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Abstract

The SH2 domain-containing protein-tyrosine phosphatase PTPN11
(Shp2) is required for normal development and is an essential component
of signaling pathways initiated by growth factors, cytokines, and extra-
cellular matrix. In many of these pathways, Shp2 acts upstream of Ras.
About 50% of patients with Noonan syndrome have germ-line PTPN11
gain of function mutations. Associations between Noonan syndrome and
an increased risk of some malignancies, notably leukemia and neuroblas-
toma, have been reported, and recent data indicate that somatic PTPN11
mutations occur in children with sporadic juvenile myelomonocytic leu-
kemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia,
and acute myelogenous leukemia (AML). Juvenile myelomonocytic leuke-
mia patients without PTPN11 mutations have either homozygotic NF-1
deletion or activating RAS mutations. Given the role of Shp2 in Ras
activation and the frequent mutation of RAS in human tumors, these data
raise the possibility that PTPN11 mutations play a broader role in cancer.
We asked whether PTPNI11 mutations occur in other malignancies in
which activating RAS mutations occur at low but significant frequency.
Sequencing of PTPN11 from 13 different human neoplasms including
breast, lung, gastric, and neuroblastoma tumors and adult AML and acute
lymphoblastic leukemia revealed 11 missense mutations. Five are known
mutations predicted to result in an activated form of Shp2, whereas six are
new mutations. Biochemical analysis confirmed that several of the new
mutations result in increased Shp2 activity. Our data demonstrate that
mutations in PTPN11 occur at low frequency in several human cancers,
especially neuroblastoma and AML, and suggest that Shp2 may be a novel
target for antineoplastic therapy.

Introduction

Protein-tyrosine phosphatases (PTPs) have key positive (signal-
enhancing) or negative (signal-attenuating) roles in a variety of nor-
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mal signal transduction pathways. Mutations in PTPs and/or altered
expression of PTPs can contribute to disease, including cancer, auto-
immune disorders, inflammation, and/or developmental defects (1).
The nonreceptor PTP Shp2, encoded by the gene PTPNII, is a
positive (signal-enhancing) signaling component downstream of
growth factor, cytokine, and extracellular matrix receptors and plays
an important role in regulating cell growth, transformation, differen-
tiation, and migration. Genetic and biochemical analysis have estab-
lished that Shp2 is required for normal Ras activation in many of these
pathways (1).

Dominant mutations in PTPNII1 cause ~50% of cases of the
developmental disorder Noonan syndrome (NS). Furthermore, asso-
ciations between NS and increased risk of malignancy, notably leu-
kemia (2) and possibly neuroblastoma (3), were reported in early
studies. Subsequently, somatic PTPN/] mutations were found in
~35% of juvenile myelomonocytic leukemias (JMMLs), 10% of
childhood myelodysplasic syndromes, and at a lower incidence in
other childhood hematopoietic disorders, including B-cell precursor
acute lymphoblastic leukemia (~7%) and acute myelogenous leuke-
mia (AML) (~4%) (4-6).

Shp2 has two Src homology 2 domains at its NH, terminus (N-SH2
and C-SH2, respectively), a catalytic (PTP) domain, and a COOH
terminus containing tyrosyl phosphorylation sites. In the basal state,
the PTP domain is inhibited by intramolecular interaction with N-
SH2. Phosphotyrosyl peptide binding to the N-SH2 domain induces a
conformational change that reverses this inhibition and activates Shp2
(1, 7). Most PTPN11 mutations in NS and leukemia affect N-SH2 or
PTP domain residues involved in basal inhibition of Shp2 (4). The
location of these mutations, the crystal structure of Shp2, our work on
activated mutants of Shp2 (1), molecular dynamic simulations (8), and
functional and biochemical analysis'* (4) suggest that NS/leukemia
mutations are “activated mutants.”

Nearly all IMML cases without PTPN/1 mutations have either an
activating RAS mutation or homozygotic inactivation of the neurofi-
bromatosis type-1 (NFI) gene, whose protein product, neurofibromin,
is a Ras-GTPase activating protein (RasGap). Given the role of Shp2
in Ras/extracellular signal-regulated kinase (ERK) activation, these
findings raise the possibility that Shp2 alterations play a role in other
human malignancies that have a low frequency of RAS mutations but

4 H. Keilhack and B. Neel, Distinct biochemical properties of disease-associated
SHP2-PTPN11 mutants, manuscript in preparation.
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demonstrate an activated Ras/ERK pathway (9). Here, we screened
such tumors for PTPNI] mutations.

