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Abstract
In this paper, we construct a tritrophic level food chain model considering the model
parameters as fuzzy interval numbers. We check the positivity and boundedness of
solutions of the model system and find out all the equilibrium points of the model
system along with its existence criteria. We perform stability analysis at all equilibrium
points of the model system and discuss in the imprecise environment. We also
perform meticulous numerical simulations to study the dynamical behavior of the
model system in detail. Finally, we incorporate different harvesting scenarios in the
model system and deploy maximum sustainable yield (MSY) policies to determine
optimum level of harvesting in the imprecise environment without putting any
unnecessary extra risk on the species toward its possible extinction.

Keywords: Food chain; Predator–prey; Tropic level; Ecosystem; Imprecise
environment

1 Introduction
1.1 Mathematical modeling in ecology
Ecology is a branch of biological science with regard to interactions among organisms
and their biophysical environment, which includes both biotic and abiotic components.
Ecological phenomena are studied at many levels and grow up increasingly as technolog-
ical and environment impacts have grown very fast. Ecosystem ecologists often focus on
flow of energy and recycling of nutrients. In the study of ecology the foremost factor is
predator–prey interaction, which configures the energy/biomass flow from one trophic
level to higher trophic levels and modulates the corresponding population size. The ef-
fects of prey responses to predators on the dynamics of the predator–prey interactions
are very significant from the biological point of view, and the predator population has a
direct or indirect impact on the prey population. After the pioneering work of Lotka [1]
and Volterra [2], many complex predator–prey models have been studied to capture and
explain the dynamics of prey–predator systems considering various real-life scenarios.
Researchers have postulated many hypotheses to functionally signify the coexistence of
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the interacting populations in different ambiances [3–12]. Researchers have paid consid-
erably high attention mostly on two-species or three-species predator–prey models. Hast-
ings and Powell [13] and Alidoust and Ghahfarokhi [14] have investigated a three-species
food chain model for chaotic behavior. Roy and Alam [15] have analyzed autonomous
and nonautonomous versions of food chain model incorporating intraspecific competi-
tion in top predator. Freedman and Waltman [16] reported the conditions of persistence
of a three-species predator–prey model. Moura and Silva [17] have explained the food
web and ecological models used in the aquatic ecosystems. Different approaches of math-
ematical modeling and numerical simulation has been carried out by Kademi et al. [18]
for employing the microorganism-based probiotics for removal of the prevalent toxins in
the food items. Abrams [19] has shown the relationship between food availability and for-
aging effort of the species in the ecoenvironment. Nath et al. [20] have shown that refugee
and Allee effect in the prey species stabilize the chaos in the tritrophic food chain model.
Pyramids, cascades, and synthesis of functionality and stability in the food chain were
illustrated by Barbier et al. [21]. Gao and Jiang [22] have explained the stationary distribu-
tion of the stochastic food chain chemostatic model and its impact on the environment.
Kooi and Poggiale [23] have studied singular perturbation and bifurcation of a bitrophic
food chain model. Banerjee and Das [24] have shown the impulsive effect on a tritrophic
food chain model with mixed functional responses under seasonal perturbations. Castel-
lonas et al. [25] have shown both Hopf and Bautin bifurcations in a tritrophic food chain
model. Huang et al. [26] discussed the dynamical behavior of a food chain model with stage
structure and time delays. Matouk et al. [27] have focused the dynamical behavior of the
fractional-order Hastings–Powell food chain model and its discretization. Liu and Bai [28]
analyzed a stochastic tritrophic food chain model with harvesting. Pal et al. [29] have per-
formed stability and bifurcation analysis of a three-species food chain model with delay.
Roy and Karmakar [30] and many others have examined the tritropic food chain model
with disease in intermediate predator. Curtsdotter et al. [31] discussed the dynamics of
food web based on empirical data. Kar et al. [32] discussed the yield management and
resilience in a harvested tritrophic food chain model.

1.2 Biomathematical modeling in impreciseness environment
Theories of uncertainty play a very crucial role in analysis of the system behavior of vari-
ous mathematical models in the field of mathematical biology and ecology as uncertainties
are naturally and inherently involved in this field. Mathematically, sometimes uncertain-
ties can be described by random variables resulting from systems of stochastic differential
equations [33–35]. Note that uncertainties may be both stochastic and nonstochastic in
nature. However, construction and analysis of an ecological model with uncertainties in
the stochastic sense is again far from reality as fuzziness is involved to fit a suitable prob-
ability distributive function. Therefore researchers in last few years have given consider-
ably high attention to construction and analysis of ecological models in fuzzy environment
to capture, explain, and implement different ecological phenomena in more realistic and
meaningful way. For example, Pal et al. [36] studied a predator–prey model with inter-
val biological parameters; De et al. [37] presented stability analysis of combined project of
fish, broiler, and ducks in imprecise environment; Zhang and Zhao [38] studied a diffusive
predator–prey system with delays and interval biological parameters to obtain a sustain-
able optimal harvesting policy; Sharma and Samanta [39] presented a two-species com-
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Figure 1 Graphical representation of maximum sustainable yield (MSY)

petition model where the model parameters are taken as interval numbers. Many other
notable works in this regard can be found in [40–45].

1.3 Maximum sustainable yield (MSY) and related research works
In an ecological modeling, the term “maximum sustainable yield (MSY)” plays an impor-
tant role to explore and manage many ecological systems in the stable manner under fluc-
tuating and unpredictable environmental conditions [46]. In the field of ecology, MSY is
the largest yield that can be taken out from the stock of species over a long period without
putting any unnecessary extra risk on the species. The concept of MSY aims to maintain
the population size at the point of maximum growth rate by harvesting the individuals
that would normally be added to the population, allowing the population to continue to
be productive for a long period of time. Tropically, MSY is measured at half of the carrying
capacity when individuals are able to breed to their maximum rate. At this point, there is
a surplus of individuals that can be harvested because growth of the population is at its
maximum point due to the large number of reproducing individuals. Above this point,
density dependent factors increasingly limit breeding until the population reaches carry-
ing capacity. At this point, there are no surplus individuals to be harvested, and yield drops
to zero. The terms BMSY and FMSY are associated with MSY policy and stand for biomass
at MSY and fishing/harvesting mortality at MSY, respectively. Recently, the concept of
MSY is successfully used in many areas like fisheries management, poultry industry, sus-
tainable food-energy transmission in food chain, and so on. Due to the MSY concept, the
net increase in the overall productivity of desirable biotic organism keeping the surround-
ing environment unaffected leads to an environmentally benign state of productivity [47].
Deploying MSY strategy in the mathematical modeling system, the degree of determin-
istic outcomes is increased exponentially, and the chances of the stochastic outcomes are
minimized proportionally.

