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This paper introduces new closeness coefficients for fuzzy similarity based TOPSIS. The new closeness coefficients are based on
multidistance or fuzzy entropy, are able to take into consideration the level of similarity between analysed criteria, and can be
used to account for the consistency or homogeneity of, for example, performance measuring criteria. The commonly known OWA
operator is used in the aggregation process over the fuzzy similarity values. A range of orness values is considered in creating a fuzzy
overall ranking for each object, after which the fuzzy rankings are ordered to find a final linear ranking. The presented method is
numerically applied to a research and development project selection problem and the effect of using two new closeness coefficients
based on multidistance and fuzzy entropy is numerically illustrated.

1. Introduction

This paper investigates new closeness coefficients that are
based on multidistance and on fuzzy entropy and that are
usable with new variants of the well known Technique for
Order Performance by Similarity to Ideal Solution (TOPSIS),
such as fuzzy TOPSIS and fuzzy similarity based fuzzy
TOPSIS. Fuzzy TOPSIS was originally introduced by Chen
in 2000 [1] and Chen et al. [2] later extended it to include
trapezoidal fuzzy numbers. In these contributions a vertex
based fuzzy distance method was used as a measure of
distance from (“similarity to”) the ideal solutions. A similarity
measure based version of fuzzy TOPSIS was introduced
by Luukka in 2011 [3], where the similarity to the ideal
solutions is calculated by using a fuzzy similarity measure.
This strain of research was continued by Niyigena et al. in
2012 [4], where two different fuzzy similarity measures were
considered, and by Collan and Luukka in 2014 [5], where four
fuzzy similarity measure based fuzzy TOPSIS variants and
a way of holistic overall ranking of projects were presented.

This research continues on this same strain and explores
further the possibilities to extend fuzzy similarity based fuzzy
TOPSIS by introducing new closeness coefficients.

Fuzzy TOPSIS uses fuzzy numbers as inputs and is thus
able to incorporate inaccurate and imprecise information in
the analysis (there is no need to simplify reality by using
crisp numbers). The main difference in and the intuition
behind introducing fuzzy similarity measures in the place of
(crisp) distance measures in the TOPSIS environment with
fuzzy numbers is that fuzzy similarity measures can take
into consideration more of the information that is stored in
fuzzy numbers, for example, with regard to the perimeter and
the area of a fuzzy number. When crisp distance measures
are used what is done is essentially defuzzification of the
imprecise information, that is, the fuzzy number, in order
to calculate a distance between the resulting crisp number
and an ideal solution. In some cases, using a defuzzified
crisp distance based measure may cause a loss of relevant
information. The fuzzy similarity measure used here was
introduced by Wen et al. [6] and can take into account
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Figure 1: Evolution of TOPSIS variants with the contribution area of this research on light background.

the center of gravity, the perimeter, and the area of a fuzzy
number. Similarity measures were previously studied in the
context of fuzzy similarity based TOPSIS method [5].

The new contribution of this paper concentrates, in
addition to presenting a new “system construct,” on the
application of multidistance and fuzzy entropy in creating
additional information for project ranking by similarity
coefficients, after they have been analyzed with fuzzy simi-
larity measure based fuzzy TOPSIS. Multidistances are used
in analyzing the “level” of similarity to the ideal solution
between the analyzed criteria. High level of similarity means
a low multidistance and can be interpreted as homogeneity
or consistency of, for example, performance or expectations.
Multidistance depends on the order, in which the partial
distances are calculated; therefore, multidistance can be used,
when order of measurement is defined and has a significance.
Using fuzzy entropy is independent of measurement order
and is in that sense a more flexible measure of consistency
between criteria, but, on the other hand, fuzzy entropy cannot
differentiate between specific order in which measurement is
made between the criteria like multidistance can. Therefore,
we observe that the two approaches are complementary. The
abovementioned type of information may be valuable in
the analysis and offers an additional differentiator between
objects. Multidistances were examined by Mart́ın and Mayor
[7] and presented as a generalization of the notion of distance.
Mart́ın and Mayor [8] proposed also the construction of
multidistances by means of OWA functions.The OWA based
multidistances functions, used here, combine the distance
values of all pairs of elements in the collection into OWA
based multidistances [9]. Using the multidistance in the
aggregation will add a step of pairwise distance measurement
of similarities between criteria (values) in the procedure. Use
ofmultidistances and fuzzy entropieswith fuzzyTOPSIS is, to
the best of our knowledge, a new approach. Figure 1 illustrates
one direction of evolution from the classical TOPSIS to the
new variants presented here, with the contribution of this
research being highlighted.

The remainder of the paper is organized as follows. In
Section 2, the fuzzy similarity relations between fuzzy num-
bers, fuzzy entropy measures, the OWA operator, multidis-
tances, and total ordering of fuzzy numbers are introduced.

Section 3 is devoted to the description of the new approach to
fuzzy TOPSIS based on fuzzy similarity, multidistances, and
fuzzy entropy measures. Numerical examples are introduced
in Section 4 and some conclusions in Section 5 close the
paper.

2. Preliminaries

In this section some preliminary mathematical background,
used in this paper and on which the method discussed relies,
is shortly introduced. The issues reviewed here include fuzzy
similarity measures, fuzzy entropy measures, the OWA oper-
ator, and an often used method to generate the weights for
the OWAoperator, the O’Hagan’s method. Two fuzzy entropy
measures, by De Luca and Termini [10] and by Parkash et
al. [11], are presented. Multidistances are defined following
the work of Mart́ın and Mayor [7] and the relationship
between the OWA operator and multidistances is presented.
Additionally, a way to find total ordering for fuzzy numbers
is shortly revisited.

2.1. Fuzzy Similarity of Fuzzy Numbers. By focusing on
uncertain objects like fuzzy sets or fuzzy numbers, the notion
of a fuzzy subset generalizes that of the classical subset, where
the concept of similarity can be considered as a many valued
generalization of the classical notion of equivalence as stated
by Zadeh [12]. As an equivalence relation is a familiar way
to classify similar objects, fuzzy similarity is an equivalence
relation that can be used to classify multivalued objects [4].
The concept of a similarity measure is given as follows.

For any fuzzy subset 𝐹 ̸= 0 of R𝑛 and for any elements
𝐴, 𝐵 ∈ 𝐹 the function of a similarity measure [13] is a
mapping:

𝑠 (𝐴, 𝐵) : 𝐹 ×𝐹 󳨀→ [0, 1] . (1)

Satisfying the following properties for any 𝑥, 𝑦, 𝑧 ∈ 𝐹:

(i) 𝑠(𝑥, 𝑥) = 1, ∀𝑥 ∈ 𝐹 (Reflexivity).
(ii) 𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥) (Symmetry).
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐹, 𝑠(𝑥, 𝑧) ≥ max

𝑦
(min(𝑠(𝑥, 𝑦), 𝑠(𝑦, 𝑧)))

(Transitivity).
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Since fuzzy numbers can be considered as a type of restricted
fuzzy sets, it is natural that the similarity measures used for
generalized fuzzy numbers come from the family of similarity
measures created and available for fuzzy sets.

Represented byChen [14], a generalized trapezoidal fuzzy
number’s notation is 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤), where 𝑎, 𝑏, 𝑐, and 𝑑

are real values and 0 < 𝑤 ≤ 1. The membership function 𝜇̃
𝐴

satisfies the following conditions:

(1) 𝜇̃
𝐴
(𝑥) is a continuous mapping from the universe of

discourse 𝑋 to the closed interval in [0, 1].
(2) 𝜇̃
𝐴
(𝑥) = 0, where −∞ < 𝑥 ≤ 𝑎.

