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Abstract. We derive asymptotic expansions for the displacement at the bound-

ary of a smooth, elastic body in the presence of small inhomogeneities. Both
the body and the inclusions are allowed to be anisotropic. This work extends

prior work of Capdeboscq and Vogelius (Math. Modeling Num. Anal. 37,

2003) for the conductivity case. In particular, we obtain an asymptotic ex-
pansion of the difference between the displacements at the boundary with and

without inclusions, under Neumann boundary conditions, to first order in the

measure of the inclusions. We impose no geometric conditions on the inclu-
sions, which need only be measurable sets. The first-order correction contains

a moment or polarization tensor M that encodes the effect of the inclusions.

We also derive some basic properties of this tensor M. In the case of thin,
strip-like, planar inhomogeneities we obtain a formula for M only in terms of

the elasticity tensors, which we assume strongly convex, their inverses, and a
frame on the curve that supports the inclusion. We prove uniqueness of M
in this setting and recover the formula previously obtained by Beretta and

Francini (SIAM J. Math. Anal., 38, 2006).

1. Introduction

Let Ω ⊂ Rd, d ≥ 2 be a smooth bounded domain representing the region occupied
by an elastic body. Let C0 = C0(x) be a smooth background elasticity tensor in Ω.
Let ωε ⊂ Ω be a set of measurable small inhomogeneities and let C1 = C1(x) be the
smooth elasticity tensor inside the inhomogeneities. Let ψ ∈ H−1/2(∂Ω) represents
a traction on ∂Ω and U the corresponding background displacement field which
satisfies the system of linearized elasticity:{

div(C0∇̂U) = 0 in Ω

(C0∇̂U)ν = ψ on ∂Ω,

Let
Cε = C0χΩ\ωε + C1χωε ,

and consider the perturbed displacement field solution to{
div(Cε∇̂uε) = 0 in Ω

(Cε∇̂uε)ν = ψ on ∂Ω.

One goal of this paper is to obtain an asymptotic formula for uε−U on the boundary
of Ω as the measure of ωε approaches zero. The formula we derive generalizes
those already available in case of homogeneous isotropic bodies with diametrically
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small (see [2]) or for thin (see [3]) inhomogeneities. To derive the asymptotic
expansion we follow the approach introduced by Capdeboscq and Vogelius in [6]
for the conductivity equation and we establish a formula in the case of arbitrary
elastic tensors C0 and C1. More precisely we show that for y ∈ ∂Ω

(1.1) (uεn − U)(y) = |ωεn |
∫

Ω

M(x)∇̂U(x) : ∇̂N(x, y)dµx + o(|ωεn |).

along a sequence of configurations {ωεn} whose measure tends to 0. Here, N is the

Neumann function corresponding to the operator div(C0∇̂·), µ is a Radon mea-

sure, the elastic moment tensor M ∈ L2(Ω, dµ) and ∇̂U represents the symmetric
deformation tensor.
This approach allows us to derive in a very natural way some symmetry properties
and significant bounds (of the elastic moment tensor M. We want to point out that
dilute limit elastic tensor was originally derived by Lipton ([14]).

For particular geometries like diametrically small or thin inhomogeneities the as-
ymptotic expansion holds for (uε − U)(y) as ε → 0 and one can characterize the
measure µ and the tensor M. In particular, if ωε = z + εB, where the center z ∈ Ω
and B is a bounded domain, then µ is a Dirac function concentrated at z. If fur-
ther both C0 and C1 are homogeneous and isotropic, the tensor M can be explicitly
computed and carries information about the geometry of B and about the elastic
parameters of C0 and C1 ([2]). If ωε = {x ∈ Ω, dist(x, σ0) < ε}, where σ0 is a
simple smooth open curve in the plane, µ reduces to a Dirac measure supported
on σ0. If again the phases are isotropic, M can be explicitly determined by the
transmission conditions for uε (see [3]).
In the second part of the paper we analyze the case of thin inhomogeneities in a
planar domain in the case of arbitrary elasticity tensors.
In the case of isotropic homogeneous tensors, the idea, used in [3] to derive the
asymptotic expansion for uε − U , is to apply fine regularity results for solutions
of elliptic systems with discontinuous coefficients by Y.Y. Li and L. Nirenberg [12]
and to use the transmission conditions to derive the tensor M which satisfies

(1.2) (C1 − C0)∇̂uiε(x) = M(x)∇̂ueε(x),

whereas ∇̂uiε and ∇̂ueε denote the values of the deformation tensor inside and outside
the inclusion at a point x on its boundary. Note that the deformation tensors are
related by transmission conditions across ∂ωε.
One of the difficulties we encountered in deriving the expansion in the anisotropic
case is the the direct derivation of (1.2) from the transmission conditions. To
construct M, we follow the approach of Francfort and Murat [10] on the calculation
of the effective properties of laminated 2-phase elastic composites. Indeed, one can
view polarization tensors as limits of effective tensors as the volume fraction of one
of the phases tends to 0.
The paper is organized as follows. In section 2, we state a general representation
formula of the form (1.1) for anisotropic elastic inhomogeneities embedded in an
anisotropic background medium. The asymptotic expansion is proved in section 3.
Properties of the elastic moment tensor M are established in section 4. In section 5,
ωε is assumed to be a thin strip-like planar inclusion. Firstly, relying on the uniform
Hölder regularity of uε and on Meyer’s theorem, we give a direct derivation of the
asymptotic expansion similar to that in [3], under the assumption that there exists
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a tensor M, independent of ε, that satisfies (1.2). Secondly, we prove existence of
such M , invoking the result of Francfort and Murat mentioned above [10] . Thirdly,
we show that the asymptotic expansion of theorem 2.1 coincides with that obtained
in theorem 5.1. Finally, in the appendix, we recall classical regularity results for the
system of elasticity, and we prove how Caccioppoli inequality and Meyer’s theorem
also hold for the system of elasticity.
Acknowledgments: The authors wish to thank Joyce McLaughlin and Michael
Vogelius for useful discussions that have lead to the formulation of this problem. E.
Bonnetier, E. Beretta, and A. Mazzucato acknowledge the support and hospitality
of the Mathematical Sciences Research Institute (MSRI) where part of this work
was conducted. Research at MSRI is supported in part by the National Science
Foundation (NSF). The work of A. Mazzucato was partially supported by NSF
grant DMS-0708902 and DMS-1009713. The work of E. Beretta and E. Francini
was partially supported by MIUR grant PRIN 20089PWTPS003.

2. Notations, assumptions and main result

Let Ω ⊂ Rd, d ≥ 2 be a bounded, smooth domain. For x ∈ ∂Ω, let us denote by
ν(x) the normal direction to ∂Ω at point x. We use the following notation:

Notation. Let C be a 4-th order tensor, let A and B be d× d matrices, and let u,
v denote vectors in Rd. We set:

u · v =
∑d
j=1 ujvj Av =

∑d
j=1Aijvj CA =

∑d
k,l=1 CijklAkl

(CA) v =
∑d
j,k,l=1 CijklAklvj CA : B =

∑d
i,j,k,l=1 CijklAklBij ,

|A| = (
∑
ij A

2
ij)

1/2.

Moreover, we denote by Â = (A + AT )/2 the symmetrization of the matrix A. In

particular, given a vector valued function u defined in Ω, we denote by ∇̂u the strain

∇̂u = 1
2

(
∇u+ (∇u)

T
)

.

