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The influence of dynamics and speech
on understanding humanoid
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Abstract
Human communication relies mostly on nonverbal signals expressed through body language. Facial expressions, in par-
ticular, convey emotional information that allows people involved in social interactions to mutually judge the emotional
states and to adjust its behavior appropriately. First studies aimed at investigating the recognition of facial expressions
were based on static stimuli. However, facial expressions are rarely static, especially in everyday social interactions.
Therefore, it has been hypothesized that the dynamics inherent in a facial expression could be fundamental in under-
standing its meaning. In addition, it has been demonstrated that nonlinguistic and linguistic information can contribute to
reinforce the meaning of a facial expression making it easier to be recognized. Nevertheless, few studies have been
performed on realistic humanoid robots. This experimental work aimed at demonstrating the human-like expressive
capability of a humanoid robot by examining whether the effect of motion and vocal content influenced the perception of
its facial expressions. The first part of the experiment aimed at studying the recognition capability of two kinds of stimuli
related to the six basic expressions (i.e. anger, disgust, fear, happiness, sadness, and surprise): static stimuli, that is,
photographs, and dynamic stimuli, that is, video recordings. The second and third parts were focused on comparing the
same six basic expressions performed by a virtual avatar and by a physical robot under three different conditions: (1)
muted facial expressions, (2) facial expressions with nonlinguistic vocalizations, and (3) facial expressions with an emo-
tionally neutral verbal sentence. The results show that static stimuli performed by a human being and by the robot were
more ambiguous than the corresponding dynamic stimuli on which motion and vocalization were associated. This
hypothesis has been also investigated with a 3-dimensional replica of the physical robot demonstrating that even in case of
a virtual avatar, dynamic and vocalization improve the emotional conveying capability.
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Introduction

Our ability to process facial information is so quick and

apparently effortless that most people take it for granted.

Faces are incredibly important to us and thanks to their

innate expressiveness they are used for a wide variety of

purpose. A brief glance at a human face can give us impor-

tant information about age, gender, or social status used to

identify the person, and about emotional state, intentions,
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or attentions used to understand the person, especially dur-

ing social situations. This has led to a huge interest in the

scientific study of faces since the 1800s with the first books

concerning systematic descriptions of the movements of

the facial muscles.1–3

One of the most remarkable books about the study of

facial expressions in humans is The Expression of the Emo-

tions in Man and Animals written by Charles Darwin in

1872.2 The aim of the book was “to ascertain, indepen-

dently of common opinion, how far particular movements

of the features and gestures are really expressive of certain

states of the mind.”2 Darwin was mainly interested in

investigating the universality of emotional expressiveness

and hypothesized that the so-called six basic expressions,

that is, happiness, sadness, anger, fear, surprise, and dis-

gust, contain emotion-specific patterns of facial elements

which make them biologically determined and universally

recognizable by all people in spite of race and culture.

The universality of facial expressions led to the further

work and study of Paul Ekman and Wallace Friesen who

nearly 100 years later proposed to encode and decode the

facial expressions. Based on the evidence that some facial

expressions of emotion were universal,4–6 in 1976, Ekman

and Friesen developed a procedure for measuring visibly

different facial movements based on an anatomical analysis

of facial actions.7 This method called Facial Action Coding

System (FACS) aimed at describing any facial expression a

human being can make in terms of anatomically based

Action Units (AUs), that is, the unit of measurement defin-

ing an observable independent movement of the face. There

is not always a 1:1 correspondence between AUs and mus-

cle movements: An AU can include more than one muscle

and vice versa, one muscle can be described by more than

one action. By now, the FACS has become a standard

widely used by scientists in emotion research field.

Recently, the commonly held hypothesis about the six

basic emotions as universally recognized and easily inter-

preted by all has been questioned from different points of

view. Jack and his team8 suggested that there are only four

basic emotions. Their research demonstrates that dynamic

FACS-based facial expressions transmit an evolving hier-

archy of signals over time, from simpler and biologically

innate face signals in the early stage of the dynamics sup-

porting the discrimination of four categories, that is, happy,

sad, fear/surprise, and disgust/anger, to more complex spe-

cific signals that finely discriminate the six facial expres-

sions of emotion. This result is argued by observing that the

confusions between surprise and fear and between disgust

and anger are due to common transmission of the same

AUs. In particular, both surprise and fear involve the acti-

vation of the Upper Lid Raiser (AU5) and the Jaw Drop

(AU26) AUs followed up by the Upper Lid Raiser (AU5).

The discrimination of surprise from fear is achieved due to

the activation of the Lip Stretcher (AU20) AU. On the other

hand, disgust and anger are initially confused due to the

similarity of the Nose Wrinkler (AU9) AU which appears

in disgust and the Brow Lowerer (AU4) AU which appears

in anger. Disgust is discriminated from anger mainly by the

activation of the Lip Corner Depressor (AU15) and the

Lower Lip Depressor (AU16) AUs. In a recent paper, Cri-

velli and colleagues9 highlighted that the assumption that

the facial expression interpretations are pan-cultural

derives largely from Western societies. They studied two

different cultures, Spaniards and the Trobrianders (a tribe

of Papua New Guinea), and found that a wide-eyed gasping

face was interpreted as fear by Spaniards, as commonly

happened in western culture, and as anger by Trobrianders.

As counter-check, by asking to select the face that was

threatening, Spaniards chose an angry scowling face,

whereas Trobrianders chose the fear gasping face. These

studies led the question about the interpretation of facial

expressions open to new theories about how humans inter-

pret and categorize facial expressions that could defy the

universality of facial expressions. On the other hand, the

whole idea of existence of basic emotions is also being

questioned in the field of affective science. The field of

affective science is characterized by the existence of vari-

ous schools of thoughts and each one of these school of

thought has a different look at emotions. Constructivist

theorists such as Barrett10 and Russell11 contest the exis-

tence of basic emotions and consider the neurophysiologi-

cal states of valence and arousal as the building blocks for

the human emotional system. Appraisal theorists such as

Scherer12 and Frijda13 consider appraisal components as

the building blocks for the human emotional system.