(3) 𝜇̃
𝐴
is monotonically increasing in [𝑎, 𝑏].

(4) 𝜇̃
𝐴
(𝑥) = 𝑤, where 𝑏 ≤ 𝑥 ≤ 𝑐.

(5) 𝜇̃
𝐴
(𝑥) is monotonically decreasing in [𝑐, 𝑑].

(6) 𝜇̃
𝐴
(𝑥) = 0, where 𝑑 ≤ 𝑥 < ∞.

Due to the fit and the applicability of similarity measures
in the context of decision making, various similarity mea-
sures have been proposed for the calculation the degree of
similarity between fuzzy numbers. In this work, a recently
introduced similarity measure by Wen et al. [6] is used.
The similarity measure takes into consideration the center
of gravity, the perimeter, and the area of fuzzy numbers.
The similarity measure is denoted by 𝑠(𝑀,𝑁) and involves
fuzzy numbers 𝑀 = (𝑚1, 𝑚2, 𝑚3, 𝑚4; 𝜔𝑚) and 𝑁 =

(𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝜔𝑛) with 0 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑚3 ≤ 𝑚4 ≤ 1,
0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4 ≤ 1, and 𝑀(𝑥

𝑖
) and 𝑁(𝑥

𝑖
), their

corresponding membership functions with 𝑖 ∈ {1, 2, 3, 4} for
generalized trapezoidal fuzzy numbers, where 𝜔

𝑚
and 𝜔

𝑛
are

their corresponding heights.The similarity is given as follows:

𝑠 (𝑀,𝑁) = (1−
󵄨󵄨󵄨󵄨𝑋𝑚 −𝑋

𝑛

󵄨󵄨󵄨󵄨) (1−
󵄨󵄨󵄨󵄨𝜔𝑚 −𝜔

𝑛

󵄨󵄨󵄨󵄨)

⋅
min (𝑝 (𝑚) , 𝑝 (𝑛)) + min (𝑎 (𝑚) , 𝑎 (𝑛))

max (𝑝 (𝑚) , 𝑝 (𝑛)) + max (𝑎 (𝑚) , 𝑎 (𝑛))
,

(2)

where 𝑋
𝑚
and 𝑋

𝑛
are center of gravity of the generalized

trapezoidal fuzzy numbers, calculated as follows:

𝑋
𝑚

=
𝑌
𝑚

(𝑚3 + 𝑚2) + (𝑚4 − 𝑚1) (𝜔𝑚 − 𝑌
𝑚
)

2𝜔
𝑚

,

𝑌
𝑚

=

{{

{{

{

𝜔
𝑚

((𝑚3 − 𝑚2) / (𝑚4 − 𝑚1) + 2)
6

if 𝑚1 ̸= 𝑚4, 0 < 𝜔
𝑚

≤ 1
𝜔
𝑚

2
if 𝑚1 = 𝑚4, 0 < 𝜔

𝑚
≤ 1.

(3)

The values 𝑝(𝑚) and 𝑝(𝑛) represent the perimeters of the
trapezoidal fuzzy numbers 𝑀 and 𝑁 and are defined as

𝑝 (𝑚) = √(𝑚1 − 𝑚2)
2
+ 𝜔2
𝑚

+√(𝑚3 − 𝑚4)
2
+ 𝜔2
𝑚

+ (𝑚3 −𝑚2) + (𝑚4 −𝑚1) ,

𝑝 (𝑛) = √(𝑛1 − 𝑛2)
2
+ 𝜔2
𝑛
+√(𝑛3 − 𝑛4)

2
+ 𝜔2
𝑛

+ (𝑛3 − 𝑛2) + (𝑛4 − 𝑛1) .

(4)

The values 𝑎(𝑚) and 𝑎(𝑛) represent the areas of the trape-
zoidal fuzzy numbers 𝑀 and 𝑁, and they are defined as

𝑎 (𝑚) =
1
2
𝜔
𝑚

(𝑚3 −𝑚2 +𝑚4 −𝑚1) ,

𝑎 (𝑚) =
1
2
𝜔
𝑛
(𝑛3 − 𝑛2 + 𝑛4 − 𝑛1) .

(5)

Notice that the result of the above similaritymeasure 𝑠(𝑀,𝑁)

belongs to the unit interval [0, 1] and the larger the value of
the similarity measure is, the stronger the similarity between
the fuzzy numbers 𝑀 and 𝑁 is.

2.2. Fuzzy EntropyMeasures. Inmany cases, it is of interest to
have a suitable measure of the level of imprecision and vague-
ness, a so-called fuzziness measure, which gives an answer to
the question: “How far is a given fuzzy set from awell-defined
crisp reference set?” [15]. The specific contribution of fuzzy
sets [16] is to capture the idea of partial membership, which
creates this difference between the crisp and the fuzzy sets.
Taking into consideration the concept of fuzzy sets, De Luca
and Termini [10] suggested that, corresponding to Shannon’s
[17] probabilistic entropy, the measure of fuzzy entropy can
be given as

𝐻1 (𝐴) = −

𝑛

∑

𝑗=1
(𝜇
𝐴
(𝑥
𝑗
) log𝜇

𝐴
(𝑥
𝑗
)

+ (1−𝜇
𝐴
(𝑥
𝑗
)) log (1−𝜇

𝐴
(𝑥
𝑗
))) ,

(6)

where𝜇
𝐴
(𝑥
𝑗
) are the fuzzy values.This fuzzy entropymeasure

is considered to be a fuzziness measure [15] and it evaluates
global deviations from the type of ordinary sets; that is, from
any crisp set 𝐴0 leads to 𝐻1(𝐴0) = 0. Note that the fuzzy set
𝐴with 𝜇

𝐴
(𝑥) = 0.5 plays the role of maximum element of the

ordering defined by 𝐻.
Newer fuzzy entropy measures were introduced by

Parkash et al. [11]:

𝐻2 (𝐴; 𝑤)

=

𝑛

∑

𝑗=1
𝑤
𝑗
(sin

𝜋𝜇
𝐴
(𝑥
𝑗
)

2
+ sin

𝜋 (1 − 𝜇
𝐴
(𝑥
𝑗
))

2
− 1)

(7)

or equivalently as

𝐻3 (𝐴; 𝑤)

=

𝑛

∑

𝑗=1
𝑤
𝑗
(cos

𝜋𝜇
𝐴
(𝑥
𝑗
)

2
+ cos

𝜋 (1 − 𝜇
𝐴
(𝑥
𝑗
))

2
− 1) .

(8)

Besides applying fuzzy entropy measures to measure the
entropy of fuzzy sets they can also be applied to fuzzy
similarity values as is done, for example, by Luukka [18] in
connection with a feature selection problem. Information
about entropy is relevant in decision making as the ability
to distinguish between the entropy of two fuzzy sets gives
information about the informational value contained in the
sets.



4 Advances in Fuzzy Systems

2.3. The OWA Operator. In 1988 Yager [19] introduced an
aggregation operator, called ordered weighted averaging
(OWA) operator, and formalized it as follows.

