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WHERE WE ARE IN MODELING
MECHANICAL, TRAFFIC, AND
SOCIO-ECONOMICAL DISCRETE
SYSTEMS
Discrete systems have been firstly intro-
duced in physics (Fisher and Wiodm, 1969;
Noor and Nemeth, 1980; Adhikari et al.,
1996; Kornyak, 2009) to simulate materials
at the micro- and nano-scales where a con-
tinuum description of matter breaks down.
The constituents can be atoms or molecules
and their interactions are usually mod-
eled by force fields resulting from chemical
potentials or weak van der Waals interac-
tions, depending on the type of bonding.
These models have been further exploited
in mechanics with the aim of predicting
macroscopic properties such as strength
and toughness from the non-linear interac-
tions taking place between the constituents
at the different scales. Pioneering attempts
in mechanics to model discrete mechanical
systems are those using lattice models (van
Mier et al., 1995; Schlangen and Garboczi,
1997) characterized by a network of nodes
connected by links modeled by beams.
Although proven to suffer from mesh-
dependency, they have been broadly used
for studying the non-linear fracture behav-
ior of concrete at the meso-scale. Another
line of research regards the generalized-
Born approach (Pellegrini and Field, 2002;
Marenich et al., 2013), firstly used in chem-
istry to model a solute represented as a set
of three-dimensional spheres into a con-
tinuum medium solvent, then applied in
molecular mechanics (called MM/GBSA)
to investigate contact and fracture of bodies
at the micro-scale.

The high-computational power and the
development of powerful open source
software allow nowadays the design of
wide discrete scalable models composed of
up to millions of particles or molecules
whose equations of motions and mutual
interactions are described by highly non-
linear interatomic potential laws. This is
the field of molecular dynamics (MD),
which led to the development of spe-
cific explicit time integration schemes (like
the velocity-verlet integration scheme) to
solve large systems of equations with a
reduced computational cost. Car and Par-
rinello (1985) proposed a minimization
of the total energy of the system by
applying a dynamical simulated anneal-
ing based on MD. MD computations can
also be coupled with continuum simu-
lations by multi-scale methods. Among
the many strategies available in the lit-
erature, (Shenoy et al., 1999; Knap and
Ortiz, 2001) developed an approach based
on the Tadmor’s quasi-continuum method
(Tadmor et al., 1996) operating on a rep-
resentative atomistic zone with a reduced
number of degrees of freedom. Local
minima of the whole system potential
energy are determined via the total energy
from a cluster of atoms, avoiding the
complete calculation of the full atom-
istic force field. The MD enriched con-
tinuum method by Belytschko and Xiao
(2003) and Xiao and Belytschko (2003)
was also another pioneering approach to
couple a potential energy Hamiltonian cal-
culation conducted on a fine scale MD
domain with a Lagrangian calculation on
a coarse scale continuum domain with an

overlapped bridging domain among the
two representations. Recently, an imple-
mentation of interatomic potential laws
within a displacement-based finite element
(FE) formulation has also been proposed
in Nasdala et al. (2010), with a rigorous
implicit solution scheme, aiming at gen-
erating models where non-linear discrete
and continuous systems can be suitably
combined.

Discrete systems made of nodes and
links are also used in other disciplines
than mechanics to model transport or
socio-economical networks (Caldarelli and
Vespignani, 2007; Whrittle, 2012). Based on
a continuum version of traffic conservation
along a link, Lighthill and Whitham (1955)
and Whitham (1974) and independently
Richards (1956) proposed the LWR model
where the governing equation describing
the dependency of the traffic flux on time
and on location along a link is a non-
linear hyperbolic partial differential equa-
tion (PDE) analogous to that describing the
propagation of the front of a wave inside
a medium. For a homogenous link where
the velocity of traffic is the same at any
location and no shocks on the traffic flow
are present, the integration of the LWR
PDE leads to a non-linear relation between
the traffic flow and the density of vehi-
cles, which fully represents the traffic state.
Also, in economics, it is of great interest
to quantify the effect of breaking a link
over the whole network response by simu-
lating the dynamics of flow redistribution.
Again a flow model can be used as suggested
in Zhou et al. (2010) to decode a huge
human crowd without distinction between
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individuals, while small groups are better
represented by an agent-based approach.
Even if computationally demanding, the
latter approach can be exploited in eco-
nomics for competitive resource allocation
(Chakraborti et al., 2015) with models
characterized by strong heterogeneity and
non-equilibrium dynamics among adap-
tive interacting agents. Similar problems
are likewise of paramount importance
in socio-economical systems, as, e.g., the
prediction of the propagation of false
news (trolling behavior) in the web, or
the understanding of the socio-economic
impact of removing a commercial or a
web node (Caldarelli et al., 2008; Quat-
trociocchi et al., 2013). A graphical rep-
resentation in Figure 1 of a mechanical
system (Figure 1A) and a socio-economic
network (Figure 1B) emphasizes also the
visual similarity between them.