A more comprehensive survey about the various emotion

theories can be found at Moors.14

Nevertheless, it is not the focus of this article to engage

in the ongoing debate regarding the nature of emotions. The

study covered in this article is based on Ekman’s basic

emotion theory as due to the popularity and maturity of

Ekman’s FACS theory a sufficient quantity of material,

guidelines, and measurement tools is available which

makes the basic emotion theory more convenient for

designing facial expression for robot and virtual human

as well as for evaluating the facial expressions.

The emotion recognition ability has been widely studied

both by using static stimuli,15–19 that is, photographs of the

apex or peak of an expression, and by using dynamic sti-

muli,20–24 that is, neutral faces gradually unfolding into

emotional expressions. Indeed, real-life social situations

are characterized by dynamic facial behaviors; therefore,

it had been hypothesized that the motion inherent to facial

expressions over the time plays a crucial role in discrimi-

nating and understanding them correctly.7,25,26 This

hypothesis has been also confirmed by neurological studies

which found that patients were able to normally recognize

dynamic facial expressions, although they were not able to

recognize emotions shown as static pictures by suggesting

that our brain elaborates static and dynamic expressions

separately.27–31
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As dynamics is intrinsic in facial movements, auditory

information is instinctive in conveying facial expressions.

Through the vocal channel, the meaning of a facial expres-

sion can be reinforced with nonlinguistic vocalizations, for

example, crying, hums, grunts, laughter, or shrieks, and

verbal expressions that carry explicit linguistic content.

Our ability to recognize emotions from facial expressions

integrated with nonlinguistic vocalizations32–36 or with ver-

bal information15,37–39 has been widely studied demonstrat-

ing that the average performance in recognizing the basic

emotions is generally higher than the case of facial expres-

sions without auditory information. Indeed, acoustic fea-

tures of tone, pitch, intensity, and duration contribute to

convey the meaning of the emotions such as anger, fear,

happiness, and sadness.38,40,41 Most research studies have

been conducted using human stimuli, that is, emotions con-

veyed by human beings.16,42–45 However, especially in the

last decade, thanks to the advances in computer graphics

and robotics, anthropomorphic virtual and robotic charac-

ters have been used as research tools for investigating

aspects of human social communication. Virtual avatars

with advanced expressive capabilities are typically used

as tutors, storytellers, or caregivers.46–50 Relative few stud-

ies have been focused on investigating these aspects on

anthropomorphic robots.19,51–53 Instead, robots endowed

with highly anthropomorphic body equipped with sensors

raise more challenges due to technical limitations, for

example, there are some important differences in the way

the human muscles and the robot servomotors actuate the

face, and mechanical constraints, for example, the reduced

space inside an artificial skull or a body where servomotors

are placed. Moreover, creating such artificial empathic

machines means making them able to communicate with

humans in a believable way.

The concept of believability introduces a long-standing

debate started by the roboticist Masahiro Mori in the late

1970s when he proposed the “Uncanny Valley” hypothesis:

The acceptance of a humanoid robot in terms of perceived

familiarity increases hand in hand with its human-likeness

until a certain point where the excessive realism causes an

eerie sensation evoking a negative effect.54,55 More

recently, Tinwell and collegues56 working on human-like

virtual characters, proposed the Uncanny Wall rather than

the Uncanny Valley. Starting from the question “We will

ever overcome the Uncanny Valley?,” they changed the

point of view and pointed out that rather than scrambling

out of the valley, it would be more right to think about it as

an unsurpassable wall as she states “We may continue to

scale the uncanny wall as new human-like characters are

introduced in games and animation, but there will never be

the opportunity to peak the extending wall.”57

The question of believability is increasingly important

since robots have already become part of our daily life. The

type of interaction is definitely based on the nature of the

robot itself in order to maintain the illusion of dealing with

a real human being. Thus, the aesthetic aspect is the first

significant element that impacts a communication. Then

the behavioral aspect is a crucial factor in evaluating the

ongoing interaction. Indeed, we have more expectations

when interacting with anthropomorphic robots and we tend

to define them believable if they respect human social con-

ventions. Therefore, human–robot interaction (HRI)

researchers are focused both on increasingly anthropomor-

phizing the embodiment of the robots and on giving the

robots a realistic expressive behaviour.58,59

The research hypotheses

A previous experiment organized at the University of Pisa,

Italy was focused on evaluating the contribution of the

physical embodiment of a humanoid robot in expressing

emotions.60 The robot used in that experiment was

mechanically similar to the one used in this current study

with human-like expressive capability and aesthetically

resembles a real woman. This study compared 2-D pictures

and 3-D models of human and robot expressions with the

expressions performed by the robot itself in real time. The

first result showed a similar participants’ performance in

understanding the human and robot static expressions, that

is, 2-D pictures and 3-D models. A second result high-

lighted that the expressions performed by the physical

robot in real time obtained a higher recognition rate com-

pared to the same expressions showed as 2-D pictures and

3-D models. These results support the hypothesis that the

physical embodiment and the motion inherent to the robot’s

expressions could improve the participants’ performance in

understanding emotions conveyed by a humanoid robot.

On the basis of the previous experiment, the hypotheses

that guided this new experiment are as follows.

H1: Evaluating whether the expressions performed by a

humanoid robot are positively influenced by the

dynamic aspect as it happens in case of human facial

expressions by comparing static and dynamic expres-

sions of a human female and a humanoid robot.

H2: Examining whether the auditory information that

plays an important role in understanding the emotional

meaning of facial expressions of humans during their

social interactions has the same positive effect in dis-

criminating the expressions performed by a humanoid

robot compared to a virtual avatar which represents its

3-D replica endowed with human-like expressive skills.

