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)e current paper deals with the numerical prediction of the mechanical response of asphalt concretes for road pavements, using
artificial neural networks (ANNs). )e asphalt concrete mixes considered in this study have been prepared with a diabase aggregate
skeleton and two different types of bitumen, namely, a conventional bituminous binder and a polymer-modified one. )e asphalt
concretes were produced both in a road materials laboratory and in an asphalt concrete production plant.)emechanical behaviour
of themixes was investigated in terms ofMarshall stability, flow, quotient, andmoreover by the stiffnessmodulus.)e artificial neural
networks used for the numerical analysis of the experimental data, of the feedforward type, were characterized by one hidden layer
and 10 artificial neurons. )e results have been extremely satisfactory, with coefficients of correlation in the testing phase within the
range 0.98798–0.91024, depending on the consideredmodel, thus demonstrating the feasibility to apply ANNmodelization to predict
the mechanical and performance response of the asphalt concretes investigated. Furthermore, a closed-form equation has been
provided for each of the four ANN models developed, assuming as input parameters the production process, the bitumen type and
content, the filler/bitumen ratio, and the volumetric properties of the mixes. Such equations allow any other researcher to predict the
mechanical parameter of interest, within the framework of the present study.

1. Introduction

In order to design a road superstructure, the so-called pave-
ment, two main tasks have to be accomplished, namely, the
mix design of the asphalt concrete to be used for each of
the layers of the pavement and the thickness design of the
pavement itself. Focusing the attention on the mix design task,
currently, all over the world, experimental procedures carried
out in a road laboratory are adopted [1–6]. Actually, a pre-
liminary material characterization has to be performed for
both the asphalt concrete components, namely, aggregates and
bitumen, as well as a proper experimental mix design pro-
cedure is required in order to identify the optimum bitumen
content. )e laboratory tests used to evaluate the physical
properties and the mechanical resistance of components and
mixtures are quite time consuming; moreover, skilled labo-
ratory technicians have to be involved. At the end of the

experimental mix design procedure, the best suited formu-
lation of the asphalt mix is identified, in order to meet the
pavement service requirements. However, on the basis of
a pure experimental approach, if a component type or its
amount has to be modified, for instance, for comparison
purposes between different materials, to identify the best
technological solution for the pavement construction, further
laboratory tests cannot be avoided in order to evaluate the
different mechanical response of the asphalt mix. )e possi-
bility to estimate the mechanical behaviour of the mix, on the
basis of a mathematical model of the material’s response,
would allow us to save time and cost of further experiments.

A material’s response model can be elaborated by means
of constitutive equations [7–9] implemented on a computa-
tional platform with the finite element method [10–12], rather
than with the discrete element method [13–15]. Such ap-
proaches are elaborated on a physical basis because they try to
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achieve a rational interpretation of themechanical response of
the asphalt concrete under different loading conditions.
However, the complexity of such methods is quite high, being
related to the proper formulation of the constitutive equations
as well as to extensive laboratory trials (which often involve
particular test protocols), aimed at properly calibrating and
validating such complex mathematical models. A different
approach is based on the statistical regression of large ex-
perimental data sets, to obtain prediction equations of the
material properties considered [16–19].

More recently, the so-called learning machines, for in-
stance, the artificial neural networks (ANNs), have been
used for the modelization of some significant mechanical
parameters of road materials [20–23]. )e key point of such
approaches is given by the possibility to obtain reliable
analytical equations for the quantitative estimation of ma-
terials properties, in a relatively automatized and easy way,
because the complex physical significance of the material’s
response is not considered; such an advantage, the so-called
“black box esffect,” represents on the contrary their main
issue. )e abovementioned black box effect could somehow
be associated also with the relatively low attention paid in the
civil engineering literature to the mathematical equations
behind the artificial neural networks. Actually, several lit-
erature papers are simply devoted to the use of such
computational tools in a broad variety of engineering ap-
plications, but without a proper discussion of the mathe-
matical framework [24–29]. Moreover, in such papers, the
discussion is often limited to the evaluation of the quality of
the training and testing phases of the ANN; just few re-
searchers [20, 30, 31] have at least presented the predictive
analytical equations elaborated by means of the ANN.

)e main goal of this paper is to provide the analytical
expressions for the prediction of the mechanical parameters
involved in themix design of asphalt concretes, on the basis of
the ANN modelization of experimental data related to vol-
umetric and composition parameters of the mixes. In order to
allow a full understanding of the ANN modelization, a the-
oretical discussion of the mathematical equations, which
actually constitute the backbone of the ANN, is also provided.

2. Theory and Calculation

2.1. Modelling with Artificial Neural Networks. Artificial
neural networks (ANNs), also known as learning machines,
represent a computational approach to develop predictive
models for the desired parameter, whatever the complexity of
the system under investigation, given a robust experimental
data set for the training of the ANN [32]. )ey try to simulate
the functioning of biological ones, in particular those of the
brain, processing the input data through “neurons” [33–35].

)ere are different types of ANN; in this study, the
feedforward networks have been considered. For such ANN
type, the learning of the network is supervised; therefore, for
each input vector provided, the corresponding output vector
(target) is known. )e learning phase consists in optimizing
the connections of the ANN so that for each input considered,
the network returns a calculated value as close as possible
to the target one [35].

