No. Region size a X b
1 16 X 8
2 18 x9
3 20 x 10
4 22 x 11
5 24 x 12

Figure 8 shows the impact of N, on Nym, Nphm, and
N, using the proposed algorithm. We can observe that N,
and Nphm increases with Ny, while N, decreases. This can
be explained by the following two reasons. First, with the
increase of Nj, each query has more probability to find full
or partial answers from the historical database, therefore

12
11
Z 10 -
o
=]
< 9_
g
&
z 81
B
0]
g 5
z
4_
3_
T T T T T
1 2 3 4 5
16 x 8 18 X9 20 x 10 22 x 11 24 x 12
—a— Ny
—@— Nphm
—A— N,

F1GURe 10: Impact of region size on Ny, Nphm and N,.

7000 -
6500 ~ ./-\'\.\.
=
2 6000 -
=]
S
£, 5500 -
=
j=)
Z 5000
8
>~
5 4500 -
[}
[=]
53]
4000 - /V\
3500 T T T T T
1 2 3 4 5
16x8 18x9 20x10 22x11 24x12
—a— DF
—e— HDQF
—A— HDQA

FIGURE 11: Energy sensitivity of query region size.

Nim and Nphm increase with Ny. Second, queries with full
answer from historical database will not participate in the
process of query aggregation, which reduces the number of
queries that participate in query aggregation, even if those
queries with partial answer from historical database will be
partitioned into subqueries, which have less probability to be
aggregated with others. Thus, N, decreases with the increase
of Nj,.

Figure 9 compares energy consumption using HDQA,
DF, and HDQE Observe that energy consumption using
HDQA and HDQF decreases with the increase of Ny, since
more queries get answers from the historical database. The
energy consumption using DF does not change with the
increase of Ny, because this method does not use the
historical database.

EURASIP Journal on Wireless Communications and Networking 15

Number of N,

: N

24 n

T
0.2 025 0.

T
3 035 0.

T
4 045 0.

B

T
5 055 06 0.65

-m— N,

FIGURE 12: Impact of f on Nj.

4400
4300
4200
4100
4000

3900 A

Energy consumption (Mn])

3800 A

3700 - ./

3600 T T T T T T T T 1
02 025 03 035 04 045 05 055 0.6 0.65

B

—m— HDQA

FIGURE 13: Energy sensitivity of 5.

6.2.3. Impact of Region Size. In this analysis, we first evaluate
impact of region size on Niym, Nphm, and N, by our algorithm,
and then evaluate the total energy consumption by HDQA,
DF, and HDQEF. In this experiment, we fix N; = 50, N} =
500, and 3 = 0.3, The query region size is set as Table 4.
Figure 10 illustrates the impact of region size on Npm,
Nphm, and N, on our approach. By changing query region
size from 16 X 8 to 24 X 12, Nym, Nphm, and N, show different
trends. Ny, and Npu, decrease, while N, increases. Since
a strict limit is used for the query region in our historical
database, the region of one query must be inside in the region
of one record query in the historical database. Moreover,
the region size of the record query is randomly generated
within a certain range. It is more difficult for a query with
larger region size to find full or partial answer than a query
with small region size. Thus, Nim, Nphm decreases with the
increase of query region size. However, two queries with
larger query region size are prone to be aggregated, so N,
increases with the increase of query region size. Figure 11

shows the energy consumption by HDQA, DF, and HDQF
with the change of query region size from 16 x 8 to 24 X 12.
The energy consumed using DF and HDQA does not change
with the control of query region size. Since N and Nphm
decreases and N, increases with the change of query region
size, more energy is required by HDQF, and less energy is
required to process queries by aggregation.

6.2.4. Impact of Region Overlapping Degree. The region
overlapping degree is only used in the query aggregation
phase, and it is possible for two queries to be aggregated
when Sg,nr,/Sr,ur, > f3, therefore, we only evaluate the
impact of 8 on N,. In this experiment, we fix N; = 50,
N =500and a x b =20 x 10, 8 is from 0.25 to 0.6.