Dynamics and vocalizations are innate in human com-

munication and are commonly considered obvious factors

that contribute to discriminate and interpret the meaning

of facial expressions. Conversely, these factors are not

obvious in designing a robot that resembles a human being

and mimics human gestures. This field of research has to

face a wide variety of challenges that depends both on the

nature of the robot itself, for example, linking the motor

control for performing facial expressions with a vocal

Lazzeri et al. 3



engine for producing vocalizations aligned with the mean-

ing of the face is still a challenging aspect, and on the

domain-specific context where the robot has to perceive

and react to the human activity in real time with a natural

and lifelike behavior. Therefore, the novelty of this

research is focused on understanding the contribution on

dynamics and vocalization in facial expressions per-

formed by a robot and demonstrating that a robot physi-

cally similar to a human being in shape and aesthetics but

with more mechanical limits due its nature can become an

emphatic machine, that is, a machine able to express emo-

tions in a believable way as humans do and associable

with affective meanings.

Related works

A growing number of studies are dedicated to understand-

ing how people perceive and elaborate emotional infor-

mation and which features are relevant elements in

recognizing facial expressions. Most of these studies are

focused on recognizing or scoring static stimuli shown as

photographs, for example, facial expressions with differ-

ent levels of intensity, both of human beings and of var-

ious kinds of expressive robots.19,47,48,61 Verbal and

nonverbal communications, however, are clearly dynamic

except in rare situations. Therefore, it is reasonable to

hypothesize that dynamic stimuli can be detected and

decoded more easily or naturally than static sti-

muli.20,21,62,63 However, despite evidences that motion

improves the recognition of a facial expression, other

studies found no differences between dynamic and static

conditions64 which could be explained by the fact that

some facial expressions can be characterized by few dis-

tinctive features, for example, a smiling mouth for a happy

expression, which allows to discriminate them. Indeed,

when the details that are typical of the target expression

are evident, it is possible to recognize the expression even

before it reaches its apex.

Due to the nature of the stimuli and the different meth-

odologies used in the experiments, it is difficult to state a

well-defined result. However, the experimental studies

focused on investigating the difference between static and

dynamic stimuli have raised the question whether dynamic

facial expressions produce different results from static

expressions.

In addition to dynamics, human communication nor-

mally includes verbal messages with a linguistic meaning

and a variety of paralinguistic speech features that do not

carry linguistic content such as speech rate, loudness, and

pitch. These communicative aspects can reinforce the

meaning of a bodily expression if they are congruent, that

is, they communicate the same emotional message. For

instance, the interpretation of a verbal message of agree-

ment “Sure!” may be interpreted differently depending on

the tone of the voice and the facial expression.

Virtual characters

The rapid growth in virtual reality and computer graphics

has made possible to develop highly realistic virtual faces

with convincing facial expressions. Indeed, the main goal

of these social agents is to be user-friendly and to be able to

engage people by following human social behaviors and

rules.

Faita and colleagues65 investigated the correlation

between dynamism and realism of virtual faces performing

facial expressions. In their study, two groups with different

expertise in virtual reality were asked to associate a score

1–5 to each of the emotion rendered on the virtual charac-

ter. They measured the level of intensity in the correspon-

dence between facial expressions of virtual avatars and

emotional stimuli perceived by an observer and found a

high level of intensity in this correspondence in both groups

through the evaluation of two variables: time response and

the score assigned to each emotion.

Dyck et al.’s research team66 investigated whether basic

emotions expressed by virtual avatars are recognized as

well as the emotions expressed by natural human faces and

found consistent results with this hypothesis. However,

they also found that the disgust was difficult to convey

on the virtual avatar, whereas sadness and fear were better

understood compared to the corresponding natural faces.

The advances in virtual reality made possible to reach high

level of realism even if improvements such as better mod-

eling of the nasolabial area may lead to even better results

as compared to trained actors.

In the Mower et al.’s study,67 participants were asked to

recognize facial expressions of an animated display with

congruent vocal expression, that is, happy face and happy

voice, or conflicting vocal expression, that is, happy face

and angry voice. They found that the congruent combina-

tion of facial and vocal expressions was more accurately

recognized than both the video-only and audio-only sti-

muli. Differently from the findings by De Gelder and Vroo-

men,68 results also showed that the emotions presented in

the audio-only evaluation data were more differentiable

than in the video-only evaluations probably due to the lim-

ited expression in the animated face used in this analysis.

Social robots

In the field of social robots, relative few studies have been

conducted to evaluate the ability of a humanoid robot to

express emotional states through different communication

channels.

Trovato and his colleagues53 developed a facial expres-

sion generator aimed at producing thousands of combina-

tions of facial and neck movements for a humanoid robot

called KOBIAN-R. They evaluated their system through a

web survey where participants were asked to label a cer-

tain number of facial expressions. Results showed that

people are able to interpret the meaning of the most basic
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facial expressions performed by the robot KOBIAN-R.

The second survey was focused on evaluating the

KOBIAN-R’s nonverbal abilities. Participants were asked

to evaluate basic facial expressions with and without con-

gruent and incongruous sentences. Their results proved

that KOBIAN-R’s nonverbal communication influenced

the overall meaning in a similar way to human nonverbal

cues.

Berns and Hirth51 presented the development of a

behavior-based control to realize a humanoid robotic head

capable of performing realistic human facial expressions.

They conducted an experimental study to evaluate the

capability of the robotic head to convey the emotional

meaning of its facial expressions. Participants were asked

to classify the presented expression shown as photo or

video as one of the six basic facial expressions with a

level between 1 (weak correlation) and 5 (strong correla-

tion). Their results showed a correct recognition for anger,

happiness, and sadness while fear and disgust were not

identified. Moreover, they did not find differences in

recognizing facial expressions shown as pictures and

through videos.

Becker-Asano and Ishiguro19 investigated the capability

to express facial emotions of a humanoid robot called

Geminoid F through an online survey. Users were asked

to choose among angry, fearful, happy, neutral, sad, sur-

prise, or “none of these labels” to label a set of photos of

Geminoid F’s facial expressions. Results showed that par-

ticipants were more confused in recognizing facial expres-

sions of Geminoid F than the corresponding human

expressions.