Several eminent scientists [48–53] have explained the significance of MSY policy in
the population dynamics. There are many reports of over fishing throughout the global.
For example, International Council for the Exploration of the Sea (ICES) reported about
81% of overfishing, and European Inland Fisheries and Aquaculture Advisory Commis-
sion (EIFAAC) reported about 75% of overfishing. In 2002, the World Summit on sustain-
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able development (Johannesberg, 2002) especially encourage to implement MSY policy
for the efficient ecoenvironment and aquatic management. Famous biologist Schaefer [54]
first observed the maximum sustainable yield of CPUE (Catch-per-unit-effort) on single-
species population system. Kar and Matsuda [55] discussed implementation of MSY pol-
icy for sustainable management of fishery in presence of strong Allee effect. Legovic et
al. [56] have introduced the concept of maximum sustainable total yield (MSTY) and dis-
cussed the risk of extinction of multiple species from the ecosystem. The impact of maxi-
mum sustainable yield in cooperative model is presented by Legovic and Gecek [57], who
observed that species having lower biotic potential and net carrying capacity are going to
be extinct as they are harvested in maximum level. Matsuda and Abrams [58] have shown
that the appropriate MSY policy (which is precisely maximum sustainable revenue for
food webs) in multispecies fisheries system helps to maintain the coexistence of all inter-
acting species. Gosh and Kar [59] illustrated precise MSY policy and species extinction in
a prey–predator system involving the Holling–Tanner response function.

1.4 Motivation and novelties of the work
In mathematical modeling, researchers make several assumptions to capture the reality
in a simplified but reasonably meaningful way. In the field of mathematical biology and
ecology, interaction among biotic and abiotic organisms has been signified through sev-
eral functions, where many parameters are involved, and maximum of these parameters
have been considered as constant. However, in reality, it is well perceived that uncertainty
and impreciseness toward these parameters cannot be ignored due to aggregation of many
human and environmental factors. The values of different biological parameters involved
in the model of mathematical biology usually depend on the data collected by experts,
where lots of impreciseness are involved. Moreover, many biological parameters change
with the environment in which the species live. For example, temperature affects the re-
production rate of virus and bacteria, tidal circulation determines the migration rate of
aquatic species, seasonal change leads to the migration time of birds, light intensity con-
trols the rate of photosynthesis of plants, and so on. To explore the mechanism of the
uncertain parameters affecting population dynamics, appropriate models are desired tak-
ing account of the uncertainties and/or fussiness toward its parameters. Although many
works have already been done in this field embedding the uncertainty theory, but still there
are lots of scope to develop and extend this area. In this paper, we mathematically analyze a
tritrophic level food chain model contemplating the model parameters as dynamic interval
numbers and deploy MSY policies in the imprecise environment under various harvesting
scenarios like prey harvesting only, harvesting of both prey and top-predator, harvesting
of both the middle and top predators, and so on.

2 Preliminaries
Definition 2.1 (Interval number) An interval number I is represented by closed interval
[Il, Iu] and defined by I = [Il, Iu] = {x : Il ≤ x ≤ Iu, x ∈ R}, where R is the set of real numbers,
and Il and Iu are the left and right limits of the interval number, respectively.

Lemma 2.1 The interval [Il, Iu] can also be represented as h(γ ) = (Il)1–γ (Iu)γ for γ ∈ [0, 1].

Properties 2.1 If two intervals I = [Il, Iu] and J = [Jl, Ju] can be written as interval-valued
functions h(γ ) = (Il)1–γ (Iu)γ and k(γ ) = (Jl)1–γ (Ju)γ for γ ∈ [0, 1], then
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Figure 2 The graphical representation of the resultant interval numbers

(1) m(γ ) = (Il + Jl)1–γ (Iu + Ju)γ ,
(2) n(γ ) = (Il – Ju)1–γ (Iu – Jl)γ ,
(3) d(γ ) = (min{IlJl, IuJu, IlJu, IuJl})1–γ (max{IlJl, IuJu, IlJu, IuJl})γ ,
(4) vh(γ ) = e(γ ) =

{ (vIl )1–γ (vIu)γ if v > 0,
(vIu)1–γ (vIl )γ if v < 0,

(5) q(γ ) = (min{ Il
Jl

, Iu
Ju

, Il
Ju

, Iu
Jl
})1–γ (max{ Il

Jl
, Iu

Ju
, Il

Ju
, Iu

Jl
})γ ,

where m(γ ), n(γ ), d(γ ), e(γ ), q(γ ) are interval-valued functions for I + J , I – J , IJ , kI , I
K ,

where k is a constant, and γ ∈ [0, 1].

Example 2.1 Let I = [25, 30] and J = [10, 15] with parametric representations h(γ ) =
(25)1–γ (30)γ and (γ ) = (10)1–γ (15)γ , where γ ∈ [0, 1].

Using the above formulae, we can write:

m(γ ) = (35)1–γ (45)γ ,

n(γ ) = (10)1–γ (20)γ ,

d(γ ) = (250)1–γ (450)γ ,

e(γ ) =

⎧
⎨

⎩
(50)1–γ (60)γ for 2 > 0,

–(60)1–γ (50)γ for – 2 < 0,
and

q(γ ) =
(

5
3

)1–γ

(3)γ , where γ ∈ [0, 1].

Definition 2.2 (Interval-valued function) Let α > 0, β > 0 and consider the interval [α,β],
where α, β are functions of x.

The interval [α,β] can be represented by a function In(x,γ ) = (αn(x))1–γ (βn(x))γ for γ ∈
[0, 1]. This function is called an interval-valued function.

Let Â(x) = [al(x), au(x)] = (al(x))1–γ (au(x))γ and B̂(x) = [bl(x), bu(x)] = (bl(x))1–γ (bu(x))γ

be two interval-valued functions such that al(x) > 0, bl(x) > 0 for all x.
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Addition:

Â(x) + B̂(x) =
(
al(x) + bl(x)

)1–γ (
au(x) + bu(x)

)γ .

Subtraction:

Â(x) – B̂(x) =
(
al(x) – bu(x)

)1–γ (
au(x) – bl(x)

)γ .

Scalar multiplication:

cÂ(x) =

⎧
⎨

⎩
c(al(x))1–γ (au(x))γ if c ≥ 0,

c(au(x))1–γ (al(x))γ if c < 0.

2.1 Existence and uniqueness of differential equation with interval-valued
function

Theorem 2.1 The differential equation x′(t) = f (t, k, x(t)) with interval-valued coefficient
k̂ ∈ [kl, ku] and initial condition x(t0) = x0 can be expressed in interval-valued func-
tional form as x′(t;γ ) = f (t, (kl)1–γ (ku)γ , x(t)) with initial condition x(t0) = x0 for γ ∈
[0, 1].