An ANN of this type is structured with different neurons,
divided into layers; these neurons are connected so that those of
the same layer are not linked to each other and that none of the
possible paths could touch twice the same neuron. )erefore,
the feedforward ANN structure is given by the following:

(i) An initial layer with p neurons (input layer), where
p is the number of input variables

(ii) A final layer of c neurons (output layer), where c is
the number of output variables

(iii) At least one intermediate layer, or hidden layer, with
m number of neurons, independent of how many
belong to input or output

)e input layer stores the incoming signals that are
introduced through a vector xi for each data set:

xi � x1i, x2i, . . . , xpi􏼐 􏼑, i � 1, . . . , n. (1)

)e output layer provides the calculated values through
a vector yi:

yi � y1i, y2i, . . . , yci( 􏼁, i � 1, . . . , n. (2)

)e hidden layer is devoted to the calculations that
formally connect the input xi with the output yi.

Each neuron of the hidden layer works according to
a simple mathematical model proposed by McCulloch and
Pitts [36]. A weighted sum of the values of the input variables
is computed through the weights that are associated with
each connection:

a � 􏽘

p

i�1
wixi + w0. (3)

)e value w0 is called bias and corresponds to the ac-
tivation value of the neuron; assuming x0 � 1, such an ex-
pression can be simplified as follows:

a � 􏽘

p

i�0
wixi. (4)

)e output value from the neuron is calculated by ap-
plying an appropriate transfer function to such a value:

z � f(a) � f 􏽘

p

i�0
wixi

⎛⎝ ⎞⎠. (5)

)e transfer function can be of different types depending
on the desired model, for instance, linear, Heaviside step
function, sigmoidal, or hyperbolic tangent. )e last one has
been used in the current study; it has the following
expression:

f(a) �
ea − e−a

ea + e−a
�

2
1 + e−2a

− 1. (6)

)e above steps describe the functioning of a single
neuron, while the network, to determine the optimal values
of the weights of each connection, follows an iterative
procedure, the so-called training of the neural network
[33–35]. Given a set of first attempt values of the weights, the
ANN computes the activation values of the neurons and
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subsequently the final output; this phase is known as the
forward pass. )en, the value of the calculated output is
compared with the expected value (target) so that the ANN
can proceed to adjust the weights through an optimization
algorithm; this phase is called backward pass.

2.2.$e Forward Pass. Considering an ANN with p neurons
in input, a single hidden layer withm neurons, and an output
layer with c neurons, the network processes the information
based on the procedure described in the following.

For each of the i observations, or data sets (xi), whose p

coordinates are introduced each one in a neuron of the input
layer, the activation value of each neuron j of the hidden
layer is calculated:

a
(1)
j � a

(1)
j xi( 􏼁 � w

(1)
oj + 􏽘

p

s�1
w

(1)
sj xis, (7)

where the exponent (1) identifies the weights and the ac-
tivation value of the first step, that is, between the input layer
and the hidden one. Introducing again a fictitious value
x0i � 1, it follows that

a
(1)
j � a

(1)
j xi( 􏼁 � 􏽘

p

s�0
w

(1)
sj xis. (8)

For each (xi), the activation values a
(1)
j are then

transferred to the next level through a transfer function f:

zk � f a
(1)
j􏼐 􏼑. (9)

)e procedure is repeated between the hidden layer and
the output layer by calculating the activation value for each
of the output c neurons as follows:

a
(2)
k � a

(2)
k xi( 􏼁 � 􏽘

m

j�0
w

(2)
jk zk � 􏽘

m

j�0
w

(2)
jk f a

(1)
j􏼐 􏼑, (10)

where the exponent (2) identifies the weights and the ac-
tivation value of the second step, having made an as-
sumption similar to the first step, that is, f(a

(1)
j ) � 1.

)e output of the network introduces a further transfer
through a function g, not necessarily of the same type of f;
therefore, the calculated output value at the final kth neuron
is

yik � g a
(2)
k􏼐 􏼑 � g 􏽘

m

j�0
w

(2)
jk f 􏽘

p

s�0
w

(1)
sj xis

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (11)

2.3. $e Backward Pass. )e ANN proceeds updating the
weights of the connections that are the only modifiable
parameters, in fact the values of the components of each (xi)
are fixed; therefore, the interpolating function depends only
on the weights of the individual connections. )ese can be
considered as the parameters of an interpolating function for
the approximation of the target values tik with the computed
values yik; the optimal value of these weights is then cal-
culated minimizing the objective function:

E �
1
2

􏽘

n

i�1
􏽘

c

k�1
yik − tik( 􏼁

2
. (12)

Since the tik values are given, this objective function
depends only on the weights of the single connections. )e
weight vector w therefore, given the complexity of the
function E, is calculated iteratively through an optimization
algorithm [33–35]; the simplest one is the gradient descent
algorithm. At each iteration, the weight vector is updated
according to the following equation:

wτ � wτ−1 + Δw, (13)

where the subscript τ indicates the number of the iteration
and the quantity Δw, which updates the weights, is a vector
that moves along the descending path, characterized by
a faster reduction of the function E, that is, its gradient in the
vector space generated by the weights. )erefore, it can be
written as follows:

Δw � −η∇ E wτ( 􏼁( 􏼁⇒wτ � wτ−1 − η∇ E wτ( 􏼁( 􏼁. (14)

To find this direction, it is necessary to compute the
partial derivatives of the objective function and to define the
value of η which is a positive real number that should not be
too small; otherwise, the calculation time becomes longer, or
too big, to avoid the instability of the method.