Materials and methods

The aim of this study was evaluating the expressiveness of

highly anthropomorphic robots endowed with human-like

expressive facial skills. Facial Automaton for Conveying

Emotions (FACE)69 and Eva 70 are two aesthetically equiv-

alent human-like female robotic heads based on the same

mold developed by Hanson Robotics71 through a life-

casting technique. Both robots consist of an artificial skull

covered by a porous silicone elastomer called Frubber™

which is an extremely soft, supple, and strong silicone that

makes it closely correlated with a living facial tissue.72

Flexible rubber cloth anchors are designed and cast directly

into the Frubber™ material and are strategically placed to

simulate the stress distribution of the facial muscles on the

human skin surface to reproduce realistic human-like wrin-

kles, folds, and bunches. The anchors are connected by

yarns to the 32 servomotors that are integrated into the skull

and the upper torso similarly to the major facial muscles

and represent the actuation system.

FACE is a believable facial display system endowed

with a passive articulated body (Figure 1(a)–left). The ani-

mation system that controls FACE has been developed by

the University of Pisa, Italy69 and it is based on FACS.7

Figure 1 shows the robot FACE and the mapping between

the major human facial muscles and the position of the

servomotors inside the skull of the robot.

In a previous experiment, FACE was used to investigate

the influence of its physical embodiment in conveying

emotions.60 In particular, this study aimed at evaluating the

capability of FACE to perform facial expressions in terms

of recognition rate and response time in comparison with

static 2-D photos and 3-D models of a human female and of

the robot itself. The results showed that the recognition

rates of expressions performed by the physical robot were

generally higher than the ones obtained by showing static

2-D photos and 3-D models both of the human female and

the robot. As preliminary study, its results are encouraging

and support the hypothesis that the embodiment of physical

social humanoids can positively influence the discrimina-

tion of emotions in comparison with static 2-D and 3-D

stimuli.21,23,73

The present work can be considered an extension of this

previous experiment60 in which Eva, the twin of FACE, has

been used for investigating the influence of facial dynamics

and utterance in conveying emotions through facial expres-

sions. Technically and aesthetically similar to FACE, Eva

is a female robotic head endowed with a human-like

expression capability (Figure 2(a)) through an animation

system developed by MIRALab at University of Geneva,

Switzerland.70

Differently from FACE, this animation system is based

on Moving Pictures Experts Group (MPEG)-4 Facial Ani-

mation (FA) standard,74 a standard set of facial parameters

widely used in the domain of computer graphics to animate

faces of virtual characters. In the late 1990s, the MPEG

introduced the facial animation parameters (FAPs), a stan-

dard to represent virtual human-like characters endowed

with speech intelligibility and gesture capabilities through

a very low bit-rate compression and transmission of anima-

tion parameters.75 As a result, Eva has also a corresponding

virtual avatar with its same expressive capabilities (Figure

2(b)).

The MPEG-4 FA standard defines a set of facial defini-

tion parameters (FDPs) as feature points on the 3-D facial

skin mesh (Figure 3). Many of these feature points corre-

spond to FAPs, which are used to modify the FDPs and

consequently to animate the 3-D face. Each FAP value

represents the displacement of a particular feature point

from its neutral position, and in computer graphics, it

causes the geometric deformation of the related face area.

The FAP value is normalized by the facial animation para-

meter units, which correspond to fractions of distances

between key facial features, for example, the distance

between the eyes. MPEG-4 defines 84 FDPs that can be

used to feature the face and 68 FAPs that can be used to

animate it.

To animate the robotic head, FAP parameters and FAP

ranges should be mapped to corresponding servomotors

and servo ranges, respectively.70 First of all, FAPs have

Lazzeri et al. 5



been mapped to the corresponding servomotors by obser-

ving the effects of the movements of each servo on the

robot face. The result is a table of FAP-servo conversion

rules. Successively, undesirable situations such as two FAP

parameters controlling the same servo at the same time

were avoided by applying conditional statements. At the

Figure 1. (a) The robot FACE (left), the major facial muscles taken into consideration (middle), and the servomotors positions inside
the skull with an example of mapping between servomotor positions and action units of FACS (right); and (b) basic facial expressions
performed by FACE. FACE: Facial Automaton for Conveying Emotions; FACS: Facial Action Coding System.

Figure 2. (a) The humanoid robot Eva and (b) the Eva’s avatar.
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end, due to mechanical limitations, the minimum and max-

imum values of the servos and the FAP parameters were

calculated by moving the servos to its extremities and cre-

ating the corresponding FAP animations on a virtual human

to match the effect of the servo on the robot face. The neutral

face corresponding to 0 for FAP parameters was reproduced

on the robot face and the resulting values of the servos were

considered as the neutral face values for the servomotors.

The final mapping is a matrix used to generate the servomo-

tor values at each animation frame through an interpolation

between manually set ranges of both robot and virtual human

(Figure 4).

The Eva animation system consists of several compo-

nents that make it possible to animate the robotic head or

the virtual character based on prerecorded animations

acquired from motion capture systems or from dynamically

generated animations.70 At its core, there is an advanced

animation component able to play FAP animation

sequences, to interpolate between FAP key frames and to

blend different animations together based on several tech-

niques,76,77 making it possible for Eva to speak and to

express emotions at the same time as well as to produce

realistic and natural transitions between facial expressions.

In more interactive setting, Eva is equipped with compo-

nents responsible for dynamic generation of lip move-

ments, eye movements, and emotional expressions based

on input from the dialogue manager as well as from com-

mercial text-to-speech technologies.78 This line of research

has given Eva the capability to interact with the users in a

natural way.

Although FACE and Eva are controlled by two dif-

ferent animation systems, both robots are similar in

terms of mechanical and technical features. The motor

controller of the robots has a maximum frame rate of 25

fps, and therefore, the maximum update frequency of the

servo positions is 25 fps. The maximum speed of the

servomotor used for the pushing and pulling of the face

tendons of the robots is 0.23 s/60� with a maximum

applicable torque of 10.3 kg-cm. Moreover, their expres-

sions are based on the same anatomical basis. Similarly

to the philosophy behind the AUs in FACS, servos in

the robot are positioned according to the major facial

muscles and their skin displacement behavior is based

on what the muscles allow the face. The computer gra-

phics standard for animation MPEG-4 also follows the

same principle. The positions and directions of MPEG-4

FAP points also correspond to the anatomical basis of

the facial muscles.