An ordered weighted averaging (OWA) operator of
dimension 𝑚 is a mapping 𝑅

𝑚

→ 𝑅 that has associated
weighting vector 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑚] of dimension 𝑚 with

𝑚

∑

𝑖=1
𝑤
𝑖
= 1, 𝑤

𝑖
∈ [0, 1] , 1 ≤ 𝑖 ≤ 𝑚 (9)

such that

OWA (𝑎1, 𝑎2, . . . , 𝑎𝑚) =

𝑚

∑

𝑖=1
𝑤
𝑖
𝑏
𝑖
, (10)

where 𝑏
𝑖
is the 𝑖th largest element of the collection of objects

𝑎1, 𝑎2, . . . , 𝑎𝑚. One of the measures related to the OWA is the
so-called “orness”measure. For a givenweighting vector𝑊 =

[𝑤1, 𝑤2, . . . , 𝑤𝑚]
𝑇 themeasure of orness of theOWAoperator

for 𝑊 is given as

orness (𝑊) =
1

𝑚 − 1

𝑚

∑

𝑖=1
(𝑚− 𝑖) 𝑤

𝑖
. (11)

The weighting vector has an important role in the operation
of the OWA operator: it determines how large a weight that
each aggregated object receives is.The distribution of weights
depends on the selected value of orness that can be selected
from [0, 1]. If orness is 0, then the first ordered object gets all
weight and the rest of the objects get a weight of zero. If the
orness value is 1, then the weight is evenly distributed among
all objects and the weighting is actually the same as a normal
nonweighted average. In 1988 O’Hagan [20] introduced a
technique for (optimal) computation of theweights usedwith
the OWA. The procedure assumes a predefined degree of
orness; the weights are obtained by maximizing the entropy
−∑
𝑚

𝑖=1 𝑤𝑖 ln(𝑤𝑖). The solution is based on the constrained
optimization problem

maximize −

𝑚

∑

𝑖=1
𝑤
𝑖
ln (𝑤
𝑖
)

subject to 𝛼 =
1

𝑚 − 1

𝑚

∑

𝑖=1
(𝑚− 1) 𝑤

𝑖

𝑚

∑

𝑖=1
𝑤
𝑖
= 1

𝑤
𝑖
≥ 0.

(12)

The above constrained optimization problem can be solved
by using different methods. Here an analytical solution
introduced by Fullér and Majlender [21] is used. Below, this
weighting scheme is presented:

(a) If 𝑚 = 2, it implies that 𝑤1 = 𝛼 and 𝑤2 = 1 − 𝛼.
(b) If 𝛼 = 0 or 𝛼 = 1, it implies that the corresponding

weighting vectors are 𝑤 = (0, . . . , 0, 1) or 𝑤 =

(1, 0, . . . , 0) respectively.

(c) If 𝑚 ≥ 3 and 0 ≤ 𝛼 ≤ 1, then we have

𝑤
𝑖
= (𝑤
𝑚−𝑖

1 ⋅ 𝑤
𝑖−1
𝑚

)
1/(𝑚−1)

,

𝑤
𝑚

=
((𝑚 − 1) ⋅ 𝛼 − 𝑚) ⋅ 𝑤1 + 1
(𝑚 − 1) ⋅ 𝛼 + 1 − 𝑚 ⋅ 𝑤1

,

𝑤1 [(𝑚− 1) ⋅ 𝛼 + 1−𝑚 ⋅𝑤1]
𝑚

= ((𝑚− 1) ⋅ 𝛼)𝑚−1 ⋅ [((𝑚− 1) ⋅ 𝛼 −𝑚) ⋅ 𝑤1 + 1] .

(13)

For𝑚 ≥ 3, theweights are computed by initially obtaining the
first weight, followed by the last weight, before other weights
are computed.

2.4.Multidistances. Amultidistance is a representation of the
notion of multiargument distances. The set 𝑋 is a union of
all 𝑚-dimensional lists of elements of 𝑋; multidistance is
defined as a function 𝐷 : 𝑋 → [0,∞) on a nonempty set
𝑋 provided that the following properties are satisfied for all
𝑚 and 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑦 ∈ 𝑋:

(c1) 𝐷(𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0 if and only if 𝑥
𝑖
= 𝑥
𝑗
for all

𝑖, 𝑗 = 1, 2, . . . , 𝑚.
(c2) 𝐷(𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝐷(𝑥

𝜎(1), 𝑥𝜎(2), . . . , 𝑥𝜎(𝑚)) for any
permutation 𝜎 of 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(c3) 𝐷(𝑥1, 𝑥2, . . . , 𝑥𝑚) ≤ 𝐷(𝑥1, 𝑦) + 𝐷(𝑥2, 𝑦) + ⋅ ⋅ ⋅ +

𝐷(𝑥
𝑚
, 𝑦).

We say that𝐷 is a strongmultidistance if it satisfies 𝑐1, 𝑐2, and

(c3⋆) 𝐷(𝑥⃗1, 𝑥⃗2, . . . , 𝑥⃗𝑚) ≤ 𝐷(𝑥⃗1, ⃗𝑦) + 𝐷(𝑥⃗2, ⃗𝑦) + ⋅ ⋅ ⋅ +

𝐷(𝑥⃗
𝑚
, ⃗𝑦), for all 𝑥⃗1, 𝑥⃗2, . . . , 𝑥⃗𝑚, ⃗𝑦 ∈ 𝑋.

In application contexts, the estimation of distances between
more than two elements of the set𝑋 can be constructed using
multidistances bymeans of theOWAoperator as suggested by
Mart́ın and Mayor [7]:

𝐷
𝑤
(𝑥1, 𝑥2, . . . , 𝑥𝑚)

= OWA
𝑤
(𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑥3) , . . . , 𝑑 (𝑥

𝑚−1, 𝑥𝑚)) .
(14)

In this case, elements 𝑥1, 𝑥2, . . . , 𝑥𝑚 are obtained from the
similarity measure (2), and the distance applied is 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|.

2.5. Total Ordering of Fuzzy Numbers. There are several
ways to rank fuzzy numbers. Since ranking of fuzzy number
is a much more complex problem than ranking ordinary
numbers, often only partial ordering is found. Kaufmann and
Gupta [22] propose a method to try to find total order or
linear order for fuzzy numbers, where all fuzzy numbers and
fuzzy intervals are comparable.Themethod is based on using
three properties of fuzzy sets as criteria to separate fuzzy
numbers into classes. If using the first criterion does not give
a unique linear order, that is, each class includes only one
number, then one moves on to separate the numbers in a
multinumber class with the next criterion.The description of
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the three different criteria used in the Kaufmann and Gupta
ordering method is given below.

(1) The Removal. Let us consider an ordinary number 𝑘 ∈ R

and a fuzzy number𝐴.The left side removal of𝐴with respect
to 𝑘, denoted by 𝑅

𝑙
(𝐴, 𝑘), is defined as the area bounded by 𝑘

and the left side of the fuzzy number 𝐴. Similarly, the right
side removal 𝑅

𝑟
(𝐴, 𝑘) is defined. The removal of the fuzzy

number𝐴with respect to 𝑘 is defined as the mean of 𝑅
𝑙
(𝐴, 𝑘)

and 𝑅
𝑟
(𝐴, 𝑘). Thus,

𝑅 (𝐴, 𝑘) =
1
2
(𝑅
𝑙
(𝐴, 𝑘) +𝑅

𝑟
(𝐴, 𝑘)) . (15)

The position of 𝑘 can be located anywhere on the 𝑥-axis
including 𝑘 = 0. By definition, the areas are positive
quantities, but here they are evaluated by integration taking
into account the position (negative, zero, or positive) of the
variable 𝑥; therefore,𝑅(𝐴, 𝑘) can be positive, negative, or null.