Materials and Methods

Complementary RNA and Genomic DNA. Generation of primary lung
adenocarcinoma cRNAs was described previously (10). Genomic DNA was
extracted from previously characterized human lung cancer cell lines using
standard techniques. Genomic DNA from human breast cancer specimens was
obtained from the Dana-Farber/Harvard Cancer Center Breast Program Tissue
Resource. Paraffin-embedded samples of human gastric cancer were obtained
from the Department of Pathology at the Brigham and Women’s Hospital
(Boston, MA), and DNA was purified using the QIAamp DNA extraction kit
(Qiagen, Valencia, CA). Neuroblastoma DNAs were obtained from the Chil-
dren’s Oncology Group Neuroblastoma Nucleic Acids Bank (Children’s Hos-
pital of Philadelphia). DNA samples from human colon tumors were described
previously (11). DNA samples from prostate cancers were obtained from the
Department of Medical Oncology at the Dana-Farber Cancer Institute (Boston,
MA); AML, acute lymphoblastic leukemia (ALL), and polycythemia vera
(PV) DNAs were provided by the Department of Medicine at the Brigham and
Women’s Hospital, and melanoma DNAs were from the Department of Pedi-
atric Hematology/Oncology at the Dana-Farber Cancer Institute and Children’s
Hospital (Boston, MA). DNA from astrocytomas and medulloblastomas was
from the Department of Cancer Biology at the Dana-Farber Cancer Institute,
and glioblastoma cell lines were from the American Type Culture Collection.
All studies were approved by the institutional review boards of the Beth
Israel-Deaconess Medical Center and other participating institutions.

Reverse Transcription-Polymerase Chain Reaction, Genomic DNA Po-
lymerase Chain Reaction, and DNA Sequencing. For sequencing cRNAs,
reverse transcription-polymerase chain reaction (RT-PCR) was performed
using Superscript One-Step RT-PCR and the Platinum Taq kit (Life Technol-
ogies, Inc., Gaithersburg, MD), as described previously (12). DNA amplifica-
tion used M13-tagged primers against three segments of SHP2: segment 1
(first 631 bp), GTAAAACGACGGCCAGTCCTGAGCAAGGAGCGGGT
(forward primer) and CAGGAAACAGCTATGACCAGGATTCTTCTTAT-
AATGT (reverse primer); segment 2 (nucleotide 631-1277); GTAAAAC-
GACGGCCAGTGAACTGAAATACGACGTTG (forward primer) and CAG-
GAAACAGCTATGACCAGTTTAAGTTCTCTTAGCG (reverse primer);
and segment 3 (nucleotide 1278-1928), GTAAAACGACGGCCAGTAG-
TATGCTCTAAAAGAATA (forward primer) and CAGGAAACAGCTAT-
GACCACATCTATTTCTGTGCTGAAG (reverse primer).

PTPNI1 exons were amplified from genomic DNAs by polymerase chain

reaction (PCR) using exon-specific primers and reamplified by nested PCR
using M13-flanked primers (Table 1). Reactions were performed in a 25-uL
volume containing 5 ng of genomic DNA, 0.1 uL (0.5 unit) of Platinum Taq
DNA polymerase (Life Technologies, Inc.), 1 uL of 10 wmol/L stock solution
of each primer, 1 uL of 50 mmol/L MgCl,, 0.5 uL of 10 mmol/L deoxynucle-
otide triphosphate mix, and 2.5 puL of 10X PCR buffer. Cycling parameters
were as follows: 8 minutes at 94°C, 34 cycles of amplification consisting of 45
seconds at 94°C, 30 seconds at 60°C (exons 2, 3, 5, 10, 11, 13, 14, and 15) or
30 seconds at 57°C (exons 4, 6, 7, 8, 9, and 12) and 45 seconds at 72°C,
followed by a final extension step of 72°C for 10 minutes. Amplified DNAs
were sequenced by Agencourt Bioscience Corp. (Beverly, MA).

Protein-Tyrosine Phosphatase Assays. PTP activity assays were per-
formed using the artificial substrate RCM-lysozyme, essentially as described
previously (13).