Specifying the structure of the function E, it can be
written as follows:

E � 􏽘
n

i�1
Ei⇒Ei �

1
2

􏽘

c

k�1
yik − tik( 􏼁

2
. (15)

)us, the partial derivatives can be calculated for each Ei

and subsequently added together; basically each Ei can be
considered as the component of a vector. )e partial de-
rivatives must be expressed with respect to the weights, and
these are relative to both the hidden and output layers.
Considering the partial derivatives of the output layer, if its
transfer function is of the linear type, as it has been assumed
in the present study, it follows that

yik � g a
(2)
k􏼐 􏼑 � a

(2)
k � 􏽘

m

j�0
w

(2)
jk f a

(1)
j􏼐 􏼑. (16)

)erefore, the partial derivative of the generic term of Ei

with respect to the generic weight w
(2)
jk results

zEi

zw
(2)
jk

� yik − tik( 􏼁
zyik

zw
(2)
jk

� yik − tik( 􏼁f a
(1)
j􏼐 􏼑, (17)

where a
(1)
j � 􏽐

p
s�0w

(1)
sj xis and f is the transfer function of the

hidden layer. In the present study, the hyperbolic tangent
function has been assumed for the hidden layer:

f a
(1)
j􏼐 􏼑 �

2

1 + e
−2a

(1)

j

− 1 �
2

1 + e
−2􏽐

p

s�0w
(1)

sj
xis

− 1. (18)

Instead, deriving Ei with respect to a weight of the
hidden layer and using the chain rule, it can be written as
follows:
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zEi

zw
(1)
sj

� 􏽘
c

k�1
yik − tik( 􏼁

zyik

zw
(1)
sj

� 􏽘
c

k�1
yik − tik( 􏼁

zyik

za
(1)
j

za
(1)
j

zw
(1)
sj

.

(19)

)e first derivative of the hyperbolic tangent function
has the following property [35]:

zf(x)

zx
� 1−f(x)

2
, (20)

Hence, using such an expression and deriving with re-
spect to a generic jth activation value of the hidden layer, it
follows that

zyik

za
(1)
j

�
zw

(2)
jk f a

(1)
j􏼐 􏼑

za
(1)
j

� w
(2)
jk

zf a
(1)
j􏼐 􏼑

za
(1)
j

� w
(2)
jk 1−f a

(1)
j􏼐 􏼑

2
􏼔 􏼕,

(21)

)e second partial derivative instead can be expressed as

za
(1)
j

zw
(1)
sj

�
zw

(1)
sj xis

zw
(1)
sj

� xis. (22)

)erefore, by rearranging these equations, the final value
of the partial derivative of the Ei component with respect to
a weight of the hidden layer and of the output layer can be
written as

zEi

zw
(1)
sj

� 􏽘
c

k�1
yik − tik( 􏼁w

(2)
jk 1−f a

(1)
j􏼐 􏼑

2
􏼔 􏼕xis,

zEi

zw
(2)
jk

� yik − tik( 􏼁f a
(1)
j􏼐 􏼑.

(23)

In this way, it is possible to evaluate the gradient and to
optimize the weight values at each iteration.

2.4. Training Algorithm. )e training algorithm adopted in
the current study was similar to that of the gradient descent,
but slightly modified; it was the backpropagation algorithm
of Levenberg–Marquardt [37]. Such an algorithm is of the
second order but does not require the calculation of the
Hessian matrix, which is approximated as

H � JTJ, (24)

where H is the Hessian matrix and J is the Jacobian matrix
that contains the first derivatives of errors (Ei) with respect
to weights. )e gradient g is instead calculated as

g � JTe, (25)

where e is the vector of network errors. )e Jacobian matrix
can be calculated through the equations described above.
)e values of the weights are updated according to an it-
erative procedure similar to that of the gradient descent but
modified as follows:

wτ � wτ−1 − J
Te JTJ + μI􏽨 􏽩

−1
, (26)

where I is the identity matrix. It can be observed that if the
scalar μ increases, it returns to having the gradient descent
algorithm with η small; the parameter μ is changed at each
iteration; in particular, it is reduced to speed up the con-
vergence to the solution.

3. Materials and Methods

)e type of asphalt mixture considered in the current study
was dense asphalt concrete (AC) with diabase aggregates and
conventional or modified bitumen. )e AC mixtures came
from three different projects carried out in Greece, having
various bitumen contents and aggregate gradations. )e
production of some of the AC mixtures was carried out in the
laboratory either as part of the mix design procedure or as part
of stiffness testing of the design mixture. )e rest of the ACs
were produced into a stationary asphalt plant as final mixture
production.

3.1. Aggregates. )e diabase aggregates, depending on the
project, came from three different quarries; their charac-
teristic properties, as well as the test protocols used, are given
in Table 1.

3.2. Bitumen. Two types of bitumen have been used in the
current study, a 50/70 conventional bitumen and a SBS
modified bitumen. )e characteristic properties of the two
bitumen types, along with the test protocols adopted, are
reported in Table 2.

Table 1: Diabase aggregates characteristic properties.

Property Value
Los Angeles coefficient (%)
EN 1097-2 25

Polished stone value (%)
EN 1097-8 55 to 60

Flakiness index (%)
EN 933-3 <25

Equivalent in sand (%)
EN 933-8 >55

Methylene blue value (mg/g)
EN 933-9 <10 (range of values 6.7 to 8.3)

Table 2: Bitumen characteristic properties.

Property
Bitumen type

50/70 SBS modified
Penetration (0.1×mm)
EN 1426 64 45

Softening point (°C)
EN 1427 45.6 78.8

Elastic recovery (%)
EN 13398 — 97.5

Fraas breaking point (°C)
EN 12593 −7.0 −15.0

After aging
Retained penetration (%) — 84
Difference in softening point (°C) — −2.4
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Figure 1: Gradation curves of AC20-50/70L and AC20-ModL.
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Table 3: Properties of AC20-50/70L specimens.