It can be seen from Figure 12 that N, decreases with
the increase of f3, because it becomes more difficult for two
queries to satisfy the aggregation condition with the increase
of 8. Therefore, N, decreases, while the energy consumption
increases (See Figure 13). Only an average of 2 queries are
aggregated when f is 0.6 while an average of 7.5 queries are
aggregated when f3 is 0.25.

6.2.5. Comparison with IQAF and SAQA. In order to further
demonstrate our proposed scheme (HDQA), we compared
the performance of our scheme with that of IQAF (IQAF:
Integrated Query Aggregation-based Framework) and SAQA
(SAQA: Spatial and Attribute Based Query Aggregation) by
applying them to our query record and query set. IQAF is an
overlay-based query aggregation approach including a query
manager and an effective query aggregation algorithm that
was presented in [16], and the main idea of the proposed
aggregation scheme is mainly based on region operation
of user queries. SAQA is a region- and attribute-based
query aggregation for sensor networks which was introduced
in [19]. Through the process of experiments, our routing
protocol was applied to IQAF and SAQA, meanwhile, both of
these two approaches support our historical database query.

In this experiment, we first evaluate the total energy
consumption and query latency by HDQA, IQAF, and SAQA
under the impact of the number of queries from users, here,
we fix N, = 500, = 0.3 and a x b = 20 x 10. The
query number N, varies from 40 to 100. Second, we evaluate
the total energy consumption and query latency by HDQA,
IQAF and SAQA under the impact of the number of query
record; here, we fix N; = 50, = 0.3 and a x b = 20 x 10.
The historical query record Nj, varies from 400 to 1000.

Figure 14 shows the data on the sensitivity of energy
performance for different query number. In this figure, the
x-axis represents the different query number, and y-axis
represents the total energy consumption by HDQA, IQAF,
and SAQA. As the query number is enlarged, the overall
energy consumption by three approaches also increases.
This is because a larger query number means that more
queries are involved and more query/data transmissions are
performed. Given a fixed number of user query, our HDQA
performs better than the other two schemes in that HDQA
performs more aggregation operations, thus saving energy
consumption.

16

8000 -
7000
6000 -
5000 -
4000
3000

2000

Energy consumption (Mn])

1000

40 50 60 70 80 90 100

Number of queries from users

[IQAF
Hl SAQA
Bl HDQA

FIGURE 14: Energy sensitivity of total query.

7000 +
6000
E 5000 -
g
£ 4000
=
>~
g 3000 A
=
o
2000 -
1000 A
O +
40 50 60 70 80 90 100
Number of queries from users
[IQAF
Il SAQA
Il HDQA

FiGURE 15: Query latency sensitivity of total query.

Figure 15 compares the query latency under different
query number by HDQA, IQAF, and SAQA, it is noted that
query latency here means the average elapsed time between a
query being issued and results being received. In this figure,
the x-axis represents the different query number and y-axis
represents the query latency. As the query number increases,
the query latency by three approaches also increases in that
more aggregations are performed and less data and queries
are issued in sensor networks. However, for any fixed query
number, the query latencies caused by three approaches are
almost equal because more time is used for aggregations by
HDQA which simultaneously reduced the latency for data
and query transmissions, while it reduces the aggregations
time by IQAF which simultaneously increases the data and
query delivery.

Figure 16 evaluates the sensitivity of energy performance
for different historical query record by HDQA, IQAFE, and

EURASIP Journal on Wireless Communications and Networking

5000 A

4000 A

3000 A

2000 A

Energy consumption (Mn])

1000

400 500 600 700 800 900 1000

Number of historical record

1 1QAF
Il SAQA
Il HDQA

FIGURE 16: Energy sensitivity of historical query record.
5000 A
4000
3000 A

2000

Query latency (ms)

1000

400 500 600 700 800 900 1000

Number of historical record

[IQAF
Hl SAQA
Bl HDQA

FiGure 17: Query latency sensitivity of historical query record.

SAQA. In this figure, the x-axis represents the different
historical query record and y-axis represents the total energy
consumption. As the historical query record increases, the
overall energy consumption by three approaches decreases.
This is because more query answer can be obtained from
historical database and less query/data transmissions are
performed. Given a fixed number of user query, our HDQA
performs better than the other two schemes in that HDQA
performs more aggregation operations which contributes to
energy saving.