Results and Discussion

Genomic DNA was obtained from 65 lung cancer cell lines, 9
prostate cancer cell lines, 15 prostate tumors, 100 breast tumors, 40
gastric tumors, 189 colon tumors, 65 AMLs, 11 ALLs, 5 PVs, 10
melanomas, 9 astrocytomas, 9 glioblastomas, 9 medulloblastomas,
and 89 neuroblastomas. We also analyzed cRNAs from 118 well-
characterized lung tumors (10). The whole PTPN1I coding region of
118 lung, 24 colon, and 40 gastric carcinomas was sequenced. For the
remaining samples, we sequenced either exon 3 alone (165 colon
cancers) or exons 2, 3,4, 5,7, 8, and 13, which comprise the SH2 and
PTP domains (all other neoplasms). These regions were chosen for
more intensive sequencing because nearly all reported associated
PTPNI11 mutations lie within them (2, 4-6).

Eleven somatic missense mutations of PTPN/I were found in these
samples (Table 2). Five of these are mutations known or predicted to
result in an activated form of Shp2. Six of the mutations have not been
described previously. We found an additional 87 silent nucleotide
changes (Table 3), all of which have been reported previously as
single nucleotide polymorphisms (SNPs) in control individuals (2).
These changes include 81 intronic SNPs and 6 synonymous changes
in exon 3.

Mutations of the N- or K-RAS genes occur in 15% to 30% of AML
patients. In 65 adult AML samples, we found four PTPN1] mutations:
D61Y, a known mutation in childhood leukemia, and three new

Table 1 Exon-specific and M13 flanked nested PCR primers used in amplification of PTPN11 genomic DNA
Forward Reverse

Exon 2 PCR CTGATCATATCCCCAGACAC GGCTCAGATAAGGCCTTCA
Exon 2 nested PCR GTAAAACGACGGCCAGTACTGAATCCCAGGTCTCTACCAAG CAGGAAACAGCTATGACCCAGCAAGCTATCCAAGCATGGT
Exon 3 PCR TCCTTGGGTTTCTTTCAACACT GCTATTAGTCTCTCTTTAGTAATTC
Exon 3 nested PCR GTAAAACGACGGCCAGTCGACGTGGAAGATGAGATCTGA CAGGAAACAGCTATGACCCAGTCACAAGCCTTTGGAGTCAG
Exon 4 PCR GATTGATCAATCCCTTGGAG GTCACCAGACCCAACGT
Exon 4 nested PCR GTAAAACGACGGCCAGTAGGAGAGCTGACTGTATACAGTAG CAGGAAACAGCTATGACCCATCTGTAGGTGATAGAGCAAGA
Exon 5 PCR AGTTGTCTCTATATACTAGCTA GGGTGACAGAGTAAGAC
Exon 5 nested PCR GTAAAACGACGGCCAGTCTGCAGTGAACATGAGAGTGCTTG CAGGAAACAGCTATGACCGTTGAAGCTGCAATGGGTACATG
Exon 6 PCR TGCATTAACACCGTTTTCTGTAATA TCAAGTCTCTCAGGTCCAATT
Exon 6 nested PCR GTAAAACGACGGCCAGTTTTCTGTAATATTTTCTTTATTTTACA CAGGAAACAGCTATGACCCCAATTCCAAACACAAGAG
Exon 7 PCR CAGATGAACATTCTTGTAGCT GATGTGCTAACAAGAGCAC
Exon 7 nested PCR GTAAAACGACGGCCAGTGAACATTTCCTAGGATGAATTCC CAGGAAACAGCTATGACCGGTACAGAGGTGCTAGGAATCA
Exon 8 PCR GCATTTTGAGACATCAGGCA GCTTTGAATTGTTGCACTTGG
Exon 8 nested PCR GTAAAACGACGGCCAGTGACATCAGGCAGTGTTCACGTTAC CAGGAAACAGCTATGACCCCTTAAAGTTACTTTCAGGACATG
Exon 9 PCR ACATCAATGCAAATATCATCATG AGCTTAATTCATTTATTCAATTCCT
Exon 9 nested PCR GTAAAACGACGGCCAGTGTAAGCTTTGCTTTTCACAGTG CAGGAAACAGCTATGACCCTAAACATGGCCAATCTGACAT
Exon 10 PCR TTCCATGTTGGTGGTTATTAAGCA TGCATGTATGCAAACATGAGTAAC
Exon 10 nested PCR GTAAAACGACGGCCAGTGCAAGACTTGAACATTTGTTTGTTGC CAGGAAACAGCTATGACCGACCCTGAATTCCTACACACCATC
Exon 11 PCR AGTTGCCTCCAGGATTGCC CAAAATGTCCCTCAATGCAGTTG
Exon 11 nested PCR GTAAAACGACGGCCAGTCAAAAGGAGACGAGTTCTGGGAAC CAGGAAACAGCTATGACCGCAGTTGCTCTATGCCTCAAACAG
Exon 12 PCR TAGACAATTTTATAAATAGCTCCAAAG TCAACCTCTCTTCCCCAGA
Exon 12 nested PCR GTAAAACGACGGCCAGTGCTCCAAAGAGTAGACATTGTTTC CAGGAAACAGCTATGACCGACTGTTTTCGTGAGCACTTTC
Exon 13 PCR CTGGGATCATTGGTATTGGT GTCTATCAGAGCCTGTCC
Exon 13 nested PCR GTAAAACGACGGCCAGTCAACACTGTAGCCATTGCAACA CAGGAAACAGCTATGACCCGTATCCAAGAGGCCTAGCAAG
Exon 14 PCR TCCCCTTAAAATAACCATTGTC ACACTAACAGTAGGGCAAC
Exon 14 nested PCR GTAAAACGACGGCCAGTACCATTGTCCCTCACATGTGC CAGGAAACAGCTATGACCCAGTGAAAGGCATGTGCTACAAAC
Exon 15 PCR CTATCTCTTCTCTCCCTGG ACACTTTGCTAAAACATTCCCAAAT