Specimen Bitumen content (%)
(by weight of mix) Voids (%) VMA (%) VFA (%) Marshall stability

(kN) Marshall flow (mm)

AC20-50/70L-1 3.80 8.2 16.0 48.8 15.0 2.2
AC20-50/70L-2 3.80 8.0 15.9 49.3 14.6 2.3
AC20-50/70L-3 3.80 7.8 15.6 50.2 15.1 2.2
AC20-50/70L-4 3.80 8.4 16.2 48.0 15.5 2.2
AC20-50/70L-5 4.20 6.4 15.2 58.1 14.5 2.9
AC20-50/70L-6 4.20 6.1 14.9 59.4 14.5 2.6
AC20-50/70L-7 4.20 6.6 15.5 57.0 14.5 2.6
AC20-50/70L-8 4.20 6.9 15.7 56.1 13.9 2.7
AC20-50/70L-9 4.60 5.2 15.0 65.4 14.1 3.0
AC20-50/70L-10 4.60 5.9 15.7 62.1 13.4 3.1
AC20-50/70L-11 4.60 5.5 15.3 64.0 13.7 2.9
AC20-50/70L-12 4.60 6.3 16.0 60.7 14.4 3.2
AC20-50/70L-13 5.00 3.8 14.7 73.8 12.9 3.4
AC20-50/70L-14 5.00 3.8 14.6 74.1 12.8 3.3
AC20-50/70L-15 5.00 3.6 14.4 75.3 11.3 3.3
AC20-50/70L-16 5.00 3.8 14.7 73.9 13.1 3.2
AC20-50/70L-17 5.40 2.0 13.9 85.8 12.7 4.0
AC20-50/70L-18 5.40 2.1 14.0 84.9 12.0 4.2
AC20-50/70L-19 5.40 2.7 14.6 81.2 11.8 4.4
AC20-50/70L-20 5.40 2.4 14.3 83.0 12.0 4.5
AC20-50/70L-21 5.80 0.7 13.6 94.9 10.5 4.8
AC20-50/70L-22 5.80 0.5 13.5 96.4 10.9 4.7
AC20-50/70L-23 5.80 0.4 13.3 97.4 11.6 4.8
AC20-50/70L-24 5.80 0.5 13.5 96.3 11.2 5.0
AC20-50/70L-25 4.80 47 15.0 68.6 13.1 3.0
AC20-50/70L-26 4.80 4.8 15.1 68.1 12.7 3.2
AC20-50/70L-27 4.80 4.6 14.9 69.1 13.0 3.1
AC20-50/70L-28 4.80 5.0 15.3 67.3 13.0 3.2
AC20-50/70L-29 520 2.1 13.5 84.7 12.0 3.5
AC20-50/70L-30 5.20 2.3 13.7 83.3 11.9 3.6

Table 4: Properties of AC20-ModL specimens.

Specimen Bitumen content (%)
(by weight of mix) Voids (%) VMA (%) VFA (%) Marshall stability (kN) Marshall flow (mm)

AC20-ModL-1 4.20 6.1 14.1 57.1 9.9 2.3
AC20-ModL-2 4.20 6.0 14.1 57.2 8.9 1.9
AC20-ModL-3 4.20 6.4 14.4 55.8 9.8 2.3
AC20-ModL-4 4.60 4.1 13.3 69.2 10.2 3.0
AC20-ModL-5 4.60 4.2 13.3 68.8 9.3 3.1
AC20-ModL-6 4.60 4.7 13.8 66.1 11.9 3.1
AC20-Mod-7 5.00 3.6 13.7 74.1 10.5 3.0
AC20-ModL-8 5.00 4.3 14.4 70.0 10.2 3.9
AC20-ModL-9 5.00 3.5 13.7 74.2 12.4 3.6
AC20-ModL-10 5.60 1.3 13.1 90.4 12.7 5.0
AC20-ModL-11 5.60 2.3 14.0 83.7 11.6 3.5
AC20-ModL-12 5.60 2.4 14.2 82.7 11.7 4.2
AC20-ModL-13 4.60 3.3 12.3 73.4 9.6 3.9
AC20-ModL-14 4.60 3.0 12.1 75.4 9.6 3.1
AC20-ModL-15 4.60 3.7 12.7 71.2 12.1 3.1
AC20-ModL-16 5.00 3.8 13.7 72.6 10.6 3.0
AC20-ModL-17 5.00 4.5 14.4 68.5 11.1 3.9
AC20-ModL-18 5.00 4.8 14.6 67.4 12.2 3.6
AC20-ModL-19 4.9 4.8 15.7 69.5 13.3 3.6
AC20-ModL-20 4.90 4.4 15.4 71.1 13.2 3.5
AC20-ModL-21 4.90 3.6 14.6 75.4 13.3 3.7
AC20-ModL-22 3.80 8.2 16.0 48.8 15.0 2.2
AC20-ModL-23 3.80 8.0 15.9 49.3 14.6 2.3
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3.3. Asphalt Concretes. )e dense asphalt concrete (AC)
mixtures had a maximum aggregate size of 20mm (AC20),
in all cases. In detail, the AC20 mixture with 50/70 con-
ventional bitumen (AC20-50/70L) was produced exclu-
sively in the laboratory, while the AC20s with SBS-modified
bitumen were produced in the laboratory (AC20-ModL)
and in a stationary asphalt plant (AC20-ModP). )e
specimens of all mixtures were compacted in the laboratory
using an impact compactor (EN 12697-30) having a di-
ameter of 100mm and an average thickness of 63.7mm.
)irty specimens for each type of mixture were produced;
hence, total ninety specimens were utilized in the current

study.)e gradations of the AC20-50/70L and AC20-ModL
are given in Figure 1.)e gradations of the AC20-ModP are
given in Figure 2 and correspond to different production
dates throughout the project.