Let C0 ∈ C1,α(Ω), for some α ∈ (0, 1), be a fourth order elasticity tensor that
satisfies the full symmetry properties:

(2.1) (C0(x))ijkl = (C0(x))klij = (C0(x))jikl ∀ 1 ≤ i, j, k, l ≤ d and x ∈ Ω,

and the strong convexity condition, i.e., there exists a constant λ0 > 0 such that

(2.2) C0(x)A : A ≥ λ0|A|2 for every d× d symmetric matrix A and x ∈ Ω.

Let ψ ∈ H−1/2(∂Ω) satisfying the compatibility condition

(2.3)

∫
∂Ω

ψ ·R = 0,

for every infinitesimal rigid motion R, that is R(x) = Wx + c for some skew-
symmetric matrix W and c ∈ Rd.
The background displacement field U ∈ H̃(Ω) is defined as the solution to

(2.4)

{
div(C0∇̂U) = 0 in Ω

(C0∇̂U)ν = ψ on ∂Ω,
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where H̃(Ω) is the space of vector valued functions given by

H̃(Ω) =

{
u ∈ H1(Ω;Rd) such that

∫
∂Ω

u dσ = 0,

∫
Ω

(
∇u− (∇u)T

)
dx = 0

}
Let ωε denote the a subset of Ω, that contains one or several inhomogeneities. We
assume that ωε is measurable and separated from the boundary, that is d(ωε, ∂Ω) ≥
d0 > 0. We also assume that the measure |ωε| > 0 tends to 0 as ε→ 0.
Let C1 denote the elasticity tensor inside ωε. We assume that C1 ∈ C1(Ω) is fully
symmetric and strongly convex, i.e.

(2.5) C1(x)A : A ≥ λ0|A|2, for every d× d symmetric matrix A and x ∈ Ω.

Let Cε be the elasticity tensor in the presence of the inhomogeneity

(2.6) Cε = C0χΩ\ωε + C1χωε ,

and consider the corresponding displacement field uε ∈ H̃(Ω) solution to

(2.7)

{
div(Cε∇̂uε) = 0 in Ω

(Cε∇̂uε)ν = ψ on ∂Ω.

For existence and uniqueness of solutions to (2.4) and (2.7) in H̃(Ω) we refer to
[16]for example.

Since d(ωε, ∂Ω) ≥ d0 > 0, there exists a compact set K0, independent of ε, such
that

(2.8) ωε ⊂ K0 ⊂ Ω and dist(ωε,Ω \K0) > d0/2 > 0.

We also introduce the Neumann matrix for the operator div(C0∇̂·), i.e. the weak
solution to

(2.9)

{
div(C0∇̂N(·, y)) = −δyId in Ω

(C0∇̂N(·, y)ν = − 1
|∂Ω|Id on ∂Ω,

that satisfies the normalization conditions

(2.10)

∫
∂Ω

N(x, y) dσx = 0,

∫
Ω

(∇xN(x, y)−∇xN(x, y)T ) dx = 0,

where Id is the d-dimensional identity matrix.
For the existence of such Neumann matrix and its behavior for x close to y we
refer to [11] where existence and regularity of the Green’s matrix for weakly elliptic
systems is considered.

The following result generalizes the compactness result of [6] to the case of elastic
inclusions:

Theorem 2.1. Let ωεn be a sequence of measurable subsets satisfying (2.8) such
that, as n→∞, |ωεn | → 0 and

(2.11) |ωεn |−1χωεndx→ dµ in the weak∗ topology of (C(Ω))′,

for some regular positive Borel measure µ, such that
∫

Ω
dµ = 1.
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Given ψ ∈ H−1/2(∂Ω) satisfying (2.3), let U and uεn denote the solutions to (2.4)
and (2.7) respectively. There exists a subsequence, not relabeled, and a fourth order
tensor M ∈ L2(Ω, dµ) such that, for y ∈ ∂Ω,

(2.12) (uεn − U)(y) = |ωεn |
∫

Ω

M(x)∇̂U(x) : ∇̂N(x, y)dµx + o(|ωεn |).

We will prove this result in the next section.

3. Proof of theorem 2.1

3.1. Preliminary estimates. Let F ∈ H−1(Ω) and f ∈ H−1/2(Ω) satisfying the
compatibility conditions∫

Ω

F dx =

∫
∂Ω

f dσx and

∫
Ω

F ·Rdx =

∫
∂Ω

f ·Rdσx,

for every infinitesimal rigid motion R.
Let V and vε in H̃(Ω) solve

(3.1)

{
div(C0∇̂V ) = F in Ω

(C0∇̂V )ν = f on ∂Ω,

and

(3.2)

{
div(Cε∇̂vε) = F in Ω

(C0∇̂vε)ν = f on ∂Ω,

respectively.

Lemma 3.1. Let F ∈ Cα(Ω), with 0 < α < 1 and let 0 < η < 1/d. There exists a
constant C > 0, such that

(3.3) ‖vε − V ‖H1(Ω) ≤ C|ωε|1/2
(
‖F‖Cα(Ω) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
,

and

(3.4) ‖vε − V ‖L2(Ω) ≤ C|ωε|
1
2 + 1

d−η
(
‖F‖Cα(Ω) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
.

Proof. We adapt the arguments of ([6]) to the system of elasticity. Since V and vε
solve (3.1) and (3.2) respectively, for every w ∈ H1(Ω), we have∫

Ω

Cε∇̂(vε − V ) : ∇̂w dx =

∫
ωε

(C0 − C1)∇̂V : ∇̂w dx.

By choosing w = vε − V and applying Korn’s inequality, we show that∫
Ω

|∇(vε−V )|2dx ≤ C
∫

Ω

|∇̂(vε−V )|2dx ≤ C|ωε|1/2‖∇V ‖L∞(ωε)‖∇(vε−V )‖L2(Ω).

It follows from interior regularity results for the elasticity system with regular co-
efficients (see, for example, Theorem 6.III, chapter 2 in [4]) that

‖∇V ‖L∞(ωε) ≤ C
(
‖V ‖H1(Ω) + ‖F‖Cα(K0)

)
≤ C

(
‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω) + ‖F‖Cα(K0)

)
,(3.5)

and, hence,

‖vε − V ‖H1(Ω) ≤ C|ωε|1/2
(
‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω) + ‖F‖Cα(K0)

)
.
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We also have, for any w ∈ H1(Ω),

(3.6)

∫
Ω

C0∇̂(vε − V ) : ∇̂w dx =

∫
ωε

(C0 − C1)∇̂vε : ∇̂w dx.

Let us select w ∈ H̃(Ω) as the solution to{
div(C0∇̂w) = V − vε in Ω

(C0∇̂w)ν = 1
|∂Ω|

∫
Ω

(V − vε)dx on ∂Ω,

By the smoothness assumption on C0 and by interior regularity estimates (see, for
example, Theorem 2.I, chapter 2 in [4]) we have that

‖w‖H2(K0) ≤ C(‖vε − V ‖L2(Ω) + ‖w‖H1(Ω)).

By Korn and Poincaré inequalities

‖w‖H1(Ω) ≤ C‖∇w‖L2(Ω) ≤ C‖∇̂w‖L2(Ω) ≤ ‖V − vε‖L2(Ω)

and, hence,

(3.7) ‖w‖H2(K0) ≤ C‖vε − V ‖L2(Ω)

By Sobolev Embedding Theorem, we have that ∇w ∈ Lp(K0) for every 1 < p < d∗

where d∗ = 2d
d−2 for d > 2 and d∗ = +∞ for d = 2, and

(3.8)

(∫
K0

|∇w|pdx
) 1
p

≤ Cp‖w‖H2(K0) ≤ C‖vε − V ‖L2(Ω).