WHERE WE ARE GOING: COMPLEXITY
OF DISCRETE SYSTEMS, ANALOGIES,
AND DIFFERENCES
All the previous discrete systems and prob-
ably many others analyzed by the scientific
Community share the common features of
complex systems where the overall prop-
erties emerge from the non-local non-
linear interactions between their basic net-
work components and can only be pre-
dicted by numerically simulating the sys-
tem response and the dynamic evolu-
tion of defects (cracks, node removal, link
removal). Failure of the system is gener-
ally the result of a percolation of defects
at different scales, which leads to complex

redistribution of internal forces/flows.
Understanding how the system is able to
withstand perturbations, i.e., its resilience
or flaw-tolerance, is a problem common
to all of the disciplines mentioned in the
previous section.

Hence, strong analogies and differ-
ences emerge from a deep analysis of
network models if examined from a cross-
disciplinary perspective. The integral for-
mulation of LWR PDE leads to a non-linear
relation between the flux and the vehicle
density, which has an ascending branch
up to a maximum and then decreased to
0 by further increasing the vehicle den-
sity. Interatomic potentials providing the
constitutive behavior of a link are also rela-
tions between interaction forces and rela-
tive displacements of nodes with a similar
non-linear trend. The equilibrium of each
node is also a common concept: it can
be the result of the net sum of the fluxes
converging to a node or the net sum of
the nodal forces. The removal of a link is
typically the result of a propagation of a
dislocation inside the material, whereas it
represents an interruption of communica-
tion between nodes in traffic or in socio-
economic systems. Non-local interactions
can be considered both for mechanical and
socio-economical systems and can be mod-
eled as parallel links connecting nodes, in
addition to serial links connecting only
neighboring nodes. Therefore, given the
elementary constitutive equations describ-
ing the link behavior that can be mechani-
cally modeled as non-linear springs and the
state variables characterizing the nodes, the

basic dynamics of any discrete system can
be in principle simulated according to the
numerical techniques proper of non-linear
mechanics. A non-locality index can also
be used to classify and distinguish between
different networks, as shown in Infuso and
Paggi (2014) to interpret the response of a
discrete system upon removal of nodes in
different locations. From numerical sim-
ulations in Infuso and Paggi (2014), we
observed that the higher the value of the
non-locality index, the higher the total
force supported by the network, for the
same type of node removal.

Significant differences are also present
among discrete systems in different disci-
plines. Links between atoms or molecules
are always constructed on a determinis-
tic basis, i.e., all the atoms are linked by
a certain amount of links, just with dif-
ferent intensities depending on the spa-
tial distance between the nodes. The situa-
tion in socio-economic systems is in reality
much more complex, since the existence
of links between nodes may depend on
the reputation or the economic state of
the nodes themselves, to cite two possi-
ble influencing state variables. Therefore,
links are created dynamically and are prob-
ably the result of an optimization prob-
lem that should be modeled and solved
at the local level. Although these differ-
ences may suggest that a unified theory
for the simulation of complex networks
is still to come and should be the result
of a joint cross-disciplinary effort involv-
ing mathematicians, engineers, physicists,
and economists, they also open interesting

FIGURE 1 | (A) A mechanical system with non-local interactions among atoms modeled by non-local links and with some randomly located vacancies inducing
links removal. (B) A network of relationships between 87 mutually linked United Nations websites [adapted from Cugelman (2008)].
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perspectives for mechanics. For instance,
the fact that local optimization problems
should take place at the local level, in
mechanics they could be the result of the
mechanical response of a constituent of a
metamaterial, whose configuration is such
that it can minimize or maximize cer-
tain properties depending on the inten-
sity of diffusive external fields (tempera-
ture, humidity, electro-chemical potentials,
etc.), as it happens in biomechanical appli-
cations. Within a bottom-up approach to
model this cyber-physical system, given the
links formed at the lower scale and their
constitutive behavior that may depend on
time, the global mechanical response of the
network can then be simulated by minimiz-
ing the total energy of the system, using
numerical methods proper of mechanics.
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