Tables 3–5 show specimens’ volumetric properties (EN
12697-8), Marshall stability, and Marshall flow values (EN
12697-34), per type of mixture. Furthermore, the Marshall
quotient has been computed per each specimen, equal to the
ratio between Marshall stability and Marshall flow. Even if it
has been previously outlined the partial representativity of the
Marshall data with respect to the asphalt concrete behaviour,
such a test is still widely adopted given the large experience

Table 4: Continued.

Specimen Bitumen content (%)
(by weight of mix) Voids (%) VMA (%) VFA (%) Marshall stability (kN) Marshall flow (mm)

AC20-ModL-24 3.80 7.8 15.6 50.2 15.1 2.2
AC20-ModL-25 3.80 8.4 16.2 48.0 15.5 2.2
AC20-ModL-26 4.20 6.4 15.2 58.1 14.5 2.9
AC20-ModL-27 4.20 6.1 14.9 59.4 14.5 2.6
AC20-ModL-28 4.20 6.6 15.5 57.0 14.5 2.6
AC20-ModL-29 4.20 6.9 15.7 56.1 13.9 2.7
AC20-ModL-30 4.20 6.1 14.9 59.4 14.5 3.0

Table 5: Properties of AC20-ModP specimens.

Specimen Bitumen content (%)
(by weight of mix)

Voids
(%)

VMA
(%)

VFA
(%)

Marshall
stability
(kN)

Marshall
flow (mm)

Gradation (refers to
gradations shown in

Figure 2)
AC20-ModP-1 5.22 7.5 19.5 61.4 13.3 3.2 G1
AC20-ModP-2 5.22 7.2 19.2 62.3 12.7 3.3 G1
AC20-ModP-3 5.22 8.1 20.0 59.3 11.7 4.4 G1
AC20-ModP-4 4.89 7.7 18.8 59.0 12.8 3.8 G2
AC20-ModP-5 4.89 8.8 19.8 55.5 11.2 4.1 G2
AC20-ModP-6 4.89 9.1 20.1 54.5 9.4 3.5 G2
AC20-ModP-7 4.49 8.9 18.9 52.9 11.4 3.3 G3
AC20-ModP-8 4.49 9.0 19.0 52.5 11.9 3.6 G3
AC20-ModP-9 4.49 9.7 19.6 50.5 10.6 3.4 G3
AC20-ModP-10 4.86 8.9 19.8 55.0 11.3 3.4 G4
AC20-ModP-11 4.86 8.2 19.1 57.4 11.4 3.1 G4
AC20-ModP-12 4.86 8.8 19.7 55.5 12.6 2.7 G4
AC20-ModP-13 4.72 7.7 19.5 60.5 10.1 5.2 G5
AC20-ModP-14 4.72 8.4 20.2 58.1 8.2 5.4 G5
AC20-ModP-15 4.72 8.7 20.4 57.4 7.8 5.2 G5
AC20-ModP-16 4.81 7.7 19.7 61.2 10.9 5.0 G6
AC20-ModP-17 4.81 7.2 19.3 62.7 10.5 5.4 G6
AC20-ModP-18 4.81 7.2 19.3 62.6 8.1 5.4 G6
AC20-ModP-19 4.40 5.8 17.1 64.7 13.9 3.2 G7
AC20-ModP-20 4.40 5.5 16.9 70.0 14.3 3.6 G7
AC20-ModP-21 4.40 6.1 17.3 63.4 13.2 4.1 G7
AC20-ModP-22 4.92 5.5 18.1 65.3 15.7 3.8 G8
AC20-ModP-23 4.92 4.6 17.3 76.1 14.9 3.9 G8
AC20-ModP-24 4.92 5.2 17.8 70.7 12.3 3.7 G8
AC20-ModP-25 4.92 5.6 18.2 73.6 11.8 3.5 G9
AC20-ModP-26 4.92 6.5 19.0 59.6 10.9 3.9 G9
AC20-ModP-27 4.92 5.2 17.9 73.7 11.4 4.2 G9
AC20-ModP-28 5.04 4.6 17.7 75.6 16.5 3.8 G10
AC20-ModP-29 5.04 5.0 18.0 72.9 14.6 3.9 G10
AC20-ModP-30 5.04 5.1 18.1 70.5 14.0 3.5 G10
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Table 6: Sti�ness tests results.