The virtual avatar is controlled by an MPEG-4 com-

puter animation engine that runs at 30 fps with a reso-

lution of 1024 � 768 pixel. The virtual face is animated

by geometrical deformation of the facial mesh based on

Figure 3. MPEG-4 FDPs and FAPs definition. MPEG: Moving Pictures Experts Group; FDP: facial definition parameter; FAP: facial
animation parameter.

Lazzeri et al. 7



the displacement of the MPEG-4 FAP points. As will be

explained later in this study, MPEG-4 animations are

created using a motion capture system with the goal of

generating more human-like facial expression. The

selected animations are first applied and tested on the

virtual avatar and then converted to animate the robot

using a specific algorithm developed by the Eva’s

research team.70

Both systems have their advantages and disadvan-

tages. The virtual human does not exist in the physical

world and its skin deformation technique may not pro-

duce results that look as realistic as the deformation of

the physical skin in the robotic system. The appearance

and disappearance of facial wrinkles in the robotic skin

in certain facial expression can be considered as an

advantage comparing to the virtual human system. On

the other hand, the advantage of the virtual human sys-

tem is that it has smoother movements during the ani-

mation comparing to the robot. Due to the mechanical

nature of the servomotors, the resulting skin animation

of the robot can be considered a bit shaky in comparison

with the virtual human. Another disadvantage of the use

of servomotors is the mechanical/electrical noise that

they produce during the movements which can be

annoying the human counterpart.

Static and dynamic stimuli

The set of stimuli of the first phase included six photo-

graphs (static stimuli) and six video recordings (dynamic

stimuli) of the basic expressions, that is, anger, disgust,

fear, happiness, sadness, and surprise, performed by a

female amateur actress and by Eva, the robot chosen for

this study. Dynamic stimuli were shown as video

recordings of the transition from the neutral to the

selected expression (10 s) followed by 20 s of black

screen. Static stimuli were shown as photographs taken

from the peak of the expression of the video recordings

(at about 10 s).

The second and third phases compared the recognition

of stimuli performed by the Eva’s avatar counterpart and

performed by the physical robot Eva in three different

conditions: (1) muted facial expressions; (2) facial expres-

sions with nonlinguistic vocalizations, that is, “Hey!”
(happiness), “Mmhh” (sadness), “Aahh” (fear), “Oohh”

(surprise), “Bleah!” (disgust), and “Grrr!” (anger); and

(3) facial expressions with an emotionally neutral verbal

sentence, that is, “What is happened?”. Indeed, vocal

expressions of emotions can occur overlaid on speech in

the form of affective prosody together with a range of

nonverbal vocalizations often referred to as “interjection”

which do not carry linguistic content, for example,

screams, laughs, yawns, and other such vocal outbursts,

or verbal sentences that explicitly communicate linguistic

information.

In order to create the set of the stimuli, an optical

tracking system (VICON 8) with six cameras was used

to capture the facial movements of an amateur actress.70

According to the MPEG-4 FA standard, 27 markers were

positioned on the actress’ face following the FDPs. The

output of the motion capture system was the 3-D trajec-

tories of the marker points for each facial expression

which were converted to FAPs-based files through a spe-

cific algorithm. In order to animate the robot with the

same stimuli, the FAPs-based files were converted to be

compatible with the robot animation system, as previ-

ously mentioned.

Figure 4. Conversion from MPEG-4 FAPs to servomotor positions. MPEG: Moving Pictures Experts Group; FAP: facial animation
parameter.
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Separately, the audio tracks were extracted by the video

recorded during the motion capture process. Each audio

track was manually synchronized with the corresponding

expression of both the avatar and the robot. In the first case,

each audio track was synchronized with a video recording

of the avatar performing the corresponding expression

using a software video editing tool. In the latter case, the

audio track was manually aligned with the robot animation

through its software control system.

The resulting stimuli for the second and third phases

were six animations of Eva’s avatar and six real-time

animations of the robot Eva performing the basic expres-

sions in the three different conditions in which the corre-

sponding audio was synchronized with the mouth

movements.

Figure 5 shows an example of stimuli presented during

the entire experiment for the human female, the avatar, and

the physical robot (a video summary of the stimuli used in

the experiment is available at https://www.dropbox.com/

sh/7jqbmax3marv2g4/AADd9QpWeIedaO4rz2sSNX

CHa?dl¼0).

Participants

A total of 25 voluntary students and researchers (14 males,

11 females) aged 19–37 years (mean age 28.3 + 5.8) and

working in the scientific area were recruited for the experi-

ment. All participants gave a written informed consent for

participating in the experiment.

Limitations

This study considers a small number of participants,

mainly for the following reason. While long-term stud-

ies are very desirable to evaluate various aspects of

HRI, such as user’s perception and reaction to robots,

only a relatively small amount of long-term studies

with numerous groups of participants have been pub-

lished in this field. The main reason is the cost in

terms of research time, hardware and software devel-

opment, data acquisition and analysis, experiment

organization, funding for the equipment, and some-

times the time for person necessary to perform the

entire experiment. Therefore, normally the first step

in this field is organizing a pilot study with a small

group of participants to evaluate the feasibility and the

effectiveness of the experiment and in a second

moment, on the basis of the results of the pilot study,

designing a long-term experiment that involves a large

group of people.

Procedure

Participants were seated comfortably at a desk about 0.5

m far from a monitor (during all the phases) and the

robot (only during the third phase). The avatar has been

shown as a full screen application on a 32 inches 16:9 PC

monitor with a resolution of 1920 � 1080 pixels. The

monitor was plugged via high-definition multimedia

interface connection and the application resolution

upscale was managed by the PC graphic card driver

installed on a Windows 8 OS. Before the start of the

experiment, participants were asked to fill in a form with

their demographic information. During the experiment, at

each phase, the subjects were asked to label the facial

expressions shown on the screen or performed by the

robot, by selecting on the screen one of the seven labels,

that is, anger, disgust, fear, happiness, sadness, surprise,

and I do not know.