Figure 17 demonstrates the query latency for different
algorithms, and varies historical query record from 400 to
10005 the query latency dramatically decreases as historical
query record further increases. This is because more query
answer can be obtained from historical database and less
query/data transmissions are performed. However, for any
fixed historical query record, the query latencies caused by

EURASIP Journal on Wireless Communications and Networking 17

three approaches are almost equal because more time is
needed for aggregation operation by HDQA which simul-
taneously reduces the time for data/query transmissions
while less time is needed for aggregation by IQAF which
simultaneously increases the time for data/query delivery.

7. Conclusions

Energy consumption is a crucial factor affecting the appli-
cation and effectiveness of a wireless sensor network. In this
paper, we proposed an energy-efficient query management
framework that copes with multiple queries in a sensor net-
work. In summary, our contributions include the following:
(1) an energy-efficient query management framework to
process multiple queries; (2) an effective historical database
query method to make full use of past queries; (3) a novel
query aggregation mechanism to process duplicated tasks
among queries in order to save to energy. Both analytical
and simulation results reveal that our strategy can lead to a
significant saving of communication cost, thereby extending
the effective lifetime of the sensors.

The main idea of this paper is to use an efficient
query management framework to optimize complex queries,
search for similar subqueries, optimize each representative
sub-query, and share the optimization result with other
similar subqueries through aggregation techniques and his-
torical database queries. However, the query execution plan
generated by the query management scheme is based on
collecting a group of queries, which will lead to latency
in query answering, especially for the queries collected at
the early stage. Moreover, the query management scheme
performs a significant amount of preprocessing and postpro-
cessing work, which also directly affects the query response
time.

There are several directions to extend our study. First, in
the routing protocol, we use a greedy routing mechanism
based on GPSR to handle both query packets and data
packets, which is not the best solution for energy-balanced
routing. Therefore, it would be interesting to analyze the
impact of an energy-balanced routing algorithm to further
optimize energy. Second, we used randomly generated initial
queries and historical query records to evaluate our query
management scheme. Thus, analyzing the performance with
a real dataset is another possible direction.

Acknowledgments

This paper is partially supported by a research grant from
the National Science Foundation of China under Grant no.
70701025, the Doctoral Foundation for young scholars of
Education Ministry of China under Grant no. 20070056002,
the Program for New Century Excellent Talents in Universi-
ties of China under Grant no. NCET-08-0396, and a National
Science Fund for Distinguished Young Scholars of China
under Grant no. 70925005. The authors would like to express
great appreciation to Professor Luciano Lavagno for paper
editing and his valuable comments on improving the quality
of this paper.

References

[1] S. Ci, M. Guizani, and H. Sharif, “Adaptive clustering in
wireless sensor networks by mining sensor energy data,”
Computer Communications, vol. 30, no. 14-15, pp. 2968-2975,
2007.

[2] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri,
“Medians and beyond: new aggregation techniques for sensor
networks,” in Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems (SenSys *04), pp. 239—
249, November 2004.

[3] K. Kalpakis, K. Dasgupta, and P. Namjosh, “Efficient algo-
rithms for maximum lifetime data gathering and aggregation
in wireless sensor networks,” Computer Networks, vol. 42, no.
6, pp. 697-716, 2003.

[4] X.X. Huang, H. Q. Zhai, and Y. G. Fang, “Robust cooperative
routing protocol in mobile wireless sensor networks,” IEEE
Transactions on Wireless Communications, vol. 7, no. 12, pp.
5278-5285, 2008.

[5] K. Zeng, K. Ren, W. Lou, and P. J. Moran, “Energy aware
efficient geographic routing in lossy wireless sensor networks
with environmental energy supply,” Wireless Networks, vol. 15,
no. 1, pp. 39-51, 2009.

[6] C. Pandana and K. J. R. Liu, “Robust connectivity-aware
energy-efficient routing for wireless sensor networks,” IEEE
Transactions on Wireless Communications, vol. 7, no. 10, pp.
3904-3916, 2008.