Exon 15 nested PCR GTAAAACGACGGCCAGTCAGGTCCTAGGCACAGGAACTG

CAGGAAACAGCTATGACCACATTCCCAAATTGCTTGCCT
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Table 2 Mutations of PTPN11 in human cancer

Tumor type No. of cases Exon Mutations
Lung adenocarcinoma (1) 118 3 E76V
Lung cancer cell lines (2) 65 2 V45L
3 N58S
Colon cancer (1) 196 3 E76G
AML (4) 65 3 D61Y
3 E69V
8 R289G
13 G503V
Neuroblastoma (3) 89 3 Y62C
3 E69K
13 T507K
Melanoma (1) 10 4 R138Q

NOTE. New mutations are shown in bold. The total number of mutations is indicated
in parentheses.

mutations, E69V, R289G, and G503V. Although E69V has not been
reported previously, E69Q and E69K have been found in NS and
JMML, respectively (4, 14). Asp®' and Glu®® are located within the
N-SH2 domain at the N-SH2/PTP interface. The other two mutations
are located in the PTP domain, although only G503V maps to the
interface (Fig. 1; Table 2). Both Asp®' and Gly®® are part of the
hydrogen bond network that stabilizes N-SH2 domain binding to
the enzyme active site (1). Alterations of the residues in the interface
between the “backside” of the N-SH2 and PTP domains would be
expected to relieve basal inhibition and yield “activated” mutants. The
R289G mutation, however, is not located within the N-SH2/PTP
interface.

Four NS patients were reported to develop neuroblastoma, suggest-
ing a possible association with PTPNI] mutations (3). Indeed, we
found three PTPNII mutations in 89 primary neuroblastomas sur-
veyed. Two lie within the N-SH2 domain: Y62C, a new mutation
(although Y62D is found in NS and JMML), and E69K, a known
leukemia-associated mutation. Another new mutation, TS07K, lies
within the PTP domain (Fig. 1; Table 2). All of the neuroblastoma
mutations are located within the N-SH2/PTP interface. The corre-
sponding normal DNA of the first sample (Y62C) harbors the same
mutation, indicating that it is a germ-line alteration and that the patient
probably has an undiagnosed, poorly penetrant case of NS. The
corresponding DNA from normal tissue of the two other patients had
the wild-type (WT) PTPNII sequence, demonstrating the somatic
nature of these mutations.