Proof The differential equation can be written as x′(t) = f (t, [kl, ku], x(t)) with x(t0) =
x0. Let k ∈ [kl, ku]. Then the differential equation becomes (using interval arithmetic
operation and property) x′(t) = f (t, k, x(t)) with x(t0) = x0. For a fixed n, let us con-
sider the interval-valued function hn(γ ) = a(1–γ )

n bγ
n for γ ∈ [0, 1] for an interval δn ∈

[an, bn]. If hn(γ ) is a continuous and strictly increasing function, then x′(t) = f (t, k′, x(t))
with x(t0) = x0, where k′ ∈ (kl)1–γ (ku)γ . Hence the parametric form of this differen-
tial equation is x′(t;γ ) = f (t, (kl)1–γ (ku)γ , x(t)) with initial condition x(t0) = x0 for γ ∈
[0, 1]. �

Lemma 2.2 The condition for existence of the solution of the interval-valued equation is
x(t;γ = 1) ≥ x(t;γ = 0), where x(t,γ ) is the solution of the interval-valued equation.

3 Food chain model in imprecise environment
3.1 Food chain model
A food chain may be defined as the interrelationship among different biological species
among themselves for sustenance in an ecosystem [60]. A food chain is a linear network
of links in a food web starting from producer organisms (such as grass or trees, which
use radiation from the Sun to make their food) and ending at apex predator species (like
grizzly bears or killer whales, etc.). A food chain displays how each living organism gains
its food or energy from each other’s. A lower animal feeds on green plants, and a higher
organism feeds on smaller, and so on. The following flowchart and diagram depicts the
food/energy transfer in a food chain.

Classification of food chain:
Grazing food chain: This type of food chain often initiates with green plants. A grazing

food chain is noticed in aquatic and grassland ecosystems.
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Figure 3 The food/energy transfer in the terrestrial food chain

Aquatic ecosystem:

Phytoplankton → Zooplankton → Fish → Haw

Grassland ecosystem:

Grass → Rabbit → Fox → Lion

(i) Detritus food chain: Initial step of detritus food chain is a dead decomposed matter,
which also depends on the available solar energy. The dead decomposed matter is
organic in nature, which is further spitted into simple nutrients by microorganisms
such as fungi and bacteria. Generally, a detritus food chain is seen in forest
ecosystem.

The flow diagram of the detritus food chain concept could be expressed as

Dead organic matter → Detritivores → predators

(ii) Parasitic food chain: In this food chain model, either the producer or the consumer
is parasitized and the energy transfers to the lower organisms. The transformation
of the energy in this food chain model is not significant in nature. The expression
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for such parasitic mode of a food chain model can be represented as

Trees → Fruit eating birds → Lice and bugs → Bacteria and fungi

3.2 Mathematical construction of tritrophic food chain model in an imprecise
environment

In population dynamics, the very rudimentary model (known as the Lotka–Volterra
model) for interacting species can be described as

⎧
⎨

⎩

dx(t)
dt = x(p1 – q1y),

dy(t)
dt = y(q2x – p2).

(3.1)

Here x and y denote the densities of prey and predator populations, respectively. In the
absence of predator–prey population grow logistically with intrinsic growth rate p1(> 0),
q1 is the capture rate of prey by per predator, q2 is the energy conversion efficiency of
predator, and p2 is the natural death rate of predator. The model system (3.1) is a very
basic prey–predator system, which can be considered as a ditrophic food chain model.

In this paper, we are interested in introducing a food chain model of a tritrophic level
consisting of prey, intermediate predator, and top predator (or superpredator) in an impre-
cise environment. Let x(t), y(t), z(t) be their densities at any time t. We make the following
assumptions to formulate the model system:

(i) In the absence of predator, the prey population x(t) grows logistically with intrinsic
growth rate r, and k is the carrying of the environment.

(ii) The intermediate predator y(t) consumes the prey species according to Holling
Type-I functional response with the predation rate a1. Also, the top predator z(t)
consumes the intermediate predator according to law of mass action (Holling
Type-I functional response) with predation b1.

(iii) a2 and m are the energy conversion coefficient of predation and natural date rate of
the intermediate predator y(t).

(iv) b2 and γ are the energy conversion coefficient of predation and natural date rate of
the top predator z(t).

Based on these assumptions, Ghosh and Kar [53] proposed the following food chain
model in the deterministic setup:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = rx(1 – x

k ) – a1xy,
dy(t)

dt = a2xy – b1zy – my,
dz(t)

dt = b2zy – γ z.

(3.2)

The deterministic tritrophic food chain model (3.2) in the imprecise environment can be
changed so that all the coefficients are interval numbers:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = r̂x(1 – x

k ) – â1xy,
dy(t)

dt = â2xy – b̂1zy – m̂y,
dz(t)

dt = b̂2zy – γ̂ z,

(3.3)
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where, r̃ = [rA, rB], âi = [aiA, aiB], b̃i = [biA, biB], m̃ = [mA, mB], γ̃ = [γA,γB], and rA, rB, ai1,
ai2, biA, biB (i = 1, 2), mA, mB, γA, and γB are all positive.

Now, if we take In(p) = f 1–p
n gp

n for p ∈ [0, 1] for an interval [fn,gn], then the model system
(3.3) turns to our final model:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = r1–p

A rp
Bx(1 – x

k ) – a1–p
1B ap

1Axy,
dy(t)

dt = a1–p
2A ap

2Bxy – b1–p
1B bp

1Azy – m1–p
B mp

Ay,
dz(t)

dt = b1–p
2A bp

2Bzy – γ
1–p
B γ

p
A z.

(3.4)

3.2.1 Positivity and boundedness of the solution of the model
Lemma 3.1 All solutions of the model system (3.4) are nonnegative.

Proof The first equation of system (3.4) can be rewritten as

dx
x

=
{

r1–p
A rp

B

(
1 –

x
k

)
– a1–p

1B ap
1Ay

}
dt,

which is of the form dx
x = ϕ(x, y, z) dt, where ϕ(x, y, z) = r1–p

A rp
B(1 – x

k ) – a1–p
1B ap

1Ay.
Now integrating this equation over [0, t], we have

x(t) = x(0)e
∫ t

0 ϕ(x,y,z) dt > 0, ∀t.

Again from the second equation of system (3.4) we have

dy
y

=
{

a1–p
2A ap

2Bx – b1–p
1B bp

1Az – m1–p
B mp

A
}

dt,

which is of the form dy
y = ψ(x, y, z) dt, where ψ(x, y, z) = a1–p

2A ap
2Bx – b1–p

1B bp
1Az – m1–p

B mp
A.