Let us choose q ∈ ( 2d
d+2 , 2) and p such that 1

p + 1
q = 1. Notice that, p ∈ (1, d∗). By

inserting w into (3.6) we obtain∫
Ω

(vε − V )2dx =

∫
Ω

C0∇̂(vε − V ) : ∇̂w dx =

∫
ωε

(C0 − C1)∇̂vε : ∇̂w dx

≤ C

(∫
ωε

|∇vε|q
) 1
q
(∫

ωε

|∇w|p
) 1
p

(3.9)

≤ C

(∫
ωε

|∇vε|q
) 1
q

‖vε − V ‖L2(Ω).(3.10)

Now, by Hölder inequality and (3.5) we get

‖∇vε‖Lq(ωε) ≤ ‖∇(vε − V )‖Lq(ωε) + ‖∇V ‖Lq(ωε)
≤ |ωε|

1
q−

1
2 ‖∇(vε − V )‖L2(ωε) + |ωε|

1
q ‖∇V ‖L∞(ωε)(3.11)

≤ C|ωε|1/q
(
‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω) + ‖F‖L∞(Ω)

)
A combination of (3.9), (3.8) and (3.11) yields

‖vε − V ‖L2(Ω) ≤ Cq|ωε|1/q
(
‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω) + ‖F‖Cα(Ω)

)
Note that since for q ↘ 2d

d+2 , we have 1
q ↗

1
d + 1

2 . It follows that given any

0 < η < 1/d there exists a constant C such that

‖vε − V ‖L2(Ω) ≤ C|ωε|
1
d+ 1

2−η
(
‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω) + ‖F‖Cα(Ω)

)
�



ANISOTROPIC ELASTIC INCLUSIONS 7

3.2. Definition of the polarization tensor. Let

(3.12) vij =
1

2
(eixj + ejxi)− cij

where ei is the i-th coordinate direction and

cij =
1

2|∂Ω|

∫
∂Ω

(eixj + ejxi) dσ

and consider vijε ∈ H̃(Ω) solution to the problem

(3.13)

{
div(Cε∇̂vijε ) = div(C0∇̂vij) in Ω

(Cε∇̂vijε )ν = (C0∇̂vij)ν on ∂Ω,

Observe now that∥∥∥∥ 1

|ωε|
χωε(C1 − C0)∇̂vijε

∥∥∥∥
L1(Ω)

≤ 1

|ωε|

∫
ωε

∣∣∣(C1 − C0)∇̂(vijε − vij)
∣∣∣ dx

+
1

|ωε|

∫
ωε

∣∣∣(C1 − C0)∇̂vij
∣∣∣ dx.

By Lemma 3.1 and recalling that C0 and C1 are bounded and that

(3.14) ∇vij = ∇̂vij =
1

2
(ei ⊗ ej + ej ⊗ ei),

we have ∥∥∥∥ 1

|ωε|
χωε(C1 − C0)∇vijε

∥∥∥∥
L1(Ω)

≤ C.

Hence, possibly extracting a subsequence, we may assume that

(3.15) |ωεn |χωεn (C1 − C0)∇vijεn → dMijlm,

in the weak∗ topology of C0(Ω), where dMijlm is a regular Borel Measures with

support in K0. Let Φ ∈ C0(Ω). By definition of dMijlm, we see that∣∣∣∣∫
Ω

ΦdMijlm

∣∣∣∣ =

∣∣∣∣ lim
n→∞

1

|ωεn |

∫
Ω

χωεn (C1 − C0)∇̂vijεnΦ dx

∣∣∣∣
≤ limn→∞

1

|ωεn |

∫
Ω

χωεn

∣∣∣(C1 − C0)∇̂(vijεn − v
ij)
∣∣∣ |Φ| dx

+ lim
n→∞

1

|ωεn |

∫
Ω

χωεn

∣∣∣(C1 − C0)∇̂vij
∣∣∣ |Φ| dx

≤ limn→∞
C

|ωεn |1/2

(∫
Ω

|∇̂(vijεn − v
ij)|2 dx

)1/2(∫
Ω

1

|ωεn |
χωεn |Φ|

2dx

)1/2

+C

(∫
Ω

|Φ|2dµ
)1/2

≤ C
(∫

Ω

|Φ|2dµ
)1/2

.

Hence

Φ→
∫

Ω

ΦdMijlm

is a bounded functional on L2(Ω, dµ), and∫
Ω

ΦdMijlm =

∫
Ω

ΦMijlmdµ
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for some function Mijlm ∈ L2(Ω, dµ). The tensor M actually relates to the weak
limit of uε, as the next lemma expresses:

Lemma 3.2. Let U and uε denote the solutions to (2.4) and (2.7) for ψ ∈ H−1/2(∂Ω)
satisfying the compatibility conditions (2.3). Let ωεn such that |ωεn | → 0 be a se-
quence for which (2.8), (2.11) and (3.15) hold.

Then, 1
|ωεn |

χωεn (C1 − C0)∇̂uεndx is convergent in the weak∗ topology of (C0(Ω))′

with

lim
n→∞

1

|ωεn |
χωεn (C1 − C0)∇̂uεndx = M∇̂Udµ

Proof. It suffices to prove that we may extract a subsequence of {ωεn} such that
1

|ωεnj |
χωεnj

(C1 − C0)∇̂uεnj dx converges to M∇̂Udµ. The fact that the limit is

independent of the particular subsequence guarantees that the entire sequence is
convergent.
Proceeding as for vijε , we see that∥∥∥∥ 1

|ωεn |
χωεn (C1 − C0)∇̂uεn

∥∥∥∥
L1(Ω)

≤ 1

|ωεn |

∫
ωεn

∣∣∣(C1 − C0)∇̂(uεn − U)
∣∣∣ dx

+
1

|ωεn |

∫
ωεn

∣∣∣(C1 − C0)∇̂U
∣∣∣ dx

≤ C‖ψ‖H−1/2(∂Ω),

hence, possibly extracting a subsequence, that we do not relabel, we may assume
that, for some matrix-valued measure η,

1

|ωεn |
χωεn (C1 − C0)∇̂uεndx→ dη

in the weak∗ topology of (C0(Ω))′.
We must now show that, for any scalar function Φ,

(3.16)

∫
Ω

Φdη =

∫
Ω

ΦM∇̂Udµ.

In order to do this, it is enough to prove that

(3.17)

∫
ωε

(C0 − C1)∇̂U : ∇̂vijε Φ dx =

∫
ωε

(C0 − C1)∇̂uε : ∇̂vijΦ dx+ o(|ωε|),

because then, by passing to the limit along subsequences of ωεn in (3.17), we get
(3.16).
Let us notice that, since{

div
(
C0∇̂U

)
= div

(
Cε∇̂uε

)
in Ω

(C0∇̂U)ν = (Cε∇̂uε)ν on ∂Ω,

for every vector valued test function Ψ we have that

(3.18)

∫
Ω

C0∇̂U : ∇̂Ψ dx =

∫
Ω

Cε∇̂uε : ∇̂Ψ dx.