Neuroblastoma is a malignant childhood tumor of migrating neu-
roectodermal cells derived from neural crest and destined for the
adrenal medulla and the sympathetic nervous system (15). The clinical
behavior of neuroblastomas is variable, with occasional spontaneous
regression in infants and differentiation into benign ganglioneuroma
in some older patients. In most cases, however, neuroblastoma is
metastatic at the time of diagnosis and progresses rapidly with a lethal
outcome. The mechanisms underlying this diverse behavior remain
unclear. RAS mutations occur rarely in neuroblastoma, but 4 of 10
human neuroblastoma lines express little or no neurofibromin, and 2
of these lines have NF/ mutations. It will be important to determine
whether PTPN11 mutation alters clinical outcome.

K-RAS mutations are found in ~30% of pulmonary adenocarcino-
mas. Furthermore, ~10% of non—small-cell lung carcinoma (NSCLC)
patients have EGFR mutations (16, 17). Previous work revealed two
B-RAF mutations in a panel of 127 primary pulmonary adenocarci-
nomas (12). We sequenced 118 of these samples and found one
missense variant (E76V) located within the N-SH2/PTP interface
(Fig. 2B; Table 2). The corresponding normal tissue lacked this
change, proving that this is a bona fide tumor-associated mutation
(Fig. 2A). This tumor had no mutations in K-RAS, B-RAF, or EGFR,
suggesting, as discussed below, that these mutations are largely mu-

tually exclusive (10). Analysis of 65 NSCLC lines revealed two
additional mutations, both of which were in N-SH2: V45L (HCC1171
cells) and N58S (H661 cells; Table 2; Fig. 1). Val*” is located in the
N-SH2 domain but maps to the phosphotyrosine peptide-binding
pocket rather than the N-SH2/PTP domain interface. Asn’® is a key
residue in the N-SH2/PTP interface hydrogen bonding network (1, 7),
so N58S is probably an activating mutant. Consistent with our find-
ings in neuroblastomas, the H661 cell line has neither BRAF nor RAS
mutations (18). HCC1171 has a G12C RAS mutation, however, sug-
gesting that in some cases, PTPNI1 mutations may collaborate with
other activating mutations in the Ras/ERK pathway. Although Shp2 is
clearly required for Ras/ERK activation, several studies indicate ac-
tions downstream or parallel to Ras as well (1).

We also found one known PTPNI] mutation in a colon tumor:
E76G. This residue, which maps to the N-SH2/PTP interface, is a hot
spot for JMML mutations. The corresponding normal DNA of this
sample lacked this mutation, demonstrating its somatic nature. This
particular tumor exhibits “nucleotide instability” with an increased
frequency of somatic alterations, but without microsatellite instability.
It has WT RAS, but a mutated B-RAF (R4611).

In melanoma, wherein B-RAF, N-RAS, or K-RAS mutations occur in
>60% of cases (19), we found one new mutation (R138Q), located in
phosphotyrosyl peptide binding pocket of the C-SH2 domain. This
motif is critical for the binding of SH2 domains to tyrosine-phospho-
rylated residues. The corresponding normal DNA of this sample lacks
this mutation, demonstrating that it is not a polymorphism. Because
the C-SH2 does not make significant contact with the N-SH2/PTP
domain interface, and its role in activation remains controversial,
additional experiments are required to address the mechanistic signif-
icance of this mutation.

No mutations were found in astrocytoma, glioblastoma, medullo-
blastoma, ALL, PV, and breast, prostate, and gastric cancers. This
could be explained by the low number of samples tested (glioma, PV,
and ALL) and/or by the possibility that other oncogenic changes, such
as ERBB2 amplification (breast cancer), can activate the Ras/ERK
pathway in these tumors.

Finally, we tested the biochemical effects of several of the new
PTPNI1 mutations described herein. PTP assays carried out with the
artificial substrate RCM-lysozyme revealed that the N-SH2 mutations
V45L (3.5 X), Y62C (2.5 X), and E69K (15.5 X) all were basally
activated compared with WT Shp2 (Fig. 2C). In contrast, the PTP
domain mutation R289G found in an AML patient was not activated
and instead showed decreased catalytic activity in this assay. Addi-
tional studies will be required to determine whether this mutant is less
stable under these conditions, whether it is activated only against