The first criterion, used in ordering, is the removal with
respect to 𝑘. Two different fuzzy numbers can have the same
removal with respect to the same 𝑘.The criterion decomposes
a set of fuzzy numbers into classes having the same removal
number.The classes can be ordered according to the removal
number; if there is only one fuzzy number per each class, then
we have linear ordering of the fuzzy numbers.

The removal number 𝑅(𝐴, 𝑘) defined in this criterion,
relocated to 𝑘 = 0, is equivalent to an “ordinary represen-
tative” of the fuzzy number. In the case of a triangular fuzzy
number this ordinary representative is given by

𝐴 =
𝑎1 + 2𝑎2 + 𝑎3

4
, (16)

where 𝐴 = (𝑎1, 𝑎2, 𝑎3).
If after using the removal criteria there are classes with

multiple fuzzy numbers, one has to go forward and use the
second criteria for ordering the fuzzy numbers within the
“multiple number” classes.

(2) The Mode. In each class of (multiple) fuzzy numbers,
one should look for the mode of each fuzzy number in
the class; these modes will generate subclasses. If the fuzzy
numbers under consideration have a nonunique mode, one
takes the mean position of the modal values. It must be noted
that this is only one way of obtaining subclasses, and one
may need the following third divergence criterion for further
subclassification:

Mode (𝐴) = {𝑥 ∈𝑈 | 𝐴 (𝑥) = 1} . (17)

If there are still classes (or rather subclasses) withmultiple
fuzzy numbers, one will then resort to the third ordering
criterion.

(3) The Divergence. The consideration of the divergence
around the mode in each subclass leads to sub-subclasses,
and this criterion may be sufficient to obtain the final linear
ordering of fuzzy numbers (we do not know of a situation
where using the three criteria has not been able to create a
linear order):

Divergence (𝐴) = sup (supp (𝐴)) − inf (supp (𝐴)) . (18)

Summarizing theMethod.When one orders fuzzy numbers to
size order, one proceeds as follows. Apply the above presented
three criteria in the exact given order, such that if the unique
linear order is not obtained with a criterion, then move to
the next criterion. Let us recall that this is one of the many
methods available in the literature; a good survey has been
most recently proposed by Brunelli and Mezei [23].

3. Proposed New Model That Uses
Fuzzy Similarity Based Fuzzy TOPSIS with
Fuzzy Entropy and Multidistances

TOPSIS was originally introduced by Hwang and Yoon [24]
(see also work in Lai et al. [25]). We start with a short
introduction of the original TOPSISmethod and then present
the new proposed extension. The idea of evaluation that
TOPSIS uses is to simultaneously consider the distance
between an analyzed alternative and a positive and a negative
ideal solution.The best alternative is the closest to the positive
ideal solution and the furthest away from the negative
ideal solution. The procedure of TOPSIS starts from the
construction of an evaluation matrix 𝑋 = [𝑥

𝑖𝑗
], where 𝑥

𝑖𝑗

denotes the valuation of the 𝑖th alternative with respect to 𝑗th
criterion. It can be summarized as follows.

Step 1. Calculation of normalized decision matrix 𝑍 = [𝑧
𝑖𝑗
]

𝑧
𝑖𝑗

=

𝑥
𝑖𝑗

√∑
𝑛

𝑖=1 𝑥
2
𝑖𝑗

, 𝑗 = 1, . . . , 𝑚, 𝑖 = 1, . . . , 𝑛. (19)

Step 2. Calculation of the weighted normalized decision
matrix 𝑉 = [V

𝑖𝑗
]

V
𝑖𝑗

= 𝑧
𝑖𝑗
(⋅) 𝑤
𝑗
, 𝑗 = 1, . . . , 𝑚, 𝑖 = 1, . . . , 𝑛. (20)

Step 3. Determination of the positive and negative ideal
solution 𝐴

+ and 𝐴
−

𝐴
+

= {V+1 , . . . , V
+

𝑚
}

= {(max
𝑖

V
𝑖𝑗

| 𝑗 ∈ 𝐵) , (min
𝑖

V
𝑖𝑗

| 𝑗 ∈ 𝐶)} ,

𝐴
−

= {V−1 , . . . , V
−

𝑚
}

= {(min
𝑖

V
𝑖𝑗

| 𝑗 ∈ 𝐵) , (max
𝑖

V
𝑖𝑗

| 𝑗 ∈ 𝐶)} ,

(21)

where 𝐵 is for benefit criteria and 𝐶 is for cost criteria.

Step 4. Calculation of the distance of each alternative from
the positive ideal solution and negative ideal solution

𝑑
+

𝑖
= √ ∑

𝑗=1
𝑚

(V
𝑖𝑗
− V+
𝑗
)
2
, 𝑖 = 1, . . . , 𝑛,

𝑑
−

𝑖
= √ ∑

𝑗=1
𝑚

(V
𝑖𝑗
− V−
𝑗
)
2
, 𝑖 = 1, . . . , 𝑛.

(22)
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Step 5. Calculation of the relative closeness to the ideal
solutions

CC
𝑖
=

𝑑
−

𝑖

𝑑
+

𝑖
+ 𝑑
−

𝑖

, 𝑖 = 1, . . . , 𝑛. (23)

Step 6 (ranking of alternatives). The closer the CC
𝑖
is to one

the higher the priority of the 𝑖th alternative is.

A fuzzy extension to the Technique for Order Perfor-
mance by Similarity to Ideal Solution (TOPSIS) was pre-
sented byChen [1] and it has been extended to solve problems
involving trapezoidal fuzzy numbers and applied, that is, to
solving supplier selection problems as done by Chen et al. [2]
(see also work of Jahanshahloo et al. [26]). Fuzzy TOPSIS is
a multiple criteria decision making (MCDM) [2, 27] method
useful in ranking objects, based on the similarity of the object
characteristics to the characteristics of an ideal object (ideal
solution).Themethod is based on the idea that the higher the
objects are ranked, the shorter their distance is from theFuzzy
Positive Ideal Solution (FPIS) and the further away the objects
simultaneously are from the Fuzzy Negative Ideal Solution
(FNIS). One advantage of having extended TOPSIS method
to the fuzzy environment is that linguistic assessment can be
used in describing the (properties of) alternatives, instead of
being constrained to using only numerical values; linguistic
variables can be mapped to fuzzy numbers.

To present the new proposed approach we first introduce
it shortly as a stepwise algorithm and then we go more into
details of the steps presented; the steps of the new proposed
TOPSIS approach are as follows.

Step 1. Form a committee of decisionmakers and identify the
evaluation criteria.

Step 2. Choose appropriate linguistic variables for the impor-
tance of weight of the criteria and the linguistic ratings for
alternatives.

Step 3. Aggregate the weight of criteria to get the aggregated
fuzzy weight𝑤

𝑗
of the criterion𝐶

𝑗
, and join decision makers’

ratings to get an aggregated fuzzy rating 𝑥
𝑖𝑗
of the project 𝑃

𝑖

in consideration of the criterion 𝐶
𝑗
.

Step 4. Construct a fuzzy decision matrix and a normalized
fuzzy decision matrix.

Step 5. Construct a weighted normalized fuzzy decision
matrix.

Step 6. Determine a fuzzy positive (and negative) ideal
solution FPIS (and FNIS).

Step 7. Construct a similarity matrix by calculating the
similarity of each alternative to the FPIS (and to the FNIS).

Step 8. Calculate aggregated similarity values for each alter-
native, with regard to the FPIS and the FNIS by using OWA.