[7] P.Edara, A. Limaye, and K. Ramamritham, “Asynchronous in-
network prediction: efficient aggregation in sensor networks,”
ACM Transactions on Sensor Networks, vol. 4, no. 4, article 25,
2008.

[8] A. Brayner, A. Lopes, D. Meira, R. Vasconcelos, and R.
Menezes, “An adaptive in-network aggregation operator for
query processing in wireless sensor networks,” Journal of
Systems and Software, vol. 81, no. 3, pp. 328-342, 2008.

[9] L.-H. Yen and Y.-M. Cheng, “Range-based sleep scheduling
(RBSS) for wireless sensor networks,” Wireless Personal Com-
munications, vol. 48, no. 3, pp. 411-423, 2009.

[10] V. P. Sadaphal and B. N. Jain, “Random and periodic sleep
schedules for target detection in sensor networks,” Journal of
Computer Science and Technology, vol. 23, no. 3, pp. 343354,
2008.

[11] J. M. Zhu and X. D. Hu, “Improved algorithm for minimum
data aggregation time problem in wireless sensor networks,”
Journal of Systems Science and Complexity, vol. 21, no. 4, pp.
618-628, 2008.

[12] H. E Chen, H. Mineno, and T. Mizuno, “Adaptive data
aggregation scheme in clustered wireless sensor networks,”
Computer Communications, vol. 31, no. 15, pp. 3579-3585,
2008.

[13] Y. J. Zhu, R. Vedantham, S.-J. Park, and R. Sivakumar, “A
scalable correlation aware aggregation strategy for wireless
sensor networks,” Information Fusion, vol. 9, no. 3, pp. 354—
369, 2008.

[14] N. Trigoni, A. Guitton, and A. Skordylis, “Interplay of pro-

cessing and routing in aggregate query optimization for sensor

networks,” in Proceedings of the International Conference of

Distributed Computing and Networking, vol. 4904 of Lecture

Notes in Computer Science, pp. 401-415, 2008.

B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of

data aggregation in wireless sensor networks,” in Proceedings

of the 22nd International Conference on Distributed Computing

Systems, pp. 575-578, 2002.

(15

18

(16]

(17]

[18

(33]

EURASIP Journal on Wireless Communications and Networking

W. Yu, T. N. Le, J. Lee, and D. Xuan, “Effective query
aggregation for data services in sensor networks,” Computer
Communications, vol. 29, no. 18, pp. 3733-3744, 2006.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman,
“Multi-query optimization for sensor networks,” in Proceed-
ings of the IEEE/ACM International Conference on Distributed
Computing in Sensor Systems (DCOSS ’05), vol. 3560 of Lecture
Notes in Computer Science, pp. 307-321, 2005.

S. L. Xiang, H. B. Lim, K.-L. Tan, and Y. L. Zhou, “Two-
tier multiple query optimization for sensor networks,” in
Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS °07), p. 39, Toronto, Canada, June
2007.

Y. Jie, Y. Bo, S. Lee, and J. Cho, “SAQA: spatial and attribute
based query aggregation in wireless sensor networks,” Lecture
Notes in Computer Science, vol. 4096, pp. 15-24, 2006.

A. Woo, S. Madden, and R. Govindan, “Networking support
for query processing in sensor networks,” Communications of
the ACM, vol. 47, no. 6, pp. 47-52, 2004.

B. Scotney and S. McClean, “Database aggregation of impre-
cise and uncertain evidence,” Information Sciences, vol. 155,
no. 3-4, pp. 245-263, 2003.

O. Vechtomova and H. Zhang, “Articulating complex infor-
mation needs using query templates,” Journal of Information
Science, vol. 35, no. 4, pp. 439-452, 2009.

C. Goss, S. Lowenstein, I. Roberts, and C. DiGuiseppi,
“Identifying controlled studies of alcohol-impaired driving
prevention: designing an effective search strategy,” Journal of
Information Science, vol. 33, no. 2, pp. 151-162, 2007.

I. H. Toroslu and A. Cosar, “Dynamic programming solution
for multiple query optimization problem,” Information Pro-
cessing Letters, vol. 92, no. 3, pp. 149-155, 2004.

