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Abstract The LABEC laboratory, the INFN ion beam laboratory of nuclear techniques for
environment and cultural heritage, located in the Scientific and Technological Campus of
the University of Florence in Sesto Fiorentino, started its operational activities in 2004, after
INFN decided in 2001 to provide our applied nuclear physics group with a large laboratory
dedicated to applications of accelerator-related analytical techniques, based on a new 3 MV
Tandetron accelerator. The new accelerator greatly improved the performance of existing
Ion Beam Analysis (IBA) applications (for which we were using since the 1980s an old
single-ended Van de Graaff accelerator) and in addition allowed to start a novel activity of
Accelerator Mass Spectrometry (AMS), in particular for 14C dating. Switching between IBA
and AMS operation became very easy and fast, which allowed us high flexibility in program-
ming the activities, mainly focused on studies of cultural heritage and atmospheric aerosol
composition, but including also applications to biology, geology, material science and foren-
sics, ion implantation, tests of radiation damage to components, detector performance tests
and low-energy nuclear physics. This paper describes the facilities presently available in the
LABEC laboratory, their technical features and some success stories of recent applications.

1 Introduction

The acronym LABEC means “Laboratorio di tecniche nucleari per l’Ambiente e i BEni
Culturali” (in English: “Laboratory of nuclear techniques for Environment and Cultural
Heritage”), but applications in several other fields outside physics, as well as supporting
activities to basic nuclear or subnuclear physics experiments (e.g. tests of radiation damage
to components, or detector performance tests, etc.), are also performed. LABEC has been
created by the Italian National Institute of Nuclear Physics (INFN) within its Florence division
and is managed in close cooperation with the Department of Physics and Astronomy of the
University of Florence, which funded the construction of the building where the laboratory is
located. The present formal configuration was established in 2001, but the group that created
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LABEC had already been actively working since the mid-1980s in the field of accelerator-
based applications to various fields. In turn, this previous activity of application of nuclear
analytical techniques was “heir” to a very long tradition of the Florence group in basic
research in low-energy nuclear physics.

Let’s therefore start with a short excursus on our “origins”.
Since the beginning of the 1970s, a 3 MV Van de Graaff accelerator had been installed in the

building of the Department of Physics in Florence, located at those times on the “historical”
hills of Arcetri.1 This Van de Graaff (KS3000) had been built in 1955 to be the injector
of the electrosynchrotron in the INFN National Laboratories of Frascati (Rome): when the
electrosynchrotron ended to be used in the late 1960s, the VdG injector was transferred to
Florence, completely refurbished and converted by the local group into a positive ion machine
(KN3000). As such, it started a second life and continued to be used in basic researches for
more than ten years, performing nuclear spectroscopy studies and an important high-precision
measurement, with months of data-taking, searching for possible effects of parity mixing in
nuclei [1, 2].

But in the mid-1980s, the perspectives for this kind of machines to produce new basic
nuclear physics results were becoming weaker and weaker, and also this second life of our
Van de Graaff was clearly approaching its end. Another “reconversion” took then place,
allowing for a third life of the accelerator through the change of its research goals: from basic
to applied Nuclear Physics. Ion Beam Analysis applications (mostly using Particle-Induced
X-ray Emission, PIXE) were progressively developed at the KN3000. We were among the
pioneers in the use of external beam set-ups, e.g. particle beams extracted—through a thin
exit window—from the vacuum beamlines of the accelerator, which enormously facilitated
all the applications: the use of external beams for the large majority of experiments has since
then remained one of the characterizing features of our laboratory, as will be discussed in
the following. Already in the first PIXE set-ups, two detectors (at those times, Si(Li)) were
simultaneously used to optimize the detection efficiency over a very large X-ray energy range,
altogether from ~ 1 up to ~ 30 keV (the low-energy X-rays were effectively detected thanks to
the continuous flow of helium in front of one of the two X-ray detectors); thus, all elements
from Na to the heaviest were very well detectable through either their K, L or M X-ray lines.

The very first applications we performed dealt with air pollution investigations, for which
we developed a home-made sampler for the collection of aerosols with one hour resolution
(streaker) and we could obtain a time-resolved compositional analysis of the aerosol collected
on the filters [3].

Our attention also focused on applications in cultural heritage problems. At those times,
first attempts to use Ion Beam Analysis in the field of cultural heritage had been just started in
other laboratories worldwide and we believed that Florence, with its immense tradition and
wealth of treasures, was the right place to develop such activities. Although several colleagues
of the humanistic disciplines were initially halting and/or concerned about possible risks of
damage to the artworks, we eventually succeeded in convincing them that properly operated
PIXE measurements might be the right tool to get an answer to some of their questions.
With increasing experience and through the development of further dedicated set-ups [4, 5],
we could obtain a number of significant results in extensive applications to artworks and
documents of great historical importance [6]. In turn, this progressively increased the trust of
the humanistic community in the potential and reliability of our techniques, leading to more
and more important collaborations.

1 The hill of Arcetri has been appointed as one of the “EPS Historic Sites” by the European Physical Society
owing to many reasons, among which the presence there of the Villa Il Gioiello, where Galileo spent the last
nine years of his life, in home confinement after the sentence of the Holy Inquisition in the 1633 trial.
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In parallel, the activity concerning aerosols continued (using the external beam set-up as
well) and it was in these applications that we first extensively used also Particle-Induced
Gamma-ray Emission (PIGE) technique, complementing PIXE in the analysis of very low-Z
elements. Rutherford or Elastic Backscattering Spectrometry (RBS/EBS), with EBS being
the general extension to higher beam energies, where the elastic scattering cross section
does not follow the Rutherford formula anymore, became routinely employed, too, also with
external beams. It was just to address to problem of the lack of cross section data for elastic
scattering of protons on low-Z nuclei for the application of EBS, in the absence of theoretically
evaluated data, that we started extensive measurements of such cross sections [7–9], that were
later included in the IAEA Ion Beam Analysis Nuclear Data Library, IBANDL [10].

Around the turn of the century, with the transfer of the research and teaching activities of
Physics to the new University Campus in Sesto Fiorentino, the University of Florence put
the budget for a dedicated building to host a larger accelerator and a number of ancillary
laboratories. The INFN Executive