Figure 5. Stimuli used in the experiment: human (first row), avatar (second row), and robot (third row).
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The experimental protocol included three phases.

Phase 1.

� Stimuli: Six photographs of the robot and of the

human female face performing an expression in ran-

dom order (10 s of stimulus þ 20 s of black screen).

� Stimuli: Six recorded videos of the robot and of the

human female face performing an expression in ran-

dom order (10 s of stimulus þ 20 s of black screen).

Phase 2.

� Stimuli: Six animations of the avatar performing an

expression without sound in random order (10 s of

stimulus þ 20 s of neutral expression).

� Stimuli: Six animations of the avatar performing an

expression with a congruent nonlinguistic vocaliza-

tion in random order (10 s of stimulus þ 20 s of

neutral expression).

� Stimuli: Six animations of the avatar performing an

expression together with a verbal sentence in ran-

dom order (10 s of stimulus þ 20 s of neutral

expression).

Phase 3.

� Stimuli: Six real-time animations of the physical

robot performing an expression without sound in

random order (10 s of stimulus þ 20 s of neutral

expression).

� Stimuli: Six real-time animations of the physical

robot performing an expression with a congruent

nonlinguistic vocalization in random order (10 s of

stimulus þ 20 s of neutral expression).

� Stimuli: Six real-time animations of the physical

robot performing an expression together with a ver-

bal sentence in random order (10 s of stimulusþ 20 s

of neutral expression).

The experiment was conducted in a controlled labora-

tory environment and the setup included one laptop for

controlling the video animation and one desktop for con-

trolling the robot. The robot was placed in a different area

of the same room and covered with a blanket during the

first two phases in order to do not influence the partici-

pants’ evaluation.

Data analysis and results

The Cohen’s k coefficient79 was used as a measure for inter-

rater reliability. This method is commonly used in this kind

of study to evaluate the agreement among all subjects on the

assignment of labels to a categorical variable.19,67,80 Accord-

ing to Landis and Koch,81 with a significance level of 0.05, k
can be classified in the following ranges: k � 0.00 less than

chance agreement; 0.01 < k <0.20 slight agreement; 0.21 < k
< 0.40 fair agreement; 0:41 < k < 0:60 moderate agree-

ment; 0:61 < k < 0:80 substantial agreement; and 0.81 <

k � 1 almost perfect agreement. Results are presented in the

form of confusion matrix, that is, a specific table which

contains information about the presented models (on the

columns) against the selected labels (on the rows). The sta-

tistical inference was carried out using the OriginLab soft-

ware [version 2015].82

Static versus dynamic stimuli

Table 1 shows the confusion matrix of the subjects’

answers for the human static and dynamic stimuli. For both

categories, there was a substantial agreement in judging the

facial expressions: K HumStatic ¼ 0:768 (p < 0.001, 95% CI

(0.690–0.847)) for static stimuli and K HumDynamic ¼ 0:832

(p < 0.001, 95% CI (0.764–0.900)) for dynamic stimuli.

The human disgust was the only not well-recognized

expression since it was labeled as “sadness” (76%) both

in static and dynamic stimuli. For the other human expres-

sions, the recognition rate was higher than 76% for both

types of stimuli.

Table 2 shows the confusion matrix of the subjects’

answers for the robot static and dynamic stimuli. In both

categories, there was a moderate agreement in judging the

facial expressions: K RobStatic ¼ 0:573 (p < 0.001, 95% CI

(0.470–0.675)) for static stimuli and K RobDynamic ¼ 0:602

(p < 0.001, 95% CI (0.503–0.701)) for dynamic stimuli.

The best recognition rate was achieved for robot anger and

happiness both for static stimuli (92% and 88%, respec-

tively) and dynamic stimuli (92% and 96%, respectively).

The worst recognized expression was the robot disgust in

both categories with a low agreement among all the sub-

jects. The expression intended to convey fear was confused

with “surprise” (60% in static stimuli, 92% in dynamic

stimuli). Finally, the robot sadness in the dynamic

Table 1. Confusion matrix (N ¼ 25) of the recognition rates (in
%) of the six human facial expressions with the presented models
(columns) against the selected labels (rows).a

Phase 1: Recognition rates (in %) of human stimuli

Static Dynamic

A D F Sa H Su A D F Sa H Su

A 76 0 0 0 0 0 96 0 0 0 0 0
D 12 12 0 0 0 4 4 16 0 0 0 0
F 0 0 92 0 0 4 0 0 96 0 0 0
Sa 4 76 0 92 0 0 0 76 0 88 0 0
H 0 0 0 0 92 0 0 0 0 0 100 0
Su 0 0 8 0 0 88 0 0 0 0 0 96
No 8 12 0 8 8 4 0 8 4 12 0 4

A: anger; D: disgust; F: fear; H: happiness; Sa: sadness; Su: surprise; No: I do
not know.
aHighest values are set in italics.
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condition was not well understood by choosing “I do not

know” ð48%Þ.
Figure 6 shows the recognition rate grouped by the type

of stimulus: in both cases, that is, human stimuli and robot

stimuli, there was a tendency to slightly better recognize

dynamic expressions than static expressions.

Muted stimuli versus stimuli with auditory information

Table 3 shows the confusion matrix of the subjects’

answers for the Eva’s avatar stimuli. The Cohen’s k statis-

tics show a moderate agreement K AvatMute ¼ 0:590 (p <

0.001, 95% CI (0.491–0.688)) in recognizing muted sti-

muli, a very good agreement K AvatSound ¼ 0:842 (p <

0.001, 95% CI (0.774–0.910)), and a good agreement

K AvatSent ¼ 0:739 (p < 0.001, 95% CI (0.655–0.823)), for

stimuli performed together with nonlinguistic vocalizations

and verbal sentence, respectively. A first comparison

among the three categories shows a higher degree of con-

fusion in recognizing muted stimuli than stimuli with

nonlinguistic vocalization and verbal sentence. More spe-

cifically, muted anger was confused with “disgust” most

often (28%) or was not recognized at all (32%). Similarly,

muted fear was confused with “surprise,” and in half of the

cases, muted sadness was not recognized (48%). Moreover,

the expressions intended to convey fearful without sounds

were labeled as “surprised” in the most cases (92%). Rec-

ognition rates for stimuli with nonlinguistic vocalization

and verbal sentence show a trend which looks better than

for the rates with the muted stimuli. Only disgust expressed

together with a verbal sentence was confused with “anger”

most often (64%).