Specimen Sti�ness modulus
(MPa) Specimen Sti�ness modulus

(MPa) Specimen Sti�ness modulus
(MPa)

AC20-50/70L-1 4900 AC20-ModL 1 5853 AC20-ModP-1 5854
AC20-50/70L-2 4875 AC20-ModL 2 5199 AC20-ModP-2 5839
AC20-50/70L-3 4835 AC20-ModL 3 5590 AC20-ModP-3 5693
AC20-50/70L-4 4867 AC20-ModL 4 5479 AC20-ModP-4 5302
AC20-50/70L-5 4424 AC20-ModL 5 5669 AC20-ModP-5 5535
AC20-50/70L-6 4523 AC20-ModL 6 5045 AC20-ModP-6 4968
AC20-50/70L-7 4605 AC20-ModL 7 4803 AC20-ModP-7 5172
AC20-50/70L-8 4602 AC20-ModL 8 4377 AC20-ModP-8 5806
AC20-50/70L-9 4216 AC20-ModL 9 3538 AC20-ModP-9 5353
AC20-50/70L-10 4205 AC20-ModL 10 4484 AC20-ModP-10 5262
AC20-50/70L-11 4217 AC20-ModL 11 5063 AC20-ModP-11 5532
AC20-50/70L-12 4204 AC20-ModL 12 4776 AC20-ModP-12 5672
AC20-50/70L-13 3775 AC20-ModL 13 5987 AC20-ModP-13 4380
AC20-50/70L-14 3705 AC20-ModL 14 5994 AC20-ModP-14 4378
AC20-50/70L-15 3704 AC20-ModL 15 5950 AC20-ModP-15 4097
AC20-50/70L-16 3777 AC20-ModL 16 2940 AC20-ModP-16 5239
AC20-50/70L-17 3125 AC20-ModL 17 2961 AC20-ModP-17 4049
AC20-50/70L-18 3100 AC20-ModL 18 2930 AC20-ModP-18 4049
AC20-50/70L-19 3204 AC20-ModL 19 5012 AC20-ModP-19 5388
AC20-50/70L-20 3174 AC20-ModL 20 5188 AC20-ModP-20 5453
AC20-50/70L-21 2304 AC20-ModL 21 5840 AC20-ModP-21 5795
AC20-50/70L-22 2405 AC20-ModL 22 5213 AC20-ModP-22 5656
AC20-50/70L-23 2385 AC20-ModL 23 5124 AC20-ModP-23 5600
AC20-50/70L-24 2382 AC20-ModL 24 5125 AC20-ModP-24 5640
AC20-50/70L-25 4103 AC20-ModL 25 5135 AC20-ModP-25 5486
AC20-50/70L-26 4108 AC20-ModL 26 4826 AC20-ModP-26 5154
AC20-50/70L-27 4020 AC20-ModL 27 4852 AC20-ModP-27 5374
AC20-50/70L-28 4078 AC20-ModL 28 4798 AC20-ModP-28 5680
AC20-50/70L-29 3525 AC20-ModL 29 4823 AC20-ModP-29 5968
AC20-50/70L-30 3542 AC20-ModL 30 4765 AC20-ModP-30 5904
Average (MPa) 3830 Average (MPa) 4911 Average (MPa) 5309
Standard deviation
(MPa) 783 Standard deviation

(MPa) 851 Standard deviation
(MPa) 566

Input
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layer
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Bitumen
content

VMA

VFA
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Production
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Figure 3: ANN structure adopted in the current study.
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cumulated over the years [38–41]. Table 5 gives additional
details concerning the correspondence between specimens and
gradations shown in Figure 2.

3.4. Sti�ness Modulus Test. �e Sti�ness modulus has been
evaluated, for all the specimens, in accordance with EN
12697-26, Annex C (IT-CY), assuming the following testing
conditions: temperature of 20°C, target deformation �xed at
5 μm, and rise-time equal to 124ms. �e number of

specimens tested for sti�ness was ninety (90), that is, thirty
(30) for eachmixture, that is, AC20-50/70L, AC20-ModL, and
AC20-ModP. �e sti�ness modulus results are presented in
Table 6.

4. Results and Discussion

4.1. Sti�ness Tests Results. Among the various experimental
results, the sti�ness tests deserve a dedicated discussion. As it
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can be seen from Table 6, the AC mixtures with modi�ed
bitumen resulted in higher sti�ness values than the AC
mixtures with 50/70 penetration bitumen. �is can be at-
tributed to the bene�cial e�ect of the modi�ed bitumen.

�e smaller sti�ness standard deviation was achieved for
the plant-produced mixtures. �is could be attributed to the

machinery of the plant for asphalt production. More ho-
mogeneous mixtures are produced in a plant where large
quantities are handled, and all production steps are auto-
mated, rather than in the laboratory. One of themost sensitive
steps in laboratory production and specimen preparation is
the �lling of the Marshall moulds after asphalt mixing. Since
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the mould �lling is done by hand and the handler may not be
the same in every case, it is normal not to have the same
homogeneity obtained by automated plant procedures.

Considering each specimen sti�ness value obtained in
the current study, it could be stated that the sti�ness values
measured are depending mainly on the type of bituminous
binder, bitumen content, and voids content. Gradation
variations, especially for the plant-produced mixtures, are
indirectly taken into account by the voids content.

4.2. Arti	cial Neural Networks Modelling Results. In the
present study, a three-layer feedforward ANN was used to
model each of the four mechanical parameters considered in
the experimental investigation, namely,Marshall stability, �ow
and quotient, as well as Sti�ness Modulus. �e ANN models
have been developed using the MATLAB® ANN toolbox [42].

�e architecture of the four ANN models has been
optimized with an input layer characterized by seven neu-
rons, one hidden layer with 10 neurons, and an output layer
with one neuron (Figure 3).

All the four ANN models have been elaborated on the
basis of seven type of input data, namely, bitumen type,

bitumen content, �ller-bitumen ratio, air voids, voids in the
mineral aggregates, voids �lled with bitumen, and type of
production process. Such input data have been considered of
fundamental importance to take into account the di�erent
production process (laboratory or plant) and to properly
represent the composition of the asphalt concretes, whichwere
characterized by the same aggregate type, similar gradation,
but prepared with di�erent bitumen contents, binder type, and
�ller-bitumen ratios. �en, the single output neuron is as-
sociated with the speci�c mechanical parameter considered.