For the same reason

(3.19)

∫
Ω

C0∇̂vij : ∇̂Ψ dx =

∫
Ω

Cε∇̂vijε : ∇̂Ψ dx.
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We can calculate

∫
Ω

(C0 − Cε)∇̂U : ∇̂vijε Φ dx−
∫

Ω

(C0 − Cε)∇̂uε : ∇̂vijΦ dx

=

∫
Ω

(
C0∇̂U : ∇̂(vijε Φ)− Cε∇̂vijε : ∇̂(UΦ)

)
dx

−
∫

Ω

(
C0∇̂vij : ∇̂(uεΦ)− Cε∇̂uε : ∇̂(vijΦ)

)
dx

−
∫

Ω

(
C0∇̂U : (vijε ⊗∇Φ)− Cε∇̂vijε : (U ⊗∇Φ)

)
dx

+

∫
Ω

(
C0∇̂vij : (uε ⊗∇Φ)− Cε∇̂uε : (vij ⊗∇Φ)

)
dx

By (3.18) and (3.19) and recalling that Cε = C0 in Ω \ ωε, we can write

∫
ωε

(C0 − C1)∇̂U : ∇̂vijε Φ dx−
∫
ωε

(C0 − C1)∇̂uε : ∇̂vijΦ dx

=

∫
Ω

(
Cε∇̂uε : ∇̂(vijε Φ)− C0∇̂vij : ∇̂(UΦ)

)
dx

−
∫

Ω

(
Cε∇̂vijε : ∇̂(uεΦ)− C0∇̂U : ∇̂(vijΦ)

)
dx

−
∫

Ω

(
C0∇̂U : (vijε ⊗∇Φ)− Cε∇̂vijε : (U ⊗∇Φ)

)
dx

−
∫

Ω

(
C0∇̂vij : (uε ⊗∇Φ)− Cε∇̂uε : (vij ⊗∇Φ)

)
dx

=

∫
Ω

(
Cε∇̂uε : ∇̂vijε Φ− C0∇̂vij : ∇̂UΦ

)
dx

−
∫

Ω

(
Cε∇̂vijε : ∇̂uεΦ− C0∇̂U : ∇̂vijΦ

)
dx

−
∫

Ω

(
Cε∇̂uε : (vijε ⊗∇Φ)− C0∇̂vij : (U ⊗∇Φ)

)
dx

−
∫

Ω

(
Cε∇̂vijε : (uε ⊗∇Φ)− C0∇̂U : (vij ⊗∇Φ)

)
dx

−
∫

Ω

(
C0∇̂U : (vijε ⊗∇Φ)− Cε∇̂vijε : (U ⊗∇Φ)

)
dx

−
∫

Ω

(
C0∇̂vij : (uε ⊗∇Φ)− Cε∇̂uε : (vij ⊗∇Φ)

)
dx
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By symmetry of the elasticity tensors, the first two lines of last equality give zero.
By rearranging the various integral in a suitable way we get,∫

ωε

(C0 − C1)∇̂U : ∇̂vijε Φ dx−
∫
ωε

(C0 − C1)∇̂uε : ∇̂vijΦ dx

=

∫
Ω

Cε
(
∇̂uε − ∇̂U

)
: ((vijε − vij)⊗∇Φ)dx

−
∫

Ω

Cε
(
∇̂vij − ∇̂vijε

)
: ((U − uε)⊗∇Φ)dx

+

∫
ωε

(C1 − C0) ∇̂U : ((vijε − vij)⊗∇Φ)dx

−
∫
ωε

(C1 − C0) ∇̂vij : ((U − uε)⊗∇Φ)dx

By Lemma 3.1 and by regularity of functions U and vij in K0, we get (3.17).
�

3.3. End of the proof of Theorem 2.1. Let ωεn as above. By the definition of
the Neumann matrix it is easy to see that

(3.20) (uεn − U)(y) =

∫
ωεn

(C1 − C0)∇̂uεn : ∇̂N(·, y)dx.

(See [3] for details).
Let K0 ⊂ Ω the compact set introduced in (2.8). Given y ∈ ∂Ω it is possible to find
Ψy ∈ C0(Ω) a matrix valued function such that Ψy(x) = ∇xN(x, y) for x ∈ K0.
Using the previous lemma we get

(uεn − U)(y) = |ωεn |
∫

Ω

1

|ωεn |
χωεn (C1 − C0)∇̂uεn : Ψy dx

= |ωεn |
∫

Ω

M∇̂U : Ψydµ+ o(|ωε|)

= |ωεn |
∫

Ω

M∇̂U : ∇̂N(·, y) dµ+ o(|ωε|).

4. Properties of the elastic polarization tensor

In this section we prove few basic properties of the polarization tensor M:

Proposition 4.1. The polarization tensor M has the same symmetry properties of
the elasticity tensors C0 and C1, that is

Mijkl = Mklij = Mjikl, µ-a.e.

for any choice of indices i, j, k, l between 1 and d.
Moreover, for any symmetric matrix E,

(4.1) C0C−1
1 (C1 − C0)E : E ≤ME : E ≤ (C1 − C0)E : E µ-a.e..

Proof. Firstly, we show that M enjoys the same symmetry as the elastic tensors C1

and C0. To this end, we recall the following equality, which was obtained in the
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proof of lemma 3.2.

1

|ωε|

∫
ωε

(C1 − C0)∇̂U : ∇̂vijε Φdx =
1

|ωε|

∫
ωε

(C1 − C0)∇̂uε : ∇̂vijΦdx+ o(1).

Substituting U and uε for vhk and vhkε respectively, we see that

1

|ωε|

∫
ωε

(C1 − C0)∇̂vhk : ∇̂vijε Φdx =
1

|ωε|

∫
ωε

(C1 − C0)∇̂vhkε : ∇̂vijΦdx+ o(1).

Recalling (3.14) and by the symmetry of C0 and C1, we get on one hand that

1

|ωε|

∫
ωε

(C1 − C0)∇̂vhk∇̂vijε Φdx =
1

|ωε|

∫
ωε

∑
lmpq

(C1 − C0)lmpqδhpδkq
∂(vijε )m
∂xl

Φdx

=
1

|ωε|

∫
ωε

∑
lm

(C1 − C0)lmhk
∂(vijε )m
∂xl

Φdx

→
∫

Ω

MijhkΦdµ.

On the other hand

1

|ωε|

∫
ωε

(C1 − C0)∇̂vhkε ∇̂vijΦdx =
1

|ωε|

∫
ωε

∑
lmpq

(C1 − C0)lmpq
∂(vhkε )q
∂xp

δilδjmΦdx

=
1

|ωε|

∫
ωε

∑
pq

(C1 − C0)ijpq
∂(vhkε )q
∂xp

Φdx

→
∫

Ω

MhkijΦdµ.

It follows that

(4.2) Mijhk = Mhkij , µ− a.e.

To obtain the minor symmetry, we observe that∑
lm

|ωεn |χωεn (C1 − C0)lmpq
∂(vijεn)q

∂xp
=
∑
lm

|ωεn |χωεn (C1 − C0)mlpq
∂(vijεn)q

∂xp
,

since C1−C0 is a totally symmetric 4th-order tensor. Then, from (3.15), it follows
that

Mijlm = Mijml, µ− a.e.

All the minor symmetries now follow from (4.2).
For the proof of (4.1), we follow [6], where the case of the scalar conductivity
equation was discussed.
We begin by fixing a constant, symmetric matrix E = [Eij ]. We set

(4.3) V =
∑
ij

Eijv
ij , vε =

∑
ij

Eijv
ij
ε ,

where vij and vijε are given in (3.12) and (3.13), and observe that V solves

(4.4)

{
div(C0∇̂V ) = div(C0E), in Ω,

(C0∇̂V )ν = (C0E)ν, on ∂Ω,
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and, consequently, vε solves

(4.5)

{
div(Cε∇̂vε) = div(C0E), in Ω,

(Cε∇̂vε)ν = (C0E)ν, on ∂Ω.