Integrating this equation over [0, t], we have

y(t) = y(0)e
∫ t

0 ψ(x,y,z) dt > 0, ∀t.

Also, from the last equation of system (3.4) we have

dz
z

=
{

b1–p
2A bp

2By – γ
1–p
B γ

p
A
}

dt,

which is of the form dz
z = χ (x, y, z) dt, where χ (x, y, z) = b1–p

2A bp
2By – γ

1–p
B γ

p
A .

Integrating this equation over [0, t], we have

z(t) = z(0)e
∫ t

0 χ (x,y,z) dt > 0, ∀t.

Hence all solutions of system (3.4) are nonnegative. �

Lemma 3.2 All solutions of the model system (3.4) are bounded.
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Proof Let us consider the function

w = x +
a1–p

1B ap
1A

a1–p
2A ap

2B
y +

a1–p
1B ap

1Ab1–p
1B bp

1A

a1–p
2A ap

2Bb1–p
2A bp

2B
z.

Differentiating this function with respect to time, we have

dw
dt

=
dx
dt

+
a1–p

1B ap
1A

a1–p
2A ap

2B

dy
dt

+
a1–p

1B ap
1Ab1–p

1B bp
1A

a1–p
2A ap

2Bb1–p
2A bp

2B

dz
dt

= r1–p
A rp

Bx
(

1 –
x
k

)
– a1–p

1B ap
1Axy + a1–p

1B ap
1Axy –

a1–p
1B ap

1Ab1–p
1B bp

1A

a1–p
2A ap

2B
zy

–
a1–p

1B ap
1A

a1–p
2A ap

2B
m1–p

B mp
Ay +

a1–p
1B ap

1Ab1–p
1B bp

1A

a1–p
2A ap

2B
zy –

a1–p
1B ap

1Ab1–p
1B bp

1Aγ
1–p
B γ

p
A

a1–p
2A ap

2Bb1–p
2A bp

2B
z

= r1–p
A rp

Bx
(

1 –
x
k

)
–

a1–p
1B ap

1A

a1–p
2A ap

2B
m1–p

B mp
Ay –

a1–p
1B ap

1Ab1–p
1B bp

1Aγ
1–p
B γ

p
A

a1–p
2A ap

2Bb1–p
2A bp

2B
z

= – r1–p
A rp

Bx –
r1–p

A rp
B

k
(x – k)2 + r1–p

A rp
Bk –

a1–p
1B ap

1A

a1–p
2A ap

2B
m1–p

B mp
Ay

–
a1–p

1B ap
1Ab1–p

1B bp
1Aγ

1–p
B γ

p
A

a1–p
2A ap

2Bb1–p
2A bp

2B
z

≤ – α

(
x +

a1–p
1B ap

1A

a1–p
2A ap

2B
y +

a1–p
1B ap

1Ab1–p
1B bp

1A

a1–p
2A ap

2Bb1–p
2A bp

2B
z
)

–
r1–p

A rp
B

k
(x – k)2 + r1–p

A rp
Bk,

where α = min{r1–p
A rp

B, m1–p
B mp

A,γ 1–p
B γ

p
A}.

Therefore dw
dt + α

1–p
A α

p
Bw ≤ β

1–p
A β

p
B (where β

1–p
A β

p
B = r1–p

A rp
Bk > 0).

Applying the theory of differential inequalities, we have

0 < w <
β

1–p
A β

p
B

α
1–p
A α

p
B

(
1 – e–α

1–p
A α

p
Bt) + w(0)e–α

1–p
A α

p
Bt .

Now, as t → ∞, we have 0 < w < β
1–p
A β

p
B

α
1–p
A α

p
B

.

Hence all solutions of system (3.4) are bounded in R3
+. �

3.2.2 Equilibrium points of the model system along with its feasibility criteria
The model system (3.4) has four equilibrium points, namely the trivial equilibrium point
e0(0, 0, 0), axial equilibrium point e1(k, 0, 0), planar equilibrium point e2(x∗

p1, y∗
p1, 0), and

interior equilibrium point e3(x∗
I2, y∗

I2, z∗
I2), where

x∗
p1 =

m1–p
B mp

A

a1–p
2A ap

2B
, y∗

p1 =
r1–p

A rp
B(a1–p

2A ap
2Bk – m1–p

B mp
A)

a1–p
1B ap

1Aa1–p
2A ap

2Bk
,

x∗
I2 = k

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
, y∗

I2 =
γ

1–p
B γ

p
A

b1–p
2A bp

2B
,

z∗
I2 =

(r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

Bb1–p
1B bp

1Ab1–p
2A bp

2B
.
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Note that the trivial equilibrium point e0(0, 0, 0) of the model system (3.4) always exists
without any restriction on parametric space, whereas the axial equilibrium point e1(k, 0, 0)
is feasible for k > 0, the planar equilibrium point e2(x∗

p1, y∗
p1, 0) is feasible when a1–p

2A ap
2Bk >

m1–p
B mp

A, and the interior equilibrium point e3(x∗
I2, y∗

I2, z∗
I2) is feasible under the condition

r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B > a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k + r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B.

3.2.3 Stability analysis of the model system
Lemma 3.3 The trivial equilibrium point e0(0, 0, 0) of the model system (3.4) is intrinsically
unstable in nature.

Proof Proof is obvious. �

Lemma 3.4 The axial equilibrium point e1(k, 0, 0) of the model system (3.4) is locally
asymptotically stable when a1–p

2A ap
2Bk < m1–p

B mp
A.

Proof The variational matrix of the model system (3.4) at the equilibrium point e1(k, 0, 0)
is

V (e1) =

⎡

⎢
⎣

–r1–p
A rp

B a1–p
1B ap

1Ak 0
0 a1–p

2A ap
2Bk – m1–p

B mp
A 0

0 0 –γ
1–p
B γ

p
A

⎤

⎥
⎦ .

The eigenvalues of the matrix are λ1 = –r1–p
A rp

B, λ2 = a1–p
2A ap

2Bk – m1–p
B mp

A, and λ3 =
–γ

1–p
B γ

p
A . Note that when a1–p

2A ap
2Bk < m1–p

B mp
A, all the eigenvalues are negative, and hence

the axial equilibrium point e1(k, 0, 0) is locally asymptotically stable. This completes the
proof. �

Lemma 3.5 The planar equilibrium point e2(x∗
p1, y∗

p1, 0) of the model system (3.4) is always
unstable.