Figure 7 shows the recognition rates of the avatar stimuli

in three different conditions, that is, muted, with nonlin-

guistic vocalization and with verbal sentence. This result

highlights a tendency to better recognize expressions com-

bined with auditory information (nonlinguistic vocalization

or verbal sentence) than muted expressions.

Table 4 shows the confusion matrix of the subjects’

answers for the robot Eva’s stimuli. Results of the Cohen’s

k statistics for stimuli performed by Eva are similar to the

previous case. There is a moderate agreement in recogniz-

ing muted stimuli with K RobotMute ¼ 0:671 (p < 0.001,

95% CI (0.582–0.760)), a very good agreement with

K RobotSound ¼ 0:807 (p < 0.001, 95% CI (0.735–0.879)),

and a good agreement with K RobotSent ¼ 0:797 (p < 0.001,

95% CI (0.722–0.871)) for stimuli performed with nonlin-

guistic vocalizations and verbal sentence, respectively. The

trend of the recognition rates in the three categories is

similar to the case of the Eva’s avatar stimuli. In case of

muted stimuli, disgust was confused with “anger” (52%)

while fear was labeled as “surprise” in half of the cases

(52%) and was correctly recognized in the other half (48%).

The robot stimuli performed with nonlinguistic vocaliza-

tion and verbal sentence were generally better recognized

than the only visual stimuli. Even in this case, disgust with

a verbal sentence was confused with “anger” most often

(64%).

Similar to the avatar stimuli, there was a tendency to

better recognize expressions combined with audio informa-

tion, that is, nonlinguistic vocalization or verbal sentence,

than muted expressions as shown in Figure 8.

Conclusions

The experiment aimed at investigating whether (hypothesis

1) the dynamics underlying human facial expressions

entails advantages even in the case of an expressive huma-

noid robot and whether (hypothesis 2) nonlinguistic voca-

lizations and verbal information influence the recognition

of facial expressions performed by a humanoid robot in

comparison with the same visual stimuli without auditory

information.

Regarding the first hypothesis (hypothesis 1), that is,

whether the dynamics underlying human facial expressions

entails advantages even in the case of an expressive

Table 2. Confusion matrix (N ¼ 25) of the recognition rates (in
%) of the six robot facial expressions with the presented models
(columns) against the selected labels (rows).a

Phase 1: Recognition rates (in %) of robot stimuli

Static Dynamic

A D F Sa H Su A D F Sa H Su

A 92 12 0 16 0 0 92 36 0 0 0 0
D 8 24 0 4 0 4 0 28 0 12 0 0
F 0 8 24 0 0 24 0 4 8 0 0 8
Sa 0 12 4 40 0 12 0 4 0 36 0 4
H 0 0 0 0 88 0 0 4 0 4 96 0
Su 0 4 60 0 4 48 0 0 92 0 0 84
No 0 40 12 40 8 12 8 24 0 48 4 4

A: anger; D: disgust; F: fear; H: happiness; Sa: sadness; Su: surprise; No: I do
not know.
aHighest values are set in italics.

Figure 6. Recognition rates (in percentage) of 25 subjects for
human and robot expressions in the two different conditions:
static and dynamic stimuli.
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humanoid robot, preliminary results related to the recogni-

tion scores showed that the static stimuli were more ambig-

uous than the dynamic stimuli both for human and robot

facial expressions even if with a different degree, that is, the

agreement in the case of human stimuli was higher than the

one of robot stimuli. More specifically, recognition rates of

facial expressions performed by the robot revealed a diffi-

culty in recognizing “disgust,” “fear,” and “sadness” which

was present only for the “disgust” in case of human expres-

sions. The fact that these negative expressions were more

difficult to recognize in comparison with the positive expres-

sions corresponds to findings in literature which state that

positive emotions may be visually simpler to be recognized

than negative facial expressions.83,84 However, this does not

apply to the expression “anger” which was well recognized

negative emotional expression by the subjects in the current

study. This suggests that we should not over-simplify emo-

tional expression in just positive and negative emotions, but

also consider other factors and affect dimension.85

Regarding the second hypothesis (hypothesis 2), that is,

whether nonlinguistic vocalizations and verbal information

influence the recognition of facial expressions performed

by a humanoid robot in comparison with the same visual

stimuli without auditory information, there was a general

ambiguity in recognizing muted facial expressions in com-

parison with facial expressions associated with nonlinguis-

tic vocalization and verbal information both for stimuli

generated by an virtual avatar and for stimuli performed

by a physical robot. As in the previous case, muted stimuli

of negative expressions, that is, “anger,” “fear,” and

“sadness” shown by the avatar and “disgust” and “fear”

performed by the robot, were more confused than the other

expressions as demonstrated in literature.79,80 Stimuli with

nonlinguistic vocalization and verbal information were

generally well recognized with a recognition score higher

than 52% and 56% for avatar stimuli and 64% and 84% for

robot with nonlinguistic vocalization and verbal informa-

tion, respectively. The only exception was the “disgust”

with the verbal sentence that was confused with “anger”

both for avatar and robot stimuli.