We next recall that M is obtained as the weak limit (3.15). Therefore, given any
function Φ ∈ C0(Ω̄), we have

∫
Ω

MijklΦ dµ =
1

|ωε|

∫
ωε

[
(C1 − C0)∇̂vijε

]
kl

Φ(x) dx + o(1),

where ε is an element of the sequence {εn}, and square brackets indicate compo-
nents. We choose Φ(x) = Eij EklφχΩ̄, where φ is a positive smooth function, and
sum over repeated indices:

∫
Ω

ME : Eφdµ =
∑
ijkl

∫
Ω

EijMijklEklφdx

=
1

|ωε|

∫
ωε

∑
ijkl

Eij

[
(C1 − C0) · ∇̂vijε

]
kl
Eklφdx + o(1).

Recall that ∇vij = ̂(ei ⊗ ej), hence from (4.3), using that E is symmetric, we have

∇̂V =
∑
ij

Eij ei ⊗ ej = E,

so that:

∫
Ω

ME : Eφdµ =
1

|ωε|

∫
ωε

∑
klpq

(C1 − C0)klpq

∑
ij

Eij∂p[v
ij
ε ]q

 : [∇̂V ]klφdx

+o(1)

=
1

|ωε|

∫
ωε

(C1 − C0) ∇̂vε : ∇̂V φ dx+ o(1)

=
1

|ωε|

∫
ωε

(C1 − C0) ∇̂V : ∇̂V φ dx

+
1

|ωε|

∫
ωε

(C1 − C0) ∇̂(vε − V ) : ∇̂V φ dx+ o(1)(4.6)

Let us now notice that∫
ωε

(C1 − C0) ∇̂(vε − V ) : ∇̂V φ dx = −
∫

Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx+R
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where, by (4.4), (4.5) and by Lemma 3.1,

R :=

∫
ωε

(C1 − C0) ∇̂(vε − V ) : ∇̂V φ dx+

∫
Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx

=

∫
Ω

(Cε − C0) ∇̂(vε − V ) : ∇̂V φ dx+

∫
Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx

=

∫
Ω

Cε∇̂vε : ∇̂(vε − V )φdx−
∫

Ω

C0∇̂V : ∇̂(vε − V )φdx

=

∫
Ω

Cε∇̂vε : ∇̂((vε − V )φ) dx−
∫

Ω

C0∇̂V : ∇̂((vε − V )φ) dx

−
∫

Ω

Cε∇̂vε : ((vε − V )⊗∇φdx+

∫
Ω

C0∇̂V : ((vε − V )⊗∇φdx

= −
∫

Ω

C0∇̂(vε − V ) : ((vε − V )⊗∇φdx−
∫
ωε

C1∇̂vε : ((vε − V )⊗∇φdx

= o(|ωε|)(4.7)

By inserting the above relation in (4.6) we get∫
Ω

ME : Eφdµ =
1

|ωε|

∫
ωε

(C1 − C0) ∇̂V : ∇̂V φ dx

−
∫

Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx+ o(1).(4.8)

Since Cε is strongly convex, and φ > 0,∫
Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx ≥ 0

and, hence, ∫
Ω

ME : Eφdµ ≤ 1

|ωε|

∫
ωε

(C1 − C0) ∇̂V : ∇̂V φ dx+ o(1)

Since the left-hand side does not depend on ε we let ε→ 0 and get

(4.9)

∫
Ω

ME : Eφdµ ≤
∫

Ω

(C1 − C0) ∇̂V : ∇̂V φ dµ =

∫
Ω

(C1 − C0)E : Eφdµ.

Now, by (4.7) and by the fact that C1 is strongly convex, we have that∫
Ω

Cε∇̂(vε − V ) : ∇̂(vε − V )φdx

=

∫
ωε

(C0 − C1) ∇̂(vε − V ) : ∇̂V φ dx+ o(|ωε|)

=

∫
ωε

C1 ∇̂(vε − V ) : C−1
1 (C0 − C1) ∇̂V φ dx+ o(|ωε|)

≤
(∫

ωε

C1∇̂(vε − V ) : ∇̂(vε − V )φdx

)1/2

·(∫
ωε

(C0 − C1)∇̂V : C−1
1 (C0 − C1)∇̂V φ dx

)1/2

+ o(|ωε|)(4.10)
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from which it follows that
(4.11)∫

Ω

Cε∇̂(vε−V ) : ∇̂(vε−V )φdx ≤
∫
ωε

C−1
1 (C0−C1)∇̂V : (C0−C1)∇̂V φ dx+o(|ωε|).

By inserting (4.11) into (4.8) we get∫
Ω

ME : Eφdµ ≥ 1

|ωε|

∫
ωε

(C1 − C0) ∇̂V : ∇̂V φ dx

− 1

|ωε|

∫
ωε

C−1
1 (C0 − C1)∇̂V : (C0 − C1)∇̂V φ dx+ o(1)

=
1

|ωε|

∫
ωε

C−1
1 (C1 − C0)∇̂V : C0∇̂V dx+ o(1).

By letting ε→ 0 we get
(4.12)∫

Ω

ME : Eφdµ ≥
∫

Ω

C0C−1
1 (C1−C0)∇̂V : ∇̂V φ dµ =

∫
Ω

C0C−1
1 (C1−C0)E : Eφdµ.

Notice that (4.9) and (4.12) hold for every positive φ, hence (4.1) follows. �

An important issue that could be addressed is the possibility to obtain optimal
Hashin-Shtrikman type bounds for M. Hashin-Shtrikman type bounds for M have
been obtained in [8] for the conductivity case, in [14] and [5] for the isotropic elastic
case.

5. The case of thin planar inclusions

In this section, we specialize to the case of thin inclusions in a planar domain
Ω ⊂ R2, modeled as an appropriate neighborhood ωε of a given simple curve σ0 ⊂ Ω,
that is:

(5.1) ωε = {x ∈ Ω : d(x, σ0) < ε} .

We impose the following conditions on σ0. We assume that σ0 is of class C3 and
that there exists some K > 0 such that

d(σ0, ∂Ω) ≥ K−1

‖σ0‖C3 ≤ K(5.2)

K−1 ≤ length(σ0) ≤ K.

Moreover we assume that for every x ∈ σ0 there exists two discs B1 and B2 of
radius K−1, such that

B1 ∩B2 = B1 ∩ σ0 = B2 ∩ σ0 = {x}.

The latter assumption guarantees that different parts of σ0 do not get too close, so
that ωε does not self-intersect for small ε. We refer to σ0 as the support of ωε.
Let us fix an orthonormal system (n, τ) on σ0 such that n is a unit normal vector
field to the curve and τ is a unit tangent vector field. If σ0 is a closed curve, then
we take n to point in the outward direction of the domain it encloses.
We present a different derivation of the small volume asymptotic formula (2.12)
for the displacement at the boundary in this case, which makes more explicit the
measure and polarization tensor M that appear in (2.12).
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The main result of this section is the following theorem, which is a counterpart to
Theorem 2.1.