N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan,
“Pipelining in multi-query optimization,” Journal of Computer
and System Sciences, vol. 66, no. 4, pp. 728762, 2003.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and
extensible algorithms for multi query optimization,” in Pro-
ceedings of the ACM International Conference on Management
of Data (SIGMOD °00), pp. 249-260, Dallas, Tex, USA, 2000.
T. K. Sellis, “Multiple query optimization,” ACM Transactions
on Database Systems, vol. 13, no. 1, pp. 23-52, 1988.

D. Chatziantoniou and K. A. Ross, “Partitioned optimization
of complex queries,” Information Systems, vol. 32, no. 2, pp.
248-282, 2007.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Multi-
query optimization for sketch-based estimation,” Information
Systems, vol. 34, no. 2, pp. 209-230, 2009.

S. L. Xiang, H. B. Lim, and K. L. Tan, “Impact of multi-query
optimization in sensor networks,” in Proceedings of the 3rd
Workshop on Data Management for Sensor Networks, pp. 7-12,
2006.

Y. W. Chen, M. Xu, H.-M. Wang, et al, “An energy-
efficient framework for multirate query in wireless sensor
networks,” EURASIP Journal on Wireless Communications and
Networking, vol. 2007, Article ID 48984, 10 pages, 2007.

L. Uichin, E. Magistretti, M. Gerla, P. Bellavista, and A.
Corradi, “Dissemination and harvesting of urban data using
vehicular sensing platforms,” IEEE Transactions on Vehicular
Technology, vol. 58, no. 2, pp. 882-901, 2009.

X. Li, W. Shu, M. L. Li, H.-Y. Huang, P.-E. Luo, and M.-
Y. Wu, “Performance evaluation of vehicle-based mobile
sensor networks for traffic monitoring,” IEEE Transactions on
Vehicular Technology, vol. 58, no. 4, pp. 1647-1653, 2009.

(34]

X. Li, H. Y. Huang, W. Shu, M. L. Li, and M.-Y. Wu, “Vstore:
towards cooperative storage in vehicular sensor networks
for mobile surveillance,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC °0909),
pp- 1-6, April 2009.

Y. J. Zhu, R. Vedantham, S.-J. Park, and R. Sivakumar, “A
scalable correlation aware aggregation strategy for wireless
sensor networks,” Information Fusion, vol. 9, no. 3, pp. 354—
369, 2008.

P. Kalnis and D. Papadias, “Multi-query optimization for on-
line analytical processing,” Information Systems, vol. 28, no. 5,
pp. 457-473, 2003.

T. M. Gil and S. Madden, “Scoop: an adaptive indexing scheme
for stored data in sensor networks,” in Proceedings of the 23rd
International Conference on Data Engineering (ICDE *07), pp.
1345-1349, April 2007.

C. Y. Ai, R. Y. Du, M. H. Zhang, and Y. S. Li, “In-
network historical data storage and query processing based on
distributed indexing techniques in wireless sensor networks,”
Lecture Notes in Computer Science, vol. 5682, pp. 264-273,
2009.

K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp.
325-349, 2005.

B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless
routing for wireless networks,” in Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking
(MOBICOM °00), pp. 243-254, August 2000.

S. B. Wu and K. S. Candan, “Power-aware single- and
multipath geographic routing in sensor networks,” Ad Hoc
Networks, vol. 5, no. 7, pp. 974-997, 2007.

L. F Yuan, W. Q. Cheng, and X. Du, “An energy-efficient
real-time routing protocol for sensor networks,” Computer
Communications, vol. 30, no. 10, pp. 2274-2283, 2007.

Y. Jin, L. Wang, Y. Kim, and X. Z. Yang, “EEMC: an
energy-efficient multi-level clustering algorithm for large-
scale wireless sensor networks,” Computer Networks, vol. 52,
no. 3, pp. 542-562, 2008.

H. O. Tan and I. Korpeoglu, “Power efficient data gathering
and aggregation in wireless senor network,” in Proceedings of
the ACM Special Interest Group on Management of Data, pp.
66-71, 2003.

	1. Introduction
	2. Related Work
	3. Problem Definition
	4. Query Management Framework
	5. Query Management Scheme
	6. Performance Evaluation
	7. Conclusions
	Acknowledgments
	References