Further, the results showed a strong confusion between

the emotions disgust and anger in both static and dynamic

expressions of the robot and virtual avatar, also found in

previous studies.51,66 If we consider Ekman’s and Friesen’s

FACS,7 we think the reason for the confusion is mainly the

fact that the so-called AU 4 (Brow Lowerer) which is pres-

ent in anger and AU 9 (Nose Wrinkler) which is present in

disgust are easily confused with each other as both produce

wrinkles around the nose region. Furthermore, the results

also showed that the emotion fear had often been recog-

nized as the emotion surprise, also in both static and

dynamic expressions of the robot and virtual avatar. This

is also understandable as both emotions share the AUs: 1

(Inner Brow Raiser), 2 (Outer Brow Raiser), 5 (Upper Lid

Raiser), and 26 (Jaw Drop). The fact that there is a strong

confusion between disgust and anger and between fear and

surprise does not come as a big surprise, as a recent study

Figure 7. Recognition rates (in percentage) of 25 subjects for the
expressions performed by the avatar in the three different con-
ditions: stimuli without auditory information, with nonlinguistic
vocalization, and with verbal sentence, respectively.

Table 3. Confusion matrix (N¼ 25) of the recognition rates (in percentage) of the six facial expressions performed by the Eva’s avatar
in three different conditions (muted, with nonlinguistic vocalization, and with verbal sentence) with the presented models (columns)
against the selected labels (rows).a

Phase 2: Recognition rate (in %) for avatar stimuli

Muted Nonlinguistic vocalization Verbal sentence

A D F Sa H Su A D F Sa H Su A D F Sa H Su

A 28 44 0 0 0 0 80 0 0 0 0 0 84 64 0 0 0 0
D 36 56 0 4 8 0 4 88 0 0 0 0 4 20 0 0 0 0
F 0 0 20 0 0 0 0 0 52 0 0 16 0 0 76 0 0 4
Sa 0 0 0 48 0 0 0 0 0 76 0 0 0 0 20 92 0 0
H 0 0 0 0 92 0 0 0 0 0 96 0 0 0 0 0 56 0
Su 4 0 80 0 0 100 4 0 48 0 0 84 0 0 0 4 20 92
No 32 0 0 48 0 0 12 12 0 24 4 0 12 16 4 4 24 4

A: anger; D: disgust; F: fear; H: happiness; Sa: sadness; Su: surprise; No: I do not know.
aHighest values are set in italics.
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from affective science has shown that there are strong simi-

larities between these emotions.8 Jack and colleagues argue

that only four basic emotions (happiness, sadness, fear/

surprise, and anger/disgust) exist and that the distinctions

between fear and surprise and between anger and disgust

appeared later for social reasons. An interesting observation

from our results is that the subjects mainly distinguished

disgust from anger when a nonlinguistic voice accompanies

the dynamic animation, differently from the study by Mower

et al.67 where emotions were better recognized in audio-only

mode. We think this can be mainly explained with the fact

that disgust has very prototypical nonlinguistic vocal expres-

sions such as “Bleah!” that distinguish it from other emo-

tions. Surprise and fear, on the other hand, are mainly

distinguishable with verbal sentences, where one clearly can

hear the different between the strongly negative valenced

fear and slightly positive valenced surprise.

In conclusion, these results demonstrate that the pres-

ence of motion improves and makes it easier to recognize

facial expressions even in case of a humanoid robot. More-

over, auditory information (nonlinguistic vocalizations and

verbal sentence) helps to discriminate facial expressions

both in case of a virtual 3-D avatar and a humanoid robot

and seems to be very important for distinguishing fear from

surprise and anger from disgust. Negative expressions

which resulted in more ambiguous than the positive ones

will be improved for future studies and a wider set of

expressions will be created in order to enrich the robot’s

and avatar’s expressiveness.

This work is a preliminary but encouraging step demon-

strating that advanced high-tech tools, like humanoid

robots and virtual characters, can potentially engage and

entertain social interactions. Adding motion and vocaliza-

tion made the expressiveness of the robot more reliable.

Whether they are physical or virtual, these social agents

can be used in various fields ranging from entertainment

and education to human assistance and health care86,87 to

engage people to interact and communicate with others by

following our own social behaviors and rules.

Future work

The results of this preliminary experiment have demon-

strated the promising social capabilities of the robot EVA

to perform human-like expressions which is an essential

starting point for the development of real social agents.

Future work will focus on studies with a large group of

participants which was one of the limitations of this

experiment.

This experiment highlighted that generating effective

and sympathetic emotional facial expressions requires a

high-fidelity reproduction and animatronic- and artistic-

related expertise. Therefore, future works should consider

to redefine and improve the generation of facial expres-

sions performed by the robot taking care of these two

important factors, that is, the motion to make the movement

more natural and human-like and the nonlinguistic

Figure 8. Recognition rates (in percentage) of 25 subjects for the
expressions performed by the robot in the three different con-
ditions: stimuli without audio information, with nonlinguistic
vocalization, and with verbal sentence, respectively.

Table 4. Confusion matrix (N¼ 25) of the recognition rates (in percentage) of the six facial expressions performed by the robot Eva in
three different conditions (muted, with nonlinguistic vocalization, and with verbal sentence) with the presented models (columns)
against the selected labels (rows).a

Phase 3: Recognition rate (in %) for robot stimuli

Muted Nonlinguistic vocalization Verbal sentence

A D F Sa H Su A D F Sa H Su A D F Sa H Su

A 92 52 0 0 0 0 76 0 0 0 0 0 96 64 0 0 0 0
D 0 36 0 12 0 0 12 88 0 4 0 0 4 24 0 0 0 0
F 0 0 48 0 0 36 0 0 64 0 0 32 0 0 84 0 0 8
Sa 0 0 0 76 0 0 0 4 0 84 0 0 0 0 4 96 0 8
H 0 0 0 0 88 0 0 0 0 0 100 0 0 0 0 0 88 0
Su 0 0 52 0 0 64 4 0 36 0 0 68 0 0 8 0 0 84
No 8 12 0 12 12 0 8 8 0 12 0 0 0 12 4 4 12 0

A: anger; D: disgust; F: fear; H: happiness; Sa: sadness; Su: surprise; No: I do not know.
aHighest values are set in italics.

Lazzeri et al. 13



vocalization and verbal information to improve the effec-

tiveness and empathy of the expressions. Consequently,

other factors, such as speed and frequency, will be consid-

ered in the animation of the expressions, to reflect the real

dynamism of the human expressivity.
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