Theorem 5.1. Let Ω ⊂ R2 be a bounded smooth domain and let σ0 ⊂⊂ Ω be a
simple curve satisfying (5.2). Let uε and U be the solutions to (2.4) and (2.7)

respectively. For every x ∈ σ0, there exists a fourth order elastic tensor field M̃(x)
such that, for y ∈ ∂Ω

(5.3) (uε − U)(y) = 2ε

∫
σ0

M̃(x)∇̂u0(x) : ∇̂N(x, y) dσ0(x) + o(ε).

The term o(ε) is bounded by Cε1+θ‖ψ‖H−1/2(∂Ω), for some 0 < θ < 1 and C de-
pending only on θ, Ω, α0, β0 and K.

5.1. Proof of Theorem 5.1. The proof of the theorem closely follows the proof
of the corresponding result in the isotropic case (see [3]). We only detail those
steps, where the proof differs from that case. In the following we set uiε = uε|ωε
and ueε = uε|Ω\ωε . We simply use uε when no confusion can occur. Firstly, we

write (uε − U)|∂Ω
in terms of an integral over ωε of the product of ∇̂uiε and ∇̂N .

Secondly, using some regularity estimates for solutions to the elastic system in a
laminar domain due to Li and Nirenberg [12], we approximate this integral by
an integral over a portion of ∂ωε, which we rewrite, in a third step, using the
transmission conditions and a tensor M̃ satisfying (5.7). The existence of M̃ is
proved later in Subsection 5.2. Finally, taking limits in the resulting expression as
ε→ 0 and using fine regularity estimates for uε proves the theorem.
First step.
We recall (see (3.20)) that, for y ∈ ∂Ω

(5.4) (uε − U)(y) =

∫
ωε

(C1 − C0) ∇̂uiε : ∇̂N(·, y) dx.

Second step. Let β be a constant, 0 < β < 1, and set

ω′ε =
{
x+ t n(x) : x ∈ σ0, d(x, ∂σ0) > εβ , t ∈ (−ε, ε)

}
.

Notice that if σ0 is a closed simple curve, then ω′ε = ωε.
By Theorem 2.1, chapter 2 in [4] combined with Sobolev Embedding Theorem, we
have that ‖∇U‖L∞(ωε) and ‖∇N(·, y)‖L∞(ωε) (for y ∈ ∂Ω) are bounded uniformly
in ε. Using this fact together with the energy estimate (3.3), one can easily show
as in [3] that
(5.5)∫

ωε

(C1 − C0) ∇̂uiε : ∇̂N(·, y) dx =

∫
ω′ε

(C1 − C0) ∇̂uiε : ∇̂N(·, y) dx+O(ε1+β/2).

Let σ′ε denote the curve

σ′ε =
{
x+ ε n(x) : x ∈ σ0, d(x, ∂σ0) > εβ

}
.

A crucial ingredient, at this point, is a Cα regularity estimates for the gradient
of solutions to laminated systems due to Li and Nirenberg (see [12]). Using this
estimate and proceeding as in [3], we can approximate the values of ∇uε in ωε

′ by
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its values on σ′ε, so that∫
ω′ε

(C1 − C0) ∇̂uiε(x) : ∇̂N(x, y) dx

= 2ε

∫
σ′ε

(C1 − C0) ∇̂uiε : ∇̂N(·, y) +O(ε1+α−β(1+α)),(5.6)

for β < α(1 + α)−1.
Third step.
From the results of the section 5.2, for every x ∈ σ′ε, there exists a fourth-order,

symmetric tensor M̃(x), independent of ε, such that

(5.7) (C1(x)− C0(x)) ∇̂uiε(x) = M̃(x)∇̂ueε(x)

Inserting (5.7) into (5.6), we get
(5.8)∫

σ′ε

(C1 − C0) ∇̂uiε : ∇̂N(·, y)dx = 2ε

∫
σ′ε

M̃∇̂ueε : ∇̂N(·, y)dx+O(ε1−α−β(1+α)).

Fourth Step.
Now we show that

(5.9) ‖∇ueε −∇U‖L∞(σ′ε)
≤ Cεγ‖ψ‖H−1/2(∂Ω)

for some positive γ.
Once estimate (5.9) is proved, then (5.8) holds with ∇U instead of ∇ueε and (5.3)
follows immediately by continuity.
In [3] the proof of estimate (5.9) strongly relies on the special features of a homo-
geneous and isotropic tensor C0. In the present case, we use of a Caccioppoli-type
inequality proved in the Appendix.
Let 2ε < d < d0/2 and Ωεd = {x ∈ Ω : d(x, ∂(Ω\ωε) > d}.
Since uε − u0 is solution to

div
(
C0∇̂(uε − u0)

)
= 0 in Ω \ ωε,

the regularity assumption on C0 implies that uε−u0 ∈ H2
loc(Ω\ωε) ( see [4, Theorem

2.I chapter 2]).
Let k ∈ {1, 2} and let φkε := ∂k(uε − u0). The function φk solves

div
(
C0∇̂φkε

)
= F in Ω \ ωε.

with

F = −div
(

(∂kC0)∇̂(uε − u0)
)
.

By Caccioppoli inequality (Theorem A.1 for ū = 0) and by (3.3), we see that

‖∇φkε ‖2L2(Ωε
d/2

) ≤ C1

d2
‖φkε ‖2L2(Ωε

d/4
) + ‖F‖2H−1(Ωε

d/4
)

= C

(
1

d2
‖φkε ‖2L2(Ωε

d/4
) + ‖∇(uε − u0)‖2L2(Ω\ωε)

)
≤ C‖ψ‖2H−1/2

(
d−2 + 1

)
ε ≤ C‖ψ‖2H−1/2d

−2ε.

and, by (3.3) again

‖φkε ‖H1((Ωε
d/2

)) ≤ C‖ψ‖H−1/2d−1
√
ε
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Theorem B.1 applied to φk shows that

‖∇φk‖L2+η (Ωεd) ≤ C
(
‖F‖H−1,2+η(Ωε

d/2
) + d

2
2+η−1‖∇φk‖L2(Ωε

d/2
)

)
.

Notice that, by applying Theorem B.1 to uε − u0 in Ω \ ωε,

‖F‖H−1,2+η(Ωε
d/2

) = ‖(∂kC0)∇̂(uε − u0)‖L2+η(Ωε
d/2

)

≤ C‖∇̂(uε − u0)‖L2+η(Ωε
d/2

) ≤ ‖∇(uε − u0)‖L2(Ωε
d/4

)

and, hence,

‖∇φk‖L2+η (Ωεd) ≤ C
(
‖∇(uε − u0)‖L2(Ωε

d/4
) + d

2
2+η−1‖∇φk‖L2(Ωε

d/2
)

)
≤ C

(
d

2
2+η−2

)√
ε.

On the other hand, applying Theorem B.1 to uε − u0 shows that

‖φkε ‖L2+η(Ωεd) ≤ Cd
2

2+η−1√ε.

By Sobolev Embedding Theorem, it follows that, for k = 1, 2,

(5.10) ‖∂k(uε − u0)‖L∞(Ωεd) = ‖φkε ‖L∞(Ωεd) ≤ C
(
d

2
2+η−2

)√
ε

Now, let y ∈ ∂σ′ε and let yd denote the closest point to y in the set Ωεd. From the
gradient estimates for uε and u0 (see [12] and [3, Prop.3.3]), we have

(5.11) |∇ueε(y)−∇ueε(yd)| ≤ Cdα,

which yields, by (5.10),

|∇(ueε − u0)(y)| ≤ C(dα + d−2+ 2
2+η ε1/2) .