Table 3 Polymorphisms in PTPNI1

Location Nucleotide change Tumor type No. of cases
Exon 3 255 C—T (H85H) AML (1) 65
Breast cancer (2) 100
Neuroblastoma (3) 89
Intron 4 +12 G—=C Lung cell lines (3) 65
Breast cancer (5) 100
AML (1) 65
PV (1) 5
Intron 7 —21 C=T Neuroblastoma (20) 89
Breast cancer (16) 100
Prostate cancer (6) 24
Lung cell lines (2) 65
AML (11) 65
ALL (2) 11
Astrocytoma (2) 9
Glioblastoma (1) 9
Medulloblastoma (2) 9
—32 A—=C Neuroblastoma (4) 89
Intron 9 -9 C—A Gastric cancer (5) 40

NOTE. The total number of nucleotide changes is indicated in parentheses.
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Known mutations
AML: GBOA; DBE1Y:
F71K; A72V; T73l,
E76G,K

JMML: G60R; D61Y,V, N;
Y62D; E69K; AT2T,V; T73l;

E76K\V.GA, Q
N

MDS: G60V; D61V; EBIK;
F71L; A72V: E76A
CMML: Y63C
t-MDS: F71K
/ JMML E139D

ALL: P491S, L;

S502P: Q510K  JMML: G503A,R; Q506P

ALL: N58Y; D61Y,
V; EB9K; AT2V, T, AML: T507K
D; E76G, Q, K
Fig. 1. Distribution of known (fop panel) and
newly discovered (bottom panel) PTPNII muta-
tions in human cancer. Novel amino acid changes .
are in bold. PTP Domain —
Lung cancer Melanoma AML AML
E76V; V46L; N58S R138Q R289G G503V
Neuroblastoma
ECT%EH cancer Neuroblastoma T507K
AML Y62C; E69K
E69V

New mutations

some substrates (and not the artificial substrate tested here), and/or
whether PTPNI1 mutations can contribute to oncogenesis by mech-
anisms other than increased basal PTP activity. Furthermore, because
we do not have DNA from the normal tissue of this patient, we cannot
exclude that R289G is a rare, not previously reported SNP. Notably,
V45L, which does appear to be a functionally significant PTPN11
mutation, is encoded by exon 2, which is often excluded from screens
for disease-associated PTPNI1 mutations. This finding, together with
data indicating that T42A, a NS-associated mutant, also is enzymat-
ically activated,'* argues for caution in interpreting negative findings

from sequencing only the more commonly affected exons 3 and 13 of
PTPNI1.

RAS mutations are found in many human malignancies (9). Other
tumors exhibit ERK activation but have normal RAS. Such tumors can
have mutations in other Ras/ERK pathway components. For example,
>60% of melanomas have B-RAF mutations (19), and >60% of
colorectal cancers have either RAS or B-RAF mutations that occur in
a mutually exclusive fashion (20). Taken together, the previously
described studies of childhood leukemias, the known role of Shp2 as
a regulator of the Ras/ERK pathway, and the present findings provide
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Fig. 2. Selected PTPN11 mutations in human tumors. DNA sequence of normal tissue (A) and in a lung adenocarcinoma (B) from the same individual, displayed with Mutation
Explorer software (SoftGenetics, State College, PA). The first box contains the reference sequence chromatogram, the second box contains the forward sequence chromatograms from
normal (A) or tumor (B) tissue, the third and fourth boxes contain a computed comparison between the sample and the reference displaying a peak at the observed alteration, and the
fifth box contains the reverse sequence chromatograms. C, PTP assays using the artificial substrate RCM-lysozyme and purified recombinant WT Shp2, the lung adenocarcinoma mutant
V45L, the AML mutant R289G, and the neuroblastoma mutants E69K and Y62C. Values are mean & SD of triplicates. All values were normalized to WT Shp2.
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evidence that sporadic PTPNI1 mutations contribute to the pathogen-
esis of other human tumors. Indeed, in preliminary studies, we have
found that small interfering RNA-mediated knockdown of Shp2 (WT
and N58S mutant) impairs basal and EGF-induced ERK activation in
H661 cells (data not shown). Further work is needed to determine the
effects of selective elimination of the mutant Shp2 protein in these
cells.

Although PTPNI1 mutations are rare, alterations in other signaling
molecules have recently been shown to have dramatic pathophysio-
logic significance. For example, activating EGFR mutations are also
infrequent but predict clinical response of NSCLC to the EGFR
inhibitor geftinib (Iressa) (16, 17). Thus, Shp2 may be a novel target
for antineoplastic therapy, particularly in AML and neuroblastoma.
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