Proof The variational matrix of the model system (3.4) at e2(x∗
p1, y∗

p1, 0) can be written as

V (e2) =

⎡

⎢
⎣

r1–p
A rp

B(1 – 2x∗
1

k ) – a1–p
1B ap

1Ay∗
1 –a1–p

1B ap
1Ax∗

1 0
a1–p

2A ap
2By∗

1 a1–p
2A ap

2Bx∗
1 – m1–p

B mp
A –b1–p

1B bp
1Ay∗

1

0 0 b1–p
2A bp

2By∗
1 – γ

1–p
B γ

p
A

⎤

⎥
⎦

=

⎡

⎢⎢
⎣

– r1–p
A rp

Bx∗
1

k –a1–p
1B ap

1Ax∗
1 0

a1–p
2A ap

2By∗
1 0 –b1–p

1B bp
1Ay∗

1

0 0 0

⎤

⎥⎥
⎦ .

One of the eigenvalues of the variational matrix is λ1 = 0, and the other eigenvalues

are solutions of the quadratic equation λ2 + λ
r1–p
A rp

Bx∗
1

k – a1–p
1B ap

1Aa1–p
2A ap

2Bx∗
1y∗

1 = 0. It is to be
noted that the planar equilibrium point e2(x∗

p1, y∗
p1, 0) is non-Hyperbolic as one Eigen value

of Jacobi matrix of the model system at is zero at this equilibrium point. �
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Lemma 3.6 The interior equilibrium point e3(x∗
I2, y∗

I2, z∗
I2) of the model system (3.4) is stable

if

r1–p
A rp

B > max

{
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2B
,

a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k

a1–p
2A ap

2Bkb1–p
2A bp

2B – m1–p
B mp

Ab1–p
2A bp

2B

}

and

(r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

B

> a1–p
1B ap

1Aa1–p
2A ap

2Bk
γ

1–p
B γ

p
A

b1–p
2A bp

2B

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
.

Proof The variational matrix at e2(x∗
p1, y∗

p1, 0) can be written as

V (e3) =

⎡

⎢
⎣

–r1–p
A rp

Bx∗
2 a1–p

1B ap
1Ax∗

2 0
a1–p

2A ap
2By∗

2 0 –b1–p
1B bp

1Ay∗
2

0 b1–p
2A bp

2Bz∗
2 0

⎤

⎥
⎦ .

The characteristic equation of the variational matrix can be written as

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 =
r1–p

A rp
Bx∗

2
k

= r1–p
A rp

B

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
> 0 if r1–p

A rp
2B >

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2B
,

a2 =
(
b1–p

1B bp
1Ab1–p

2A bp
2Bz∗

2ap
1Aa1–p

2A ap
2Bx∗

2
)
y∗

2

=
{

(r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

B

– a1–p
1B ap

1Aa1–p
2A ap

2Bk
(

1 –
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
γ

1–p
B γ

p
A

b1–p
2A bp

2B

}
> 0 if

(r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

B

>
a1–p

1B ap
1Aa1–p

2A ap
2Bkγ

1–p
B γ

p
A

b1–p
2A bp

2B

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
,

a3 =
r1–p

A rp
Bb1–p

1B bp
1Ab1–p

2A bp
2B

k
x∗

2y∗
2z∗

2

=
r1–p

A rp
Bb1–p

1B bp
1Ab1–p

2A bp
2B

k
k
(

1 –
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
γ

1–p
B γ

p
A

b1–p
2A bp

2B

× (r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

Bb1–p
1B bp

1Ab1–p
2A bp

2B

> 0 if 1 –
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B
> 0
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and r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B > 0, that is,

r1–p
A rp

B > max

{
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2B
,

a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k

a1–p
2A ap

2Bkb1–p
2A bp

2B – m1–p
B mp

Ab1–p
2A bp

2B

}
,

and

a1a2 – a3

= r1–p
A rp

B

(
1 –

a1–p
1B ap

1Aγ
1–p
A γ

p
B

b1–p
2A bp

2Br1–p
A rp

B

)

× (r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

B

+ a1–p
1B ap

1Aa1–p
2A ap

2Bk
(

1 –
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
γ

1–p
B γ

p
A

b1–p
2A bp

2B

–
r1–p

A rp
Bb1–p

1B bp
1Ab1–p

2A bp
2Bk

k

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
γ

1–p
B γ

p
A

b1–p
2A bp

2B

× (r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

Bb1–p
1B bp

1Ab1–p
2A bp

2B

> 0.

By the Routh–Hurwith criterion the equilibrium point e3(x∗
I2, y∗

I2, z∗
I2) of system (3.4) is

locally asymptotically stable if

r1–p
A rp

B > max

{
a1–p

1B ap
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2B
,

a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k

a1–p
2A ap

2Bkb1–p
2A bp

2B – m1–p
B mp

Ab1–p
2A bp

2B

}
and

(r1–p
A rp

Ba1–p
2A ap

2Bkb1–p
2A bp

2B – a1–p
1B ap

1Aa1–p
2A ap

2Bγ
1–p
B γ

p
A k – r1–p

A rp
Bm1–p

B mp
Ab1–p

2A bp
2B)

r1–p
A rp

B

> a1–p
1B ap

1Aa1–p
2A ap

2Bk
γ

1–p
B γ

p
A

b1–p
2A bp

2B

(
1 –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

)
. �

3.2.4 MSY policy in an imprecise environment under various harvesting scenarios
Only prey species (x) is being harvested from the system Suppose we are harvesting only
the prey species from the system at a rate ex, where the parameter e denotes the harvesting
effort. So the model system (3.4) can be rewritten in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = r1–p

A rp
Bx(1 – x

k ) – a1–p
1B ap

1Axy – ex,
dy
dt = a1–p

2A ap
2Bxy – b1–p

1B bp
1Azy – m1–p

B mp
Ay,

dz
dt = b1–p

2A bp
2Bzy – γ

1–p
B γ

p
A z.

(3.5)

Coexistence equilibrium point
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The coexistence equilibrium point of (3.5) is denoted by P1c(x∗, y∗, z∗), where

x∗ =
k(b1–p

2A bp
2Br1–p

A rp
B – a1–p

1B ap
1Aγ

1–p
B γ

p
A – eb1–p

2A bp
2B)

r1–p
A rp

Bb1–p
2A bp

2B

and

y∗ =
γ

1–p
B γ

p
A

b1–p
2A bp

2B
z∗ =

a1–p
2A ap

2Bk(b1–p
2A bp

2Br1–p
A rp

B – a1–p
1B ap

1Aγ
1–p
B γ

p
A – eb1–p

2A bp
2B)

r1–p
A rp

Bb1–p
2A bp

2Bb1–p
1B bp

1A

–
m1–p

B mp
A

b1–p
1B bp

1A

.