�e number of neurons used in the hidden layer (10) has
been optimized by means of a trial and error procedure; in
the literature, it is recommended to use the lower number of
neurons that allow us to obtain satisfactory results [32].

�e experimental data set used for training and testing of
the ANN has included 30 specimens for each of the three
type of asphalt concrete (i.e., 90 specimens overall); there-
fore, all the mixtures, with modi�ed or conventional bi-
tumen, prepared in the laboratory or in the plant, have been
analyzed together. �is was done to obtain, for each of the
four mechanical parameters considered, a unique predictive
model, whatever the composition of the mixture, within the
ambit of the current study.
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Figure 8: Training, validation, testing phases, and all data for the sti�ness modulus (MPa) ANN model.
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�e 70% of the data set was used for the training of the
ANN, a further 15% for the validation and the remaining
15% for the testing. �e sampling process is completely
random and is performed automatically by MATLAB [38].

Figures 4–7 show the comparison between experimental
(target) and predicted (output) data, for the mechanical
parameters analyzed. As it can be observed, the predicted
values, computed by the ANN models, are very close to the
experimental data, for both Marshall parameters and sti�ness
modulus. �is is particularly signi�cant form an engineering
point of view, considering the di�erent characteristics of the
mixtures, in terms of composition and mechanical response.

�e results of the training, validation, and testing phases
of the ANN models can be observed in Figures 8–11.

In order to evaluate the performance of the ANN, two
di�erent statistical indicators are provided by MATLAB,
namely, the coe£cient of correlation (R) and the mean
square error (MSE) [42]; the closest to 1 the R value and
the lower the MSE value, the better the performance of
the ANN. Similar performance indicators have been used

in previous investigations, focused on the mechanical
parameter prediction of asphalt concretes, by ANN
analysis [20–22, 30–32]. �e lowest MSE value (0.67751)
was observed for the prediction of the sti�ness modulus,
while increasing values have been obtained for Marshall
stability, �ow, and quotient (0.9962, 1.6377, and 1.6830,
resp.). �e highest accuracy achieved for the prediction of
the sti�ness modulus has been also con�rmed in terms of
correlation coe£cient, with an R value in the testing phase
equal to 0.98798. However, R values greater than 0.91 were
also obtained for the Marshall parameters (stability, �ow,
and quotient). �erefore, it can be concluded that the ANN
approach allows us to obtain a satisfactory interpretation of
the nonlinear relationships between the input variables
considered and the mechanical parameters analysed.

Also previous studies have veri�ed the good matching
between experimental and ANN model results for sti�ness
[32] and Marshall stability [21]. Nevertheless, other re-
searchers have outlined a worst prediction of Marshall
�ow and Marshall quotient, with respect to Marshall
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stability [20]. According to the results of the present
study, all the Marshall parameters, as well as the sti�ness
modulus, have been predicted by the ANN models with
a comparable quality level.

4.3. Predictive Equations. �e general equation for the
prediction of the mechanical parameter (MP) considered,
obtained by the ANN modelization, is reported in the
following:

MP
f

b
, Va,VMA,VFA, b, Tb, PP( ) � ξ +∑

10

i�1

φi
1 + eαi−βi(f/b)+ciVa+δiVMA+εiVFA+ζ ib+ηiTb+θiPP

, (27)

where f and b are the �ller and the bitumen contents, re-
spectively;Va, VMA, and VFA are the residual air voids, voids
in the mineral aggregate, and voids �lled with bitumen; Tb is
the type of bitumen; and PP is the production process type.
�e other ANN coe£cients are reported in Tables 7–10, for the
sti�ness modulus and Marshall stability, �ow, and quotient,
respectively. �e structure of the equation is characterized by

the contribution of the ten arti�cial neurons, by means of the
ten ANN coe£cients.

Such a predictive model can be very useful to obtain
an analytical estimation of the mechanical parameters
analyzed, without the necessity to perform further ex-
perimental tests. �is approach allows us to identify
more easily and quickly the best mix design option,
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saving time and resources with respect to a direct labo-
ratory evaluation.

5. Conclusions

In the present study, the arti�cial neural network approach
has been used to numerically model the mechanical be-
haviour of asphalt concretes for road constructions.

�emixtures involved in the study were characterized by
two di�erent types of bituminous binder and production
processes, as well as various bitumen contents and conse-
quently di�erent volumetric properties.

A feedforward multilayer ANN architecture, charac-
terized by ten neurons in the hidden layer, has been
elaborated to predict the sti�ness modulus and the Mar-
shall parameters of the mixes considered in the experi-
mental investigation.

�e hyperbolic tangent transfer function and a linear one
have been assumed for the hidden and the output layers,

respectively, whereas the Levenberg–Marquardt optimiza-
tion algorithm was adopted as training algorithm.

�e good results achieved in the testing phase dem-
onstrate that the ANNs have the capability to generalize
the complex relationships between input and output data,
learned in the training phase, so allowing us to elaborate
a satisfactory prediction model for the sti�ness modulus,
as well as for Marshall parameters, whatever the compo-
sition and the production process of the mixtures con-
sidered in the study.

A closed-form equation has been elaborated for each of
the mechanical parameters studied, to allow other re-
searchers and engineers to obtain an estimation of such
parameters, within the type of mixes investigated.