Choosing d = ε
1

2(2+α− 2
2+η

) , we get

(5.12) |∇(ueε − u0)(y)| ≤ Cεγ ,

where γ = α

2(2+α− 2
2+η )

, and hence

‖∇(ueε − u0)‖L∞(σ′ε)
≤ Cεγ .

We conclude exactly as in [3] by noticing that the tensor M is continuous in Ω (see
next section). �

Remark 5.2. If the elasticity tensor C0 is smoother than C1,α in Ω, by differenti-
ating again the equation for uε−u0 in Ω\ωε and using again Caccioppoli inequality
we obtain a better exponent γ in (5.12). Moreover, if C0 ∈ C∞ this result can be ex-
tended to any dimension for small neighborhoods of regular hypersurfaces contained
in Ω.
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5.2. Construction of the polarization tensor. To establish the asymptotic for-

mula (5.3), one seeks to express the term (C0 − C1)∇̂uiε(x) as a linear function of

∇̂ueε(x), for x ∈ σ′ε (with the notation introduced in the second step of the previous

proof). This linear dependence defines the polarization tensor M̃ in this context,
which therefore must satisfy:

(C0 − C1)∇̂uiε(x) = M̃(x)∇̂ueε(x)(5.13)

Let us also recall that n(x) and τ(x) denote the normal and tangential directions
to σ′ε at point x.

From the discussion in the previous subsection, it suffices to obtain M̃ along σ′ε,
away from the vertices of the curve (more precisely, outside a disk of radius εβ

centered at the vertices).
We introduce a coordinate system in ω′ε, adapted to the geometry of the problem,
as follows. Let τ be a unit tangent vector field along the curve σ′ that supports ωε,
for instance the velocity vector field using arclength, and let n be a vector field
normal to σ0 so that {τ, n} forms a frame field on σ0.
We employ again the frame field (τ, n) along σ′0, and extend it to ω′ε by setting
τ(x′) and n(x′) to be constant along the segment {x = x′+hn(x′), 0 ≤ h ≤ ε}. By
construction a global coordinate system in ω′ε is given by x = x′+hn(x′), where x′

is a point along the curve σ′0 and 0 ≤ h < ε. We can extend this coordinate system
smoothly to part of the boundary, that is, for h = ε.
Since the part of the boundary ωε above σ′0 is given by the graphs of two smooth
functions above the same curve, by the regularity results recalled in the previous
section (see [12]), the interior and exterior strain fields are regular and satisfy the
following transmission conditions pointwise on σ′ε:

(5.14a) ∇ueε(x)τ(x) = ∇uiε(x)τ(x)

(5.14b) C0∇̂ueε(x)n(x) = C1∇̂uiε(x)n(x).

A direct determination of a 4th-order tensor M̃ that satisfies (5.13) directly from
the above relations turns out to be rather complicated. One is led to invert a linear
system, the determinant of which is not easily seen to be non zero when C0 and C1

are anisotropic tensors, unless additional assumptions are made.
Instead, we follow a construction due to G. Francfort and F. Murat [10]. In their
work, effective elastic properties of laminate composites are calculated in terms of
the geometric parameters of the phase layers (see also [15], P. 168). This construc-
tion precisely relies on the transmission conditions (5.14). We fix a point x′ ∈ σ′0,
and denote the values of the interior and exterior strains respectively by

ei = ∇̂uiε(x) and ee = ∇̂ueε(x).

Proposition 5.3. There exists a 4-th order tensor M̃ such that

(5.15) (C0 − C1)ei = M̃ee,

where M̃ depends on C0, C1, n, and τ , but not on ee and ei.

Proof. First of all let us notice that, by the first transmission condition (5.14a) we
can write

(5.16) ee = ei + δ ⊗ n+ n⊗ δ, for some δ ∈ R2
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Let q−1 denote the (symmetric) linear operator associated to the quadratic form
on R2:

(q−1ζ)ξ = (C1(ζ ⊗ n)) : (ξ ⊗ n), ζ, ξ ∈ R2.

Note that, since C1 is positive definite, q−1 is invertible since, by (2.5),

∀ ζ ∈ R2, (q−1ζ)ζ = (C1(ζ ⊗ n) : (ζ ⊗ n) ≥ λ0|ζ|2,

and thus its inverse q is well defined. Conditions (5.14b) and (5.16) imply that

((C0 − C1)ee)n) = C1(ei − ee)n(5.17)

= (C1(δ ⊗ n+ n⊗ δ))n(5.18)

On the other hand, for any ξ ∈ R2, we have

2(q−1δ)ξ = 2(C1(δ ⊗ n)) : (ξ ⊗ n)

= (C1(δ ⊗ n+ n⊗ δ)) : (ξ ⊗ n)

= C1(ei − ee) : (ξ ⊗ n).

This can equivalently be written as

2(q−1δ)ξ =
(
C1(ei − ee)n

)
· ξ, ∀ξ ∈ R2

that is, by (5.17)

2(q−1δ) = C1(ei − ee)n = ((C0 − C1) ee)n.

From the above equation we deduce that

δ =
1

2
q ((C0 − C1)een)

hence, by (5.16)

ei = ee +
1

2
q ((C0 − C1)een)⊗ n+ n⊗ 1

2
q ((C0 − C1)een) .

We can now conclude that

(C0 − C1)ei = (C0 − C1)ee + (C0 − C1) (q ((C0 − C1)een)⊗ n) ,

where, in the last expression we used symmetry of tensor C0 − C1.
Hence, the forth order tensor M̃ defined by

(5.19) M̃h = (C0 − C1)h+ (C0 − C1) (q ((C0 − C1)hn)⊗ n) ,

satisfies (5.15). As can be seen by its expression, M̃ does not depend on ee and
ei but only on the elasticity tensors C0 and C1 and on the directions n and τ .
Moreover, this tensor M can be defined for every point x in ωε

′ and it is continuous
with respect to x.

Remark 5.4. Assume that {ωε} is a sequence of thin strip-like inclusions as
in (5.1). Then, the expansions (2.12) and (5.3) coincide. In other words, the

measure M(x)dµx that appears in (2.12) is precisely M̃(x)δσ0
(x), where M̃(x) is

defined in the section 5.2.
Indeed, given the form of the sets ωε, it is immediate to see that

1

|ωε|
χωε ⇀ δσ0

.
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Thus, recalling Lemma 3.2, it suffices to show that

1

|ωε|
χωε(C1 − C0)∇̂uεn ⇀ M̃(x)∇̂U(x)δσ0

,

in the weak∗ topology of (C0(Ω))′. This again is a consequence of the uniform
regularity estimates on uε. Indeed, let φ ∈ C0(Ω). Using the same notations and
the same analysis as in section 5.1, we see that∫
ωε

1

|ωε|
(C1 − C0)∇̂uεφdx =

∫
ω′ε

1

|ωε|
(C1 − C0)∇̂uεφdx

+

∫
ωε\ω′ε

1

|ωε|
(C1 − C0)∇̂uεφdx

= 2
1

|σ′ε|

∫
σ′ε

(C1 − C0)∇̂uiεφdσx +O(εinf(α−β(1+α),β))

= 2
1

|σ′ε|

∫
σ′ε

M̃(x)∇̂ueεφdσx +O(εinf(α−β(1+α),β))

→ 2

∫
σ0

M̃(x)∇̂Uφdµ,

which proves the claim.