It is well understood from these equilibrium points that the investigated prey species
and the top predator species decrease if the net effort increases proportionally. The yield
function than becomes

Y (e) = e
k(b1–p

2A bp
2Br1–p

A rp
B – a1–p

1B ap
1Aγ

1–p
B γ

p
A – eb1–p

2A bp
2B)

r1–p
A rp

Bb1–p
2A bp

2B
;

dY (e)
de

= 0 provides e =
k(a1–p

1B ap
1Aγ

1–p
B γ

p
A – b1–p

2A bp
2Br1–p

A rp
B)

2kb1–p
2A bp

2B
, and

d2Y (e)
de2 is negative.

Therefore emsy = k(a1–p
1B ap

1Aγ
1–p
B γ

p
A–b1–p

2A bp
2Br1–p

A rp
B)

2kb1–p
2A bp

2B
and

Ymsy =
k

4r1–p
A rp

B

(
r1–p

A rp
B –

a1–p
1B ap

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2B

)2

.

Only middle predator (y) is being harvested from the system Suppose we are harvesting
only the middle predator species from the system at rate ey, where the parameter e denoted
the harvesting effort. So the model system (3.4) can be rewritten in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = r1–p

A rp
Bx(1 – x

k ) – a1–p
1B ap

1Axy,
dy
dt = a1–p

2A ap
2Bxy – b1–p

1B bp
1Azy – m1–p

B mp
Ay – ey,

dz
dt = b1–p

2A bp
2Bzy – γ

1–p
B γ

p
A z.

(3.6)

The equilibrium biomass of predator in system (3.6) is y∗ = γ
1–p
B γ

p
A

b1–p
2A bp

2B
. The yield function

than become sY (e) = e γ
1–p
B γ

p
A

b1–p
2A bp

2B
. Here the equilibrium biomass of predator is independent of

the effort, but the yield Y (e) is a linear function of effort e.

Both prey (x) and middle predator (y) are being harvested from the system Suppose we
are harvesting both the prey and middle predator species from the system at rates, ex and
ey, respectively, where the parameter e denotes the harvesting effort. So the model system
(3.4) can be rewritten in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = r1–p

A rp
Bx(1 – x

k ) – a1–p
1B ap

1Axy – ex,
dy
dt = a1–p

2A ap
2Bxy – b1–p

1B bp
1Azy – m1–p

B mp
Ay – ey,

dz
dt = b1–p

2A bp
2Bzy – γ

1–p
B γ

p
A z.

(3.7)
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Now the coexisting equilibrium of system (3.7) can be written as P2c(x∗
1, y∗

1, z∗
1), where

x∗
1 = k

(
1 –

a1–p
1B aP

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B
–

e
r1–p

A rp
B

)
,

y∗
1 =

γ
1–p
B γ

p
A

b1–p
2A bp

2B
,

z∗
1 =

a1–p
2A ap

2Bk
b1–p

1B bp
1A

(
1 –

a1–p
1B aP

1Aγ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B
–

e
r1–p

A rp
B

)
–

m1–p
B mp

A

b1–p
1B bp

1A

–
e

b1–p
1B bp

1A

.

Note that the prey species x∗
1 and the top predator species z∗

1 decrease with the increase
of the harvesting effort e and prey extinction occurs when the harvesting effort reaches the

value e = a1–p
1B aP

1Aγ
1–p
B γ

p
A–b1–p

2A bp
2Br1–p

A rp
B

b1–p
2A bp

2B
although the middle predator y∗

1 is steadily unaffected.

The yield of the model system (3.7) at equilibrium is given as

Y (e) =
{

k
(

1 –
a1–p

1B aP
1Aγ

1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B
–

e
r1–p

A rp
B

)
+

γ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

}
e.

Both middle predator (y) and top predator (z) are being harvested from the system Sup-
pose we are harvesting both the middle predator y and top predator z from the system at
rates ey and ez, respectively, where the parameter e denotes the harvesting effort. So the
model system (3.4) can be rewritten in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = r1–p

A rp
Bx(1 – x

k ) – a1–p
1B ap

1Axy,
dy
dt = a1–p

2A ap
2Bxy – b1–p

1B bp
1Azy – m1–p

B mp
Ay – ey,

dz
dt = b1–p

2A bp
2Bzy – γ

1–p
B γ

p
A z – ez.

(3.8)

The coexisting equilibrium of the model system (3.8) can be written as P3c(x∗
2, y∗

2, z∗
2),

where

x∗
2 = k

{
1 –

b1–p
1B bp

1A

r1–p
A rp

B

(
γ

1–p
B γ

p
A + e

b1–p
2A bp

2B

)}
,

y∗
2 =

γ
1–p
B γ

p
A + e

b1–p
2A bp

2B
,

z∗
2 =

a1–p
2A ap

2Bk
b1–p

1B bp
1A

{
1 –

b1–p
1B bp

1A

r1–p
A rp

B

(
γ

1–p
B γ

p
A + e

b1–p
2A bp

2B

)}
.

At the equilibrium point, we clearly observe that the prey species x∗
2 and top predator

species z∗
2 decrease whereas the middle predator species y∗

2 increases when the harvesting
effort e varies from its lower level to higher level.

The yield of the model system (3.8) at equilibrium is given as

Y (e) =
[

a1–p
2A ap

2Bk
b1–p

1B bp
1A

{
1 –

b1–p
1B bp

1A

r1–p
A rp

B

(
γ

1–p
B γ

p
A + e

b1–p
2A bp

2B

)}
+

γ
1–p
B γ

p
A

b1–p
2A bp

2Br1–p
A rp

B

]
e.
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Table 1 The values of different parameters used to simulate the model system in Case-1

Parameters Values

r̃ [0.025, 0.035]
ã1 [0.61, 0.75]
ã2 [0.77, 0.87]
b̃1 [0.055, 0.068]
b̃2 [0.04, 0.05]
m̃ [0.57, 0.67]
γ̃ [0.75, 0.85]
k 100

Table 2 The nature of the trivial equilibrium point for different values of the parameter p

p Equilibrium point Eigenvalues of Jacobi matrix Nature

0.0 (0, 0, 0) (0.0250, –0.6700, –0.8500) unstable
0.6 (0, 0, 0) (0.0306, –0.6081, –0.7885) unstable
1.0 (0, 0, 0) (0.0306, –0.6081, –0.7885) unstable

4 Numerical simulation and discussion
In this section, we perform meticulous numerical simulations to verify and validate the an-
alytical findings of our model system. We have used mathematical software Matlab (2018)
and Matcont [61] to numerically approximate the solution of our model system (3.4). We
have used inbuilt code ode45, which is based on an explicit Runge–Kutta (4, 5) [Dormand–
Prince pair] formula, both in Matlab and Matcont. It is authoritative to mention that it is
difficult enough to choose numerical values of the set of parameters of the model system
based on real-life observations. We have simulated the model system with different sets
of the parameter values in different cases.