�e present study has demonstrated the feasibility to
obtain, by means of ANN, predictive models of mechanical
parameters (Marshall stability, �ow, quotient, and sti�ness
modulus) very important for the mix design and the
performance characterization of asphalt concretes for road
pavements. However, even if di�erent compositions of the
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Table 7: ANN coefficients for the stiffness modulus prediction model.

ξ Neurons
ANN coefficients

φ α β c δ ε ζ η θ
40409.52 1 −912.11 −6.99 0.25 0.33 −0.31 0.01 3.22 −5.13 2.75

2 6331.62 45.78 −4.27 −0.29 0.00 −0.10 0.63 −3.09 −2.39
3 4915.93 −22.47 2.55 0.18 0.54 0.04 3.11 4.28 −3.84
4 3017.43 −10.94 0.37 −0.09 0.29 0.03 −1.31 −5.40 2.92
5 −312.08 −2.55 0.98 0.21 0.10 −0.07 4.39 −3.91 0.60
6 578.49 −4.37 −1.11 0.18 −0.01 −0.11 4.14 0.57 3.26
7 −2776.52 −11.04 −2.50 −0.14 0.23 0.00 5.76 4.61 1.82
8 −6764.69 −14.24 −0.71 −0.66 0.56 0.10 4.09 2.15 −1.26
9 −1786.82 6.43 0.29 0.58 −0.47 −0.03 1.38 1.97 −0.69
10 6770.06 −16.09 0.73 −0.48 −0.42 0.06 −1.49 2.45 3.56

Table 8: ANN coefficients for the Marshall stability prediction model.

ξ Neurons
ANN coefficients

φ α β c δ ε ζ η θ
128.43 1 −8.77 −34.19 1.74 0.11 −0.56 −0.01 1.92 2.67 7.22

2 −0.68 −13.21 1.02 −0.55 −0.35 −0.01 5.05 6.03 2.48
3 0.63 1.78 2.33 −0.58 0.44 −0.17 5.38 0.11 −3.59
4 −4.25 −71.15 1.28 0.14 1.06 0.04 −7.00 5.56 12.38
5 −7.08 20.27 1.72 0.11 −0.17 −0.08 −5.23 −0.47 −4.63
6 14.56 −13.93 3.31 0.39 −1.02 −0.12 −3.16 3.17 5.80
7 5.93 −8.36 0.66 0.32 0.59 0.09 −3.84 −3.07 −1.39
8 −1.54 1.68 4.46 −0.24 −1.21 0.00 −9.52 −5.23 5.36
9 8.70 37.32 −2.38 −0.38 −0.29 0.01 −0.68 −6.25 −3.96
10 −2.78 9.28 −2.49 0.43 −0.25 0.00 −2.81 −5.09 3.25

Table 9: ANN coefficients for the Marshall flow prediction model.

ξ Neurons
ANN coefficients

φ α β c δ ε ζ η θ
32.70 1 −1.74 −21.08 0.83 −0.18 −0.29 0.09 2.76 3.40 1.33

2 2.40 4.88 −0.91 −0.03 −0.80 −0.04 4.51 2.49 3.06
3 0.95 −3.20 2.20 0.11 0.36 −0.11 −7.09 −1.92 0.12
4 −2.92 −42.06 2.15 0.06 0.76 −0.04 −2.41 3.44 4.79
5 1.00 −18.71 2.74 −0.20 −0.03 0.04 5.72 −1.44 0.31
6 3.59 −4.16 0.08 −0.06 −0.48 0.08 −4.44 2.86 1.83
7 4.08 −10.43 −0.21 −0.44 0.37 −0.09 3.00 −0.26 3.86
8 3.02 29.36 −2.77 0.50 −0.50 −0.06 −0.21 −4.07 −0.39
9 0.71 18.74 −1.40 0.24 −0.43 0.00 −6.08 −1.01 −0.74
10 0.17 −15.74 −1.18 0.01 0.16 0.09 5.56 −1.29 1.34

Table 10: ANN coefficients for the Marshall quotient prediction model.

ξ Neurons
ANN coefficients

φ α β c δ ε ζ η θ
44.71 1 19.58 1.48 2.02 −0.22 0.00 −0.17 −3.89 −2.57 1.59

2 −4.70 −9.24 −2.39 −0.19 0.89 0.00 −2.07 −1.52 4.19
3 −0.78 40.84 −3.64 −0.11 −0.20 −0.19 9.28 −1.77 −2.44
4 −7.96 −42.51 5.98 0.17 −0.09 −0.08 −0.67 −2.79 5.66
5 −1.53 −35.96 4.65 −0.48 −0.09 0.07 −7.57 4.85 2.89
6 4.27 −42.21 2.10 −0.30 0.35 0.03 14.17 4.42 1.91
7 −0.79 13.57 1.02 −0.14 −0.29 −0.25 −2.19 6.67 −1.45
8 −3.73 22.45 −2.62 −0.66 −0.10 −0.10 −1.97 −5.24 3.55
9 1.81 −3.00 0.50 −0.10 0.26 0.16 2.23 −3.70 −2.68
10 6.95 −4.93 1.01 0.73 −0.01 −0.06 −4.69 −6.15 5.16
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mixes have been studied, it would be very useful to increase
the variability of the input parameters, for instance,
considering different sources of the aggregates; this re-
quires just a further new training of the ANN with ad-
ditional experimental data.

Data Availability

All the data underlying the findings of the current paper are
provided in the tables included in the manuscript.
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