Remark 5.5. In the case of isotropic materials, an explicit formula for M can be
obtained from (5.19). In fact, in this case C0 and C1 have the simple form:

(5.20)
C0 = λ0 I2 ⊗ I2 + 2µ0 I4,

C1 = λ1 I2 ⊗ I2 + 2µ1 I4

where λi, µi, i = 0, 1, are the Lamé parameters, I2, I4 are the identity elements
on 2 and 4 symmetric tensors respectively. Hence, as linear maps over symmetric
matrices, they are diagonal in any basis. These tensors are strongly convex if λi > 0
and λi + µi > 0, i = 0, 1.
Then, it readily follows that the matrix q is given by (see [10, Equation 4.8]):

(5.21) q =
1

µ1
I2 −

λ1 + µ1

µ1 (λ1 + 2µ1)
n⊗ n.

Combining (5.20) with (5.21) gives:

(q ((C0 − C1)hn)⊗ n) =
λ0 − λ1

λ1 + 2µ1
Tr(h)n⊗ n

+
2 (µ0 − µ1)

µ1

[
(hn)⊗ n− λ1 + µ1

λ1 + 2µ1
((hn) · n)n⊗ n

]
Lengthy, but straightforward calculations yield:

(5.22) Mh = aTr(h) I2 + b h+ c ((hτ) · τ) τ ⊗ τ + d ((hn) · n)n⊗ n,
where

a = (λ0 − λ1)
λ0 + 2µ0

λ1 + 2µ1
, b = (µ0 − µ1)

µ0

µ1
,

c = (µ0 − µ1)
2λ1(µ1 − µ0) + µ1(λ1 − λ0) + 2µ1(µ1 − µ0)

µ1(λ1 + 2µ1)
,

d = 2 (µ0 − µ1)
µ1λ0 − λ1µ0

µ1(λ1 + 2µ1)
.
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As expected, this formula agrees with that obtained in [3, Theorem 2.1].

Appendix A. A Caccioppoli type inequality

For the sake of completeness, we state and prove a Caccioppoli type inequality for
solutions of strongly convex systems.

Theorem A.1. Let Bρ and B2ρ be two concentric balls contained in Ω and let ū
be any constant vector.
Let u ∈ H1(Ω) be solution to

∇ ·
(
C∇̂u

)
= f in Ω,

where C ∈ L∞(Ω) is a strongly convex tensor and f ∈ H−1(Ω). Then

(A.1) ‖∇u‖2L2(Bρ) ≤
C1

ρ2
‖u− ū‖2L2(B2ρ) + C2‖f‖2H−1(B2ρ)

Remark A.2. Note that ū = (u)B2ρ
:= 1
|B2ρ|

∫
B2ρ

u dx gives the minimum value

for ‖u− ū‖2L2(B2ρ).

Proof of Theorem A.1
Let θ ∈ C∞0 (B2ρ) such that

0 ≤ θ ≤ 1, θ = 1 in Bρ and |∇θ| ≤ C

ρ
.

Let v ∈ H1(B2ρ,R2) and observe that

∇(θ2v) = θ∇(θv) + θ∇θ ⊗ v.
By assumption u is a weak solution of

∇ ·
(
C∇̂u

)
= f in B2ρ

hence we have
a0(u, φ) = − < f, φ > ∀φ ∈ H1

0 (B2ρ)

where

a0(u, φ) =

∫
B2ρ

C∇̂u : ∇̂φ.

Let ψ = θ(u− ū) and let φ = θψ. We have that

a0(ψ,ψ) =

∫
B2ρ

C∇̂ψ : ∇̂ψ

=

∫
B2ρ

[C(θ∇̂(u− ū) + (u− ū)⊗∇θ) : (θ∇̂(u− ū) + (u− ū)⊗∇θ)]

After some straightforward calculations one gets

a0(ψ,ψ) = a0(u, φ) +

∫
B2ρ

C (∇θ ⊗ (u− ū)) : (∇θ ⊗ (u− ū)) =< f, φ > +I

We have

|I| ≤ C3‖∇θ ⊗ (u− ū)‖2L2(B2ρ) ≤
C3

ρ2
‖u− ū‖2L2(B2ρ)

and by Young inequality

| < f, φ > | ≤ ‖f‖H−1(B2ρ)‖∇φ‖L2(B2ρ) ≤ δ‖∇φ‖2L2(B2ρ) + c(δ)‖f‖2H−1(B2ρ)
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So, we get

a0(ψ,ψ)− δ‖∇φ‖2L2(B2ρ) ≤
C3

ρ2
‖u− ū‖2L2(B2ρ) + c(δ)‖f‖2H−1(B2ρ)

By the strong convexity of C and by Korn inequality applied to the test function
ψ, we have

a0(ψ,ψ) ≥ γ‖∇ψ‖2L2(B2ρ)

which gives

C3

ρ2
‖u− ū‖2L2(B2ρ) + c(δ)‖f‖2H−1(B2ρ) ≥ γ‖∇ψ‖2L2(B2ρ) − δ‖∇φ‖

2
L2(B2ρ)

≥ γ‖∇ψ‖2L2(B2ρ) − δ‖∇(θψ)‖2L2(B2ρ)

Hence, since θ ≤ 1 and |∇θ| ≤ C
ρ ,

C3

ρ2
‖u− ū‖2L2(B2ρ) + c(δ)‖f‖2H−1(B2ρ)

≥ γ‖∇ψ‖2L2(B2ρ) − 2δ‖∇ψ‖2L2(B2ρ) −
2δ

ρ2
‖ψ‖2L2(B2ρ)

≥ γ‖∇ψ‖2L2(B2ρ) − 2δ‖∇ψ‖2L2(B2ρ) −
2δ

ρ2
‖u− ū‖2L2(B2ρ)

Choosing δ small enough, using the fact that θ ≤ 1, that |∇θ| ≤ C
ρ and the definition

of ψ we finally get

‖∇u‖2L2(Bρ) = ‖∇ψ‖2L2(Bρ) ≤ ‖∇ψ‖
2
L2(B2ρ) ≤

C1

ρ2
‖u− ū‖2L2(B2ρ) + C2‖f‖2H−1(B2ρ).

�

Appendix B. A Meyer’s type result

We state a generalization of Meyer’s theorem concerning the regularity of solutions
to systems with bounded coefficients. For η > 0, define H1,2+η(Ω) by

H1,2+η(Ω) :=

{
u ∈ L2+η(Ω),∇u ∈ L2+η(Ω)

}
and let H−1,2+η(Ω) be its dual. Introduce

H1,2+η

loc
(Ω) :=

{
u ∈ H1,2+η(K),∀K ⊂⊂ Ω

}
.

Theorem B.1. There exists η > 0 such that if u ∈ H1(Ω) is solution to

∇ ·
(
C∇̂u

)
= f in Ω,

where C ∈ L∞(Ω) is a strongly convex tensor and f ∈ H−1,2+η(Ω) then u ∈
H1,2+η

loc
(Ω) and given Bρ and B2ρ concentric balls contained in Ω,

(B.1) ‖∇u‖L2+η(Bρ) ≤ C(‖f‖H−1,2+η(B2ρ) + ρ
2

2+η−1‖∇u‖L2(B2ρ)).

Theorem B.1 has been proved by Campanato in [4] in the case of strongly elliptic
systems. From the proof of this result in [4, Chapter II, section 10], it is clear that
the result can be extended to more general systems provided the Caccioppoli type
inequality (Theorem A.1) holds.
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