Case-I: Study of the nature of trivial equilibrium point e0(0, 0, 0)
At first, we analyzed the nature of trivial equilibrium point e0(0, 0, 0) of the imprecise

model (3.4) by changing the value of the parameter p in the range [0, 1] (see Table 1).
To justify the nature of trivial equilibrium point, we have calculated the eigenvalues of
the Jacobi matrix at the trivial equilibrium point for different values of the parameter p
as shown in the Table 2. We observed that the trivial equilibrium point e0(0, 0, 0) of the
imprecise model system (3.4) is always unstable in nature, irrespective of the value of the
parameter p, which supports our analytical findings that trivial equilibrium point is always
unstable (see Lemma 3.3).

Case-II: Study of the nature of axial equilibrium point e1(k, 0, 0)
In this case, we simulate the model system (3.4) with the set of values of model param-

eters as reported in Table 3 and choose the value of parameter p of three different levels
(p = 0, 0.6, 1) satisfying the condition a1–p

2A ap
2Bk < m1–p

B mp
A, as given in Lemma 3.4. We have

simulated the model system and calculated the eigenvalues of the Jacobi matrix at this
equilibrium point. The eigenvalues are shown in Table 4. Since all the eigenvalues of the
Jacobi matrix are negative, we can conclude that the axial equilibrium point e1(k, 0, 0) is
stable in nature under the condition a1–p

2A ap
2Bk < m1–p

B mp
A, as established in Lemma 3.4. Fig-

ure 4 shows the time series plot of the model system (3.4) in the time range [0, 50], which
clearly indicates the stability of the axial equilibrium point e1(50, 0, 0) for different values
of parameter p.
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Table 3 The values of different parameters used to simulate the model system in Case-II

Parameters Values

r̃ [2.011, 2.045]
ã1 [0.0051, 0.0083]
ã2 [0.0075, 0.0084]
b̃1 [0.47, 0.59]
b̃2 [0.64, 0.78]
m̃ [1.5, 1.9]
γ̃ [0.765, 0.89]
k 50

Table 4 The nature of the axial equilibrium point for different values of the parameter p

p Equilibrium point Eigenvalues of Jacobi matrix Nature

0.0 (50, 0, 0) (–2.011, –1.525, –0.890) stable
0.6 (50, 0, 0) (–2.0313, –1.2474, –0.8127) stable
1.0 (50, 0, 0) (–2.0450, –1.0800, –0.7650) stable

Figure 4 The stable nature of the axial equilibrium point e1(k, 0, 0) for different values of the parameter p

Figure 5 The model system (3.4) reaches the stable axial equilibrium point e1(k, 0, 0) for different values of the
parameter p when numerical simulation is initiated from different initial points under the choice of model
parameter values given in Table 3

Case-III: Study of the nature of planar equilibrium point e2(x∗
p1, y∗

p1, 0)
In this case, we simulate the model system (3.4) with the set of values of model param-

eters reported in Table 5 and choose the value of parameter p of three different levels
(p = 0, 0.6, 1). We have simulated the model system and calculated the eigenvalues of the
Jacobi matrix at this equilibrium point. The eigenvalues are shown in Table 6. We observed
that in all cases, one of the eigenvalues is zero, so the planar equilibrium point e2(x∗

p1, y∗
p1, 0)

is of nonhyperbolic type. Here the system undergoes a saddle-node bifurcation, where a
saddle and a node approach each other, coalesce into a single equilibrium (depicted in
Fig. 6) and then disappear. Thus the planar equilibrium point e2(x∗

p1, y∗
p1, 0) is always un-

stable, which supports our analytical findings that the planar equilibrium point is always
unstable (see Lemma 3.5). Figure 6 shows the time series plot of the model system in the
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Table 5 The values of different parameters used to simulate the model system in Case-III

Parameters Values

r̃ [0.047, 0.08]
ã1 [2.1, 2.5]
ã2 [2.2, 2.5]
b̃1 [0.5, 0.6]
b̃2 [0.3, 0.6]
m̃ [3.1, 4.9]
γ̃ [7.1, 8.9]
k 170

Table 6 The nature of the planar equilibrium point for different values of the parameter p

p Equilibrium point Eigenvalues of Jacobi matrix Nature

0.0 (2.2273, 0.0186, 0) (0, –0.0003± 0.4768i)
nonhyperbolic (unstable)

0.6 (1.5673, 0.0285, 0) (0, –0.0003± 0.4962i)
nonhyperbolic (unstable)

1.0 (1.2400, 0.0378, 0) (0, –0.0003± 0.4884i)
nonhyperbolic (unstable)

Figure 6 The time series plots of the model system (3.4) in the time range [0, 2000] for different values of
parameter p. These graphs support the instability of the planar equilibrium point e2(x∗p1, y∗p1, 0)

Figure 7 The system undergoes saddle-node
bifurcation. Here the limit point LP indicates the
saddle-node point, which indicates the instability of
the planar equilibrium point e2(x∗p1, y∗p1, 0)

time range [0, 2000], which also supports the instability of planar equilibrium point e2 for
different values of parameter p.

Case-IV: Study of the nature of interior equilibrium point e3(x∗
I2, y∗

I2, z∗
I2)

In this case, we simulate the model system (3.4) with the set of values of model param-
eters reported in Table 7 and choose the value of parameter p of three different levels
(p = 0, 0.6, 1), which satisfy the condition specified in Lemma 3.6. We have simulated the
model system and calculated the eigenvalues of the Jacobi matrix at this equilibrium point.
The eigenvalues are shown in Table 8. Since the real parts of all eigenvalues of the Jacobi
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Table 7 The values of different parameters used to simulate the model system in Cases IV, V, and VI

Parameters Values

r̃ [3.1, 3.51]
ã1 [0.077, 0.080]
ã2 [0.51, 0.61]
b̃1 [0.28, 0.32]
b̃2 [0.28, 0.35]
m̃ [0.42, 0.45]
γ̃ [0.65, 0.69]
k 41

Table 8 The nature of the interior equilibrium point for different values of the parameter p

p Equilibrium point Eigen Values Nature

0 (38.4083, 2.4491, 59.7661) (–2.4132, –0.0003± 0.4768i) Stable
0.6 (38.9809, 2.1088, 73.4081) (–2.7286, –0.2243± 4.0968i) Stable
1 (39.2877, 1.8972, 84.1040) (–2.9459, –0.2106± 4.1794i) Stable

Figure 8 The time series plot of the model system (3.4) in the time range [0, 1500] for different values of
parameter p. These graphs support the stability of the interior equilibrium point e3(x∗I2, y

∗
I2, z

∗
I2)

Figure 9 The model system (3.4) reaches the stable interior equilibrium point e3(x∗I2, y
∗
I2, z

∗
I2) for different

values of the parameter p when numerical simulation is initiated from different initial points under the choice
of model parameter values shown in Table 7

matrix are negative, we can conclude that the interior equilibrium point e3(x∗
I2, y∗

I2, z∗
I2) is

stable in nature when the model parameters satisfy the condition specified in Lemma 3.6.
Case-V: Study of MSY policy when only prey species is harvested from the system
In this case, we simulate the model system (3.5) with the set of values of model pa-

rameters reported in Table 7 and choose the value of parameter p of three different lev-
els (p = 0, 0.6, 1). Here we have varied the harvesting effort e and calculated the values of
maximum sustainable yield (MSY) and the corresponding level of maximum effort (emsy).
These values are shown in Table 9.