Step 9. Calculate amultidistance value or fuzzy entropy value
for each alternative with regard to the FPIS.

Step 10. Calculate a closeness coefficient for each alternative,
in order to determine the alternatives’ ranking within the set
of alternatives.

For Steps 8–10, use multiple orness values for each alter-
native to get multiple ranking results.

Step 11. Rank the set of alternatives for each orness value and
calculate theminimum, themean, and themaximum ranking
of each alternative, to form a triangular fuzzy ranking score
for each alternative by using the three values.

Step 12. Make a final “overall” ranking of the alternatives
by forming fuzzy triangular numbers from the ranks by
using minimum, mean, and maximum ranks. The resulting
final fuzzy numbers are put in the final order by using the
Kaufmann and Gupta [22] method.

Next, the details of the new proposed procedure are
presented. Solution to the selection problem, when using our
new fuzzy TOPSIS approach, can be presented by considering
a situation of a finite set of alternatives 𝐴 = {𝐴

𝑖
| 𝑖 =

1, 2, . . . , 𝑚}, which need to be evaluated by a committee of
decision makers 𝐷 = {𝐷

𝑙
| 𝑙 = 1, 2, . . . , 𝑘}, by considering a

finite set of given criteria 𝐶 = {𝐶
𝑗
| 𝑗 = 1, 2, . . . , 𝑛}.

Let us consider a decision matrix [28] representing a set
of performance ratings of each alternative 𝐴

𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

with respect to each criterion 𝐶
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, as follows:

X =

[
[
[
[
[

[

𝑥11 𝑥12 . . . 𝑥1𝑛

𝑥21 𝑥22 . . . 𝑥2𝑛

. . . . . . . . . . . .

𝑥
𝑚1 𝑥
𝑚2 . . . 𝑥

𝑚𝑛

]
]
]
]
]

]

. (24)

Let us also assume the weight𝑤
𝑗
of the 𝑗th criterion 𝐶

𝑗
, such

that the weight vector is represented as follows:

W = [𝑤1, 𝑤2, . . . , 𝑤𝑛] , (25)

where 𝑚 rows represent 𝑚 possible alternatives, 𝑛 columns
represent 𝑛 relevant criteria, and 𝑥

𝑖𝑗
represent the perfor-

mance rating of the 𝑖th alternative 𝐴
𝑖
with respect to the 𝑗th

criterion 𝐶
𝑗
. The above fuzzy ratings for each decision maker

𝐷
𝑙
, 𝑙 = 1, 2, . . . , 𝑘, are represented by positive trapezoidal

fuzzy numbers 𝑅̂
𝑙

= (𝑎
𝑙
, 𝑏
𝑙
, 𝑐
𝑙
, 𝑑
𝑙
), 𝑙 = 1, 2, . . . , 𝑘, with the

respective membership function 𝜇
𝑅̂
𝑙

(𝑥). As the rating 𝑅̂
𝑙
=

(𝑎
𝑙
, 𝑏
𝑙
, 𝑐
𝑙
, 𝑑
𝑙
) is for the 𝑙th decisionmaker, the aggregated fuzzy

number that can stand for all decision makers’ rating is

𝑅̂ = (𝑎, 𝑏, 𝑐, 𝑑) (26)

with 𝑎 = min
𝑙
{𝑎
𝑙
}, 𝑏 = (1/𝑘)∑𝑘

𝑙=1 𝑏𝑙, 𝑐 = (1/𝑘)∑𝑘
𝑙=1 𝑐𝑙, and

𝑑 = max
𝑙
{𝑑
𝑙
}. The fuzzy rating and importance of weight of

the 𝑙th decision maker can, respectively, be represented by
𝑥
𝑖𝑗𝑙

= (𝑎
𝑖𝑗𝑙
, 𝑏
𝑖𝑗𝑙
, 𝑐
𝑖𝑗𝑙
, 𝑑
𝑖𝑗𝑙
) and 𝑤 = (𝑤

𝑗𝑙1, 𝑤𝑗𝑙2, 𝑤𝑗𝑙3, 𝑤𝑗𝑙4) with
𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. Then, the aggregated fuzzy
ratings 𝑥

𝑖𝑗
of alternatives, with respect to each criterion, are

𝑥
𝑖𝑗

= (𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑑
𝑖𝑗
) , (27)
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calculated as 𝑎
𝑖𝑗

= min
𝑙
{𝑎
𝑖𝑗𝑙
}, 𝑏
𝑖𝑗

= (1/𝑘)∑𝑘
𝑙=1 𝑏𝑖𝑗𝑙, 𝑐𝑖𝑗 = (1/

𝑘)∑
𝑘

𝑙=1 𝑐𝑖𝑗𝑙, and 𝑑
𝑖𝑗

= max
𝑙
{𝑑
𝑖𝑗𝑙
}. The aggregated fuzzy weight

𝑤
𝑗
of each criterion can be calculated as

𝑤
𝑗
= (𝑤
𝑗1, 𝑤𝑗2, 𝑤𝑗3, 𝑤𝑗4) (28)

with 𝑤
𝑗1 = min

𝑙
{𝑤
𝑗𝑙1}, 𝑤𝑗2 = (1/𝑘)∑𝑘

𝑙=1 𝑤𝑗𝑙2, 𝑤𝑗3 = (1/
𝑘)∑
𝑘

𝑙=1 𝑤𝑗𝑙3, and 𝑤
𝑗4 = max

𝑙
{𝑤
𝑗𝑙4}. After aggregation the

decision matrix and the weight vector are of the following
forms: 𝑋 = {𝑥

𝑖𝑗
}
𝑚×𝑛

and 𝑊 = {𝑤
𝑗
}1×𝑛, where 𝑖 =

1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. These matrices’ elements
are given by positive trapezoidal fuzzy numbers as 𝑥

𝑖𝑗
=

(𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑑
𝑖𝑗
) and 𝑤

𝑗
= (𝑤
𝑗1, 𝑤𝑗2, 𝑤𝑗3, 𝑤𝑗4). A linear scale

transformation is used to transform the various criteria scales
into comparable scales, in order to avoid overly complex
mathematical operations in a decision process. The set of
criteria can be divided into benefit criteria 𝐵, where the larger
the rating, the greater the preference, and to cost criteria
𝐶, where the smaller the rating, the greater the preference.
A normalization method designed to preserve the property,
in which the elements are normalized trapezoidal fuzzy
numbers, is used. The normalized value of 𝑥

𝑖𝑗
is 𝑟
𝑖𝑗
, and the

normalized fuzzy decision matrix is then represented as

𝑅 = [𝑟
𝑖𝑗
]
𝑚×𝑛

(29)

with

𝑟
𝑖𝑗

= (

𝑎
𝑖𝑗

𝑑
+

𝑗

,

𝑏
𝑖𝑗

𝑑
+

𝑗

,

𝑐
𝑖𝑗

𝑑
+

𝑗

,

𝑑
𝑖𝑗

𝑑
+

𝑗

) , 𝑗 ∈ 𝐵,

𝑟
𝑖𝑗

= (

𝑎
−

𝑗

𝑑
𝑖𝑗

,

𝑎
−

𝑗

𝑐
𝑖𝑗

,

𝑎
−

𝑗

𝑏
𝑖𝑗

,

𝑎
−

𝑗

𝑎
𝑖𝑗

) , 𝑗 ∈ 𝐶,

(30)

where 𝑑
+

𝑗
= max

𝑖
{𝑑
𝑖𝑗
}, 𝑗 ∈ 𝐵, and 𝑎

−

𝑗
= min

𝑖
{𝑎
𝑖𝑗
}, 𝑗 ∈ 𝐶.

The weighted normalized value of 𝑟
𝑖𝑗
is called V

𝑖𝑗
, and, by

considering the importance of each criterion, the weighted
normalized fuzzy decision matrix is represented as

𝑉 = [V
𝑖𝑗
]
𝑚×𝑛

, (31)

where V
𝑖𝑗

= 𝑟
𝑖𝑗

⋅ 𝑤
𝑗
. For all 𝑖, 𝑗, the elements V

𝑖𝑗
are now

normalized positive trapezoidal fuzzy numbers.
Next, the ideal solutions must be determined and taken

from the given criteria, which are linguistically expressed;
they are commonly referred to as Fuzzy Positive Ideal Solution
(FPIS) and Fuzzy Negative Ideal Solution (FNIS). By consid-
ering a finite set of given criteria𝐶 = {𝐶

𝑗
| 𝑗 = 1, 2, . . . , 𝑛}, the

ways to select the FPIS(𝐴+) and the FNIS(𝐴−) come from the
weighted normalized decisionmatrix𝑉 = (V

𝑖𝑗
)
𝑚×𝑛

, where the
obtained weighted normalized values V

𝑖𝑗
are fuzzy numbers

expressed as

V
𝑖𝑗

= (V
𝑖𝑗1, V𝑖𝑗2, V𝑖𝑗3, V𝑖𝑗4) . (32)

The fuzzy positive ideal solution 𝐴
+ and the fuzzy negative

ideal solution 𝐴
−, respectively, are

𝐴
+

= [V+1 , V
+

2 , . . . , V
+

𝑛
] , (33)

𝐴
−

= [V−1 , V
−

2 , . . . , V
−

𝑛
] . (34)

Several ways for choosing the FPIS(𝐴+) and the FNIS(𝐴−)
have been presented by Luukka [3]. Next, we shortly review
the one used here. Every element of 𝐴+ is the maximum for
all 𝑖weighted normalized value V

𝑖𝑗
and every element of𝐴− is

the minimum for all 𝑖 weighted normalized value V
𝑖𝑗
as

V+
𝑗
= (max

𝑖

V
𝑖𝑗1,max
𝑖

V
𝑖𝑗2,max
𝑖

V
𝑖𝑗3,max
𝑖

V
𝑖𝑗4) ,

V−
𝑗
= (min
𝑖

V
𝑖𝑗1,min
𝑖

V
𝑖𝑗2,min
𝑖

V
𝑖𝑗3,min
𝑖

V
𝑖𝑗4) .

(35)

The similarity measure between each project and the ideal
solutions 𝐴

+ and 𝐴
− is needed in calculating the closeness

coefficients to determine the ranking order of all possible
alternative projects. The similarities 𝑠+

𝑖
from the positive and

negative ideal solution are calculated as

𝑠
+

𝑖
= {𝑠
𝑖1 (V𝑖1, V

+

1 ) , 𝑠𝑖2 (V𝑖2, V
+

2 ) , . . . , 𝑠𝑖𝑛 (V𝑖𝑛, V
+

𝑛
)} ,

𝑠
−

𝑖
= {𝑠
𝑖1 (V𝑖1, V

−

1 ) , 𝑠𝑖2 (V𝑖2, V
−

2 ) , . . . , 𝑠𝑖𝑛 (V𝑖𝑛, V
+

𝑛
)} ,

(36)

where for similarity we used the similarity measure from (2).
These similarity vectors are then aggregated using OWA, as
follows:

𝑆
+

𝑖𝑤
= OWA

𝑤
(𝑠
+

𝑖1, 𝑠
+

𝑖2, . . . , 𝑠
+

𝑖𝑛
) ,

𝑆
−

𝑖𝑤
= OWA

𝑤
(𝑠
−

𝑖1, 𝑠
−

𝑖2, . . . , 𝑠
−

𝑖𝑛
) .

(37)

In addition to the similarity measure we also aggregate 𝑠
+

𝑖

vector by using multidistance as

𝐷
+

𝑖𝑤
(𝑠
+

𝑖1, 𝑠
+

𝑖2, . . . , 𝑠
+

𝑖𝑛
)

= OWA
𝑤
(𝑑 (𝑠
+

𝑖1, 𝑠
+

𝑖2) , 𝑑 (𝑠
+

𝑖2, 𝑠
+

𝑖3) , . . . , 𝑑 (𝑠
+

𝑖(𝑛−1), 𝑠
+

𝑖𝑛
)) .

(38)

The first fuzzy entropy measure of the similarity vector
here introduced is calculated by using De Luca and Termini
entropy as

𝐻
+

𝐷𝑖
(𝑠
+

𝑖
) = −

𝑛

∑

𝑗=1
𝑠
+

𝑖𝑗
ln (𝑠
+

𝑖𝑗
) + (1− 𝑠

+

𝑖𝑗
) ln (1− 𝑠

+

𝑖𝑗
) . (39)

The second fuzzy entropy measure of the similarity vector we
use is calculated with Parkash entropy and is

𝐻
+

𝑃𝑖
(𝑠
+

𝑖
)

= −

𝑛

∑

𝑗=1
𝑤
𝑗
(sin(

𝜋𝑠
+

𝑖𝑗

2
)+ sin(

𝜋(1 − 𝑠
+

𝑖𝑗
)

2
)− 1) .

(40)

We now want to extend the closeness coefficient to consider
not only the similarity of the objects from the positive and
the negative ideal solution but also the information about the
“consistency” of the similarity of different criteria carried by
using the multidistance of fuzzy entropy.

Closeness coefficients of the alternative𝐴
𝑖
with respect to

the positive ideal solution by using the closeness coefficient
(CC𝐷
𝑖
) that uses the multidistance are defined as

CC𝐷
𝑖

=
𝑆
−

𝑖𝑤
+ 𝐷
+

𝑖𝑤

𝐷
+

𝑖𝑤
+ 𝑆
+

𝑖𝑤
+ 𝑆
−

𝑖𝑤

, 𝑖 = 1, 2, . . . , 𝑚. (41)
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An extension that applies a De Luca and Termini fuzzy
entropy measure in the closeness coefficient to account for
criteria consistency can be constructed in the following way:

CC𝐻
𝑖

=
𝑆
−

𝑖𝑤
+ 𝐻
+

𝐷𝑖
/𝐻
∗

𝑆
+

𝑖𝑤
+ 𝑆
−

𝑖𝑤
+ 𝐻
+

𝐷𝑖
/𝐻∗

, 𝑖 = 1, 2, . . . , 𝑚, (42)

where 𝐻
∗ is used as a scaling factor and it is the maximum

entropy value gained for the particular problem, when simi-
larity vector would consist of values 𝑠

𝑖𝑗
= 0.5 ∀𝑗 (yielding the

maximum entropy).
Another closeness coefficient extension with a fuzzy

entropy measure, with Parkash entropy, can be constructed
as

CC𝐻
𝑖

=
𝑆
−

𝑖𝑤
+ 𝐻
+

𝑃𝑖
/𝐻
∗

𝑆
+

𝑖𝑤
+ 𝑆
−

𝑖𝑤
+ 𝐻
+

𝑃𝑖
/𝐻∗

, 𝑖 = 1, 2, . . . , 𝑚. (43)

The philosophy of entropy measures is based on the idea
that one of the tasks is to discover patterns or regularities
in the data. Regularities and structure are characterized by
low entropy (value), whereas a high level of randomness is
associated with high entropy (value) [29]. Entropy value can
tell us whether one distribution contains more information
than another. Low entropy indicates the existence of informa-
tion, while high entropy indicates greater uncertainty about
the information content. Minimum entropy gives minimum
uncertainty, which is the limit of our knowledge about the
structure of the system [30]. With these measures added
to the closeness coefficient we can take also this kind of
information into account. A similar rationale is also found
behind the concept of multidistance.

To finish the ranking of the alternatives the closeness
coefficients are ordered in an ascending order. After this we
then repeat this process by using several different orness
values. This way we do not just get one ranking for each
alternative, but we get a set of rankings. From these sets
we then form approximation by creating a triangular fuzzy
number by using theminimum, themean, and themaximum
rankings. After the triangular fuzzy numbers are created, they
are ranked by using the method summarized in Section 2.5,
and the total order is found and used in forming a final
ranking. This approach to get an “overall ranking” in the
presence of parameter uncertainty, or parameter value ranges,
has earlier been presented in [5].

4. Numerical Example

This numerical example is based on the data used previously
in Hassanzadeh et al. [31] and Luukka et al. [32]. A pharma-
ceutical company can select a certain number of projects for
investment from among twenty R&D projects. Criteria in the
example come from costs, revenues, budget constraints, and
the real option value (ROV) of the projects, calculated for
each project by using the payoff method [33] for real option
valuation; the values of these four criteria are represented by
trapezoidal fuzzy numbers.The first and the third criteria are
cost criteria and the second and the fourth ones are benefit
criteria.

In Table 1 one can see evaluations of the different criteria
by using trapezoidal fuzzy numbers. The fourth (ROV)
criterion is carried out in computations as a fuzzy number
of form 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4), where 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4. The
four criteria are used in the TOPSIS analysis according to the
procedure outlined above. The most important contribution
here, in addition to and as a part of the proposed extended
procedure, has to do with the extension of the closeness coef-
ficients; therefore, we concentrate on discussing them inmore
detail. The ranking of the projects depends on the choice of
the orness value associated to OWA operator’s weights and
thus on the risk profile of the decision makers. Risk-averse
behavior would demand that most criteria be satisfied and
this implies a conjunctive behavior, that is, orness < 0.5.
Risk-seeking behavior of decision makers would mean that
they are willing to accept that only some criteria are satisfied,
that is, orness > 0.5. Since the managerial problem here
addressed asked for a prudent approach to the holding of
risky prospects we have assumed that the decisionmakers are
risk-averse and opted to compute the ranking of the projects
with multiple orness values, chosen in the open interval
(0, 0.5). For this reason we compute the ranking of each
project with multiple 𝛼; in fact we have used several values,
starting from 0.005 and running up to 0.495 with the interval
of 0.005, that is, 𝛼 = 0.005 : 0.005 : 0.495. Table 2 summarizes
the experimental results with the minimum, the mean, and
the maximum rankings for the tested orness values. These
three values are used in the formation of a triangular fuzzy
number ranking for each project.

Total ordering is found for the fuzzy numbers presented
in Table 2 by using the method introduced by Kaufmann
and Gupta [22]. For this purpose the removal number,
dispersion, andmodal values are calculated in theway already
presented in Table 2. Results reporting also removal number,
dispersion, and mode values from these computations can be
found in Tables 4–6. In Table 3 we simply present the ranking
results from these three methods.

According to Table 2 results we can see that using the two
new closeness coefficients (CCs) has a different effect on the
resulting overall rankings. Both entropy based CCs are giving
quite similar results, whereas the new multidistance based
CC is clearly different. Top four projects according to the two
entropy based measures are 𝑃13, 𝑃16, 𝑃9, and 𝑃4, whereas the
multidistance based CC ends up with top four of 𝑃16, 𝑃13,
𝑃17, and 𝑃9. The top two projects were always 𝑃13 and 𝑃16.
The difference between the results highlights the fact that
when measurement order matters the results are and should
be different.This is not trivial, as theremay be cases where the
measurement order is highly significant, such as cases where
“the act of measurement” changes the state of the variable.

5. Summary and Conclusions

A new multiple criteria decision making approach was
presented that is a new extension of the fuzzy similarity based
fuzzy TOPSIS. Aggregation of similarity to fuzzy negative and
positive ideal solutions for each criterion was done by using
ordered weighted averaging (OWA) and multidistance and
two fuzzy entropy measures were introduced for collecting
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Table 1: Evaluation of R&D projects.

Project 𝐶1 𝐶2 𝐶3 𝐶4

𝑃
1

(53, 62, 68, 78) (43, 50, 55, 63) (115, 128, 128, 141) 0.06
𝑃2 (83, 98, 108, 123) (85, 100, 110, 125) (126, 140, 140, 154) 0.0594
𝑃3 (157, 185, 204, 231) (170, 200, 220, 250) (170, 189, 189, 208) 18
𝑃4 (204, 240, 268, 300) (170, 200, 220, 250) (164, 182, 182, 200) 0.54
𝑃5 (259, 305, 336, 381) (510, 600, 660, 750) (209, 232, 232, 255) 3.10
𝑃6 (85, 100, 110, 125) (85, 100, 110, 125) (185, 206, 206, 227) 5
𝑃7 (259, 305, 336, 381) (510, 600, 660, 750) (209, 232, 232, 255) 3.10
𝑃8 (94, 110, 121, 138) (85, 100, 110, 125) (177, 197, 197, 217) 1.58
𝑃9 (140, 165, 182, 206) (153, 180, 198, 225) (238, 264, 264, 290) 17.15
𝑃10 (190, 223, 245, 279) (323, 380, 418, 475) (257, 285, 285, 314) 1.65
𝑃11 (60, 70, 77, 88) (68, 80, 88, 100) (148, 164, 164, 180) 10.03
𝑃12 (91, 107, 118, 134) (85, 100, 110, 125) (144, 160, 160, 176) 2.39
𝑃13 (247, 290, 319, 363) (34, 40, 44, 50) (297, 330, 330, 363) 0
𝑃14 (370, 435, 479, 544) (595, 700, 770, 875) (338, 375, 375, 413) 278.25
𝑃15 (166, 195, 215, 244) (425, 500, 550, 625) (279, 310, 310, 341) 320.25
𝑃16 (221, 260, 286, 325) (255, 300, 330, 375) (315, 350, 350, 385) 39.66
𝑃17 (235, 277, 305, 346) (298, 350, 385, 438) (311, 346, 346, 381) 72.48
𝑃18 (281, 330, 363, 413) (468, 550, 605, 688) (331, 368, 368, 405) 231
𝑃19 (344, 405, 446, 506) (680, 800, 880, 1000) (365, 406, 406, 447) 414.75
𝑃20 (451, 530, 583, 663) (978, 1150, 1265, 1438) (394, 438, 438, 482) 651

Table 2: The minimum, mean, and the maximum rankings with
closeness coefficients created with (a) multidistance measure, (b)
De Luca and Termini entropy measure, and (c) Parkash entropy
measure.

Project Min Mean Max Min Mean Max Min Mean Max
𝑃1 19 19 19 2 5.54 9 2 4.55 9
𝑃2 15 15.7 16 11 11.15 12 10 10.97 11
𝑃3 6 8.0 11 6 6.61 7 5 6.28 7
𝑃4 3 6.0 8 4 4.13 5 3 3.85 4
𝑃5 9 9.9 11 16 17.79 20 16 17.80 20
𝑃6 13 13.1 14 9 9.46 10 9 9.91 11
𝑃7 17 18.0 18 13 13.08 14 12 12.48 13
𝑃8 12 12 12 7 7.82 8 7 7.91 8
𝑃9 4 5.1 6 2 3.30 5 2 3.71 5
𝑃10 4 5.0 7 11 12.57 14 12 13.56 14
𝑃11 17 17.0 18 12 13.29 15 12 12.96 14
𝑃12 13 14.1 15 8 9.46 10 8 9.05 10
𝑃13 2 2.1 3 1 1 1 1 1 1
𝑃14 9 10.3 11 16 16.27 18 16 16.22 17
𝑃15 7 9.0 11 17 17.80 19 17 18.16 19
𝑃16 1 1 1 2 2.20 3 2 2.56 3
𝑃17 2 3.0 4 5 5.48 6 6 6.22 7
𝑃18 5 6.6 8 14 14.91 15 15 15 15
𝑃19 14 15.1 16 18 19.07 20 18 18.76 20
𝑃20 20 20 20 17 19.08 20 17 19.06 20

information about the “similarity of these similarities” that
can be understood as a measure of homogeneity or consis-
tency of a given project. This has allowed the inclusion of

Table 3: Overall rankings of the R&D projects with multidistance,
De Luca and Termini entropy measure and with Parkash entropy
measure.

Project Multidistance De Luca and Termini Parkash
𝑃1 19 6 5
𝑃2 16 11 11
𝑃3 8 7 6
𝑃4 6 4 4
𝑃5 10 17 17
𝑃6 13 10 10
𝑃7 18 13 12
𝑃8 12 8 8
𝑃9 4 3 3
𝑃10 5 12 14
𝑃11 17 14 13
𝑃12 14 9 9
𝑃13 2 1 1
𝑃14 11 16 16
𝑃15 9 18 18
𝑃16 1 2 2
𝑃17 3 5 7
𝑃18 7 15 15
𝑃19 15 20 20
𝑃20 20 19 19

more relevant information in the analysis than is possible,
when adopting a simple defuzzification procedure alone.The
method was applied to an R&D project selection problem.
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Table 4: Overall rankings of the R&D projects with multidistance
using removal number, dispersion, and modal value.

Project Rank Removal number Div. Mode
𝑃16 1 1 0 1
𝑃13 2 2.29 1 2.07
𝑃17 3 2.99 2 2.99
𝑃9 4 5.03 2 5.05
𝑃10 5 5.27 3 5.03
𝑃4 6 5.76 5 6.02
𝑃18 7 6.57 3 6.63
𝑃3 8 8.26 5 8.01
𝑃15 9 8.99 4 8.98
𝑃5 10 9.93 2 9.87
𝑃14 11 10.17 2 10.34
𝑃8 12 12 0 12
𝑃6 13 13.31 1 13.12
𝑃12 14 14.03 2 14.06
𝑃19 15 15.04 2 15.08
𝑃2 16 15.62 1 15.74
𝑃11 17 17.26 1 17.01
𝑃7 18 17.74 1 17.99
𝑃1 19 19 0 19
𝑃20 20 20 0 20

Table 5: Overall rankings of the R&D projects with De Luca and
Termini entropy measure using removal number, dispersion, and
modal value.

Project Rank Removal number Div. Mode
𝑃13 1 1 0 1
𝑃16 2 2.35 1 2.20
𝑃9 3 3.40 3 3.30
𝑃4 4 4.32 1 4.13
𝑃17 5 5.49 1 5.48
𝑃1 6 5.52 7 5.54
𝑃3 7 6.55 1 6.61
𝑃8 8 7.66 1 7.82
𝑃12 9 9.23 2 9.46
𝑃6 10 9.48 1 9.45
𝑃2 11 11.33 1 11.15
𝑃10 12 12.53 3 12.57
𝑃7 13 13.29 1 13.08
𝑃11 14 13.40 3 13.29
𝑃18 15 14.70 1 14.91
𝑃14 16 16.64 2 16.27
𝑃5 17 17.89 4 17.79
𝑃15 18 17.90 2 17.80
𝑃20 19 18.79 3 19.07
𝑃19 20 19.04 2 19.08

It was observed that analysis results depend on the proper
selection of the orness parameter, 𝛼, when the weights are
generated for the OWA operator. This weight generation
was based on O’Hagan’s method that finds the weights as

Table 6: Overall rankings of the R&Dprojects with Parkash entropy
measure using removal number, dispersion, and modal value.

Project Rank Removal number Div. Mode
𝑃13 1 1 0 1
𝑃16 2 2.53 1 2.56
𝑃9 3 3.60 3 3.71
𝑃4 4 3.67 1 3.85
𝑃1 5 5.02 7 4.55
𝑃3 6 6.14 2 6.28
𝑃17 7 6.36 1 6.22
𝑃8 8 7.70 1 7.91
𝑃12 9 9.03 2 9.05
𝑃6 10 9.95 2 9.91
𝑃2 11 10.73 1 10.97
𝑃7 12 12.49 1 12.48
𝑃11 13 12.98 2 12.96
𝑃10 14 13.28 2 13.56
𝑃18 15 15 0 15
𝑃14 16 16.36 1 16.22
𝑃5 17 17.90 4 17.80
𝑃15 18 18.08 2 18.16
𝑃20 19 18.78 3 19.06
𝑃19 20 18.88 2 18.76

an optimal solution for a predefined (given) orness value
(𝛼). The effect of the choice of the orness value to the
resulting rankingwas tested and “cancelled” by usingmultiple
orness values to form triangular fuzzy numbers from three
descriptive numbers (min, max, and the mean) from several
rankings generated for each project by using different orness
values.

A measure of homogeneity of similarity of the different
criteria of each project to the fuzzy positive ideal solution was
calculated introducing multidistances and two fuzzy entropy
measures. This was done in order to include information
about the consistency of the level of goodness of projects
(by the selected criteria). This information was included
in the closeness coefficient that is used in the ranking of
the projects. The final ranking thus includes information
about the goodness of each project (as ranked by TOPSIS)
and about the “stability” of the level of goodness of each
of the criteria of each project. The two different types of
CCs complement each other, as the multidistance based CC
is usable, when the measurement order is significant, and
entropy based CCs are usable also in more general cases,
while they cannot consider measurement order.

Forming a fuzzy number from different rankings allows
one to include different points of view and create an intelli-
gent overall ranking. Using multiple orness values in forming
the final ranking is relevant in situations, where there is
uncertainty or imprecision with regard to the correct orness
parameter selection. It is clear that if there is absolutely
no uncertainty involved in the orness parameter selection
one should use the certain parameter alone in creating
the ranking. Furthermore, an increased amount of relevant



Advances in Fuzzy Systems 11

information is carried along in the analysis until the ranking
stage, enabling the ranking to take more things into consid-
eration than in the classical TOPSIS method. This allows a
more holistic analysis of ranking and selection problems. By
measuring entropy and including it in CC the new proposed
variant is able to consider also uncertainty related to the
evaluations which has not been possible with the previous
TOPSIS variants.

Interesting future research directions include the intro-
duction of consensual dynamics in the aggregation of indi-
vidual TOPSIS scores, usingChoquet aggregation in the place
of the OWA operator aggregation and using the histogram
method togetherwithOWAoperator aggregation tomake the
aggregation orness parameter selection independent.
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