From the graphs of Fig. 10 we observed that both the prey and top-predator biomass
decrease when we gradually increase the harvesting effort e, and the rate of decrease in
the population biomass depends on the parameter value p (see the different slopes of de-
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Table 9 The values of the maximum sustainable yield (MSY) and maximum effort (emsy) for different
values of the parameter p when only prey species is harvested

p emsy MSY

0.0 1.4881 29.2887
0.6 1.6180 32.1377
1.0 1.7088 34.1082

Figure 10 The changes in yield and population biomass with respect to the change in harvesting effort e.
Here the value of parameter p has been varied in three different levels (the leftmost figure is for p = 0; the
middle figure is for p = 0.6, and the rightmost figure is for p = 1)

Table 10 The values of the maximum sustainable yield (MSY) and maximum effort (emsy) for
different values of the parameter p when both the prey species x and middle predator y are
harvested from the system

p emsy MSY

0.0 1.4900 29.3631
0.6 1.6169 32.0905
1.0 1.7061 34.0020

creasing blue and pink biomass lines for p = 0, 0.6, 1). We further observed that in all cases
a unique MSY exists for a particular optimum level of harvesting effort e, which depends
on the parametric interval determined through the model parameter p. It is interesting to
observe that in case of only prey harvesting from the system, both the MSY and optimum
level of harvesting effort increase when the parameter p increases in the interval [0, 1].

Case-VI: Study of MSY policy when both the prey species (x) and middle predator (y) are
harvested from the system

Here we simulate the model system (3.7) with the set of values of model parameters re-
ported in Table 7 and choose the value of parameter p of three different levels (p = 0, 0.6, 1).
We have varied the harvesting effort e in the range [0, 2.5] and calculated the value of maxi-
mum sustainable yield (MSY) and the corresponding level of maximum effort (emsy). These
values are shown in Table 10.

From the graphs of Fig. 11 we observed that both the prey and top-predator biomass de-
crease when we gradually increase the harvesting effort e in the range [0, 2.5] and the rate
of decrease in the population biomass depends on the parameter value p (see the different
slopes of decreasing blue and pink biomass lines for p = 0, 0.6, 1). We further observed
that in all cases a unique MSY exists for a particular optimum level of harvesting effort
e, which depends on the parametric interval determined through the model parameter p.
It is interesting to observe that in case of harvesting of both the prey species and middle
predator from the system, both the MSY and optimum level of harvesting effort increase
when the parameter p increases in the interval [0, 1].
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Figure 11 The changes in yield and population biomass with respect to the change in harvesting effort e in
the range [0, 2.5]. Here the value of parameter p has been varied in three different levels (the leftmost figure is
for p = 0; the middle figure is for p = 0.6, and the rightmost figure is for p = 1)

Table 11 The values of different parameters used to simulate the model system (3.8)

Parameters Values

r̃ [0.025, 0.035]
ã1 [0.61, 0.75]
ã2 [0.77, 0.87]
b̃1 [0.055, 0.068]
b̃2 [0.04, 0.05]
m̃ [0.57, 0.67]
γ̃ [0.75, 0.85]
k 41

Table 12 The values of the maximum sustainable yield (MSY) and maximum effort (emsy) for
different values of the parameter p when both predators (middle predator and top predators) are
harvested from the system

p emsy MSY

0.0 3.0030 4.0534
0.6 3.3326 6.2774
1.0 3.5575 8.3728

Case-VII: Study of MSY policy when both the middle and top predators are harvested
from the system

Here we simulate the model system (3.8) with the set of values of model parame-
ters reported in Table 11 and choose the value of parameter p of three different levels
(p = 0, 0.6, 1). We have varied the harvesting effort e in the range [0, 5] and calculated the
value of maximum sustainable yield (MSY) and the corresponding level of maximum ef-
fort (emsy). These values are shown in Table 12.

From the graphs of Fig. 12 we observed that both the prey and top-predator biomass de-
crease whereas middle-predator biomass increases when we gradually increase the har-
vesting effort e in the range [0, 5]. Note that the rate of decrease in the prey population
biomass greatly depends on the parameter value p (see the different slopes of decreasing
lines of first graph of Fig. 12), whereas the rate of change in predator species (both middle
and top predators) with respect to the change of the parameter value p is not much sig-
nificant (the slopes of different lines of the second and third graphs of Fig. 12 are almost
the same). From the fourth graph of Fig. 12 we observed that unique MSY exists for a
particular optimum level of harvesting effort e, which depends on the parametric interval
determined through the model parameter p.
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Figure 12 The changes in the population biomass and total yield with respect to the change in harvesting
effort e in the range [0, 5]. Here the value of parameter p has been varied in three different levels (p = 0, 0.6, 1)

5 Conclusion
In this paper, we analyzed a tritrophic level food chain model considering the model
parameters as dynamic interval numbers. At first, we have constructed a mathematical
model in step-by-step fashion and checked its well-posedness through the positivity and
boundedness of solution of the model system. We have found out all the equilibrium points
of the model system along with its existence criteria. Stability analysis at all the equilibrium
points of the model system was performed, and dynamics of the system was discussed in
detail. We have performed meticulous numerical simulations to verify and validate the an-
alytical findings of our model system. Finally, we have incorporated different harvesting
scenarios like prey harvesting only, harvesting of both prey and top-predator, harvesting
of both the middle and top predators, and so on in the model system and deployed MSY
policies in the dynamic interval environment. The model outcome helps to determine the
optimum level of harvesting in the imprecise environment without putting any unneces-
sary extra risk on the species toward its extinction. The study enables the experimentalists
to further execute several comprehensive measures while designing inter-species relation-
based activities in nature, which would pave the way for securing the endangered and vul-
nerability of several species of importance, preserving thereby the natural ecosystem as a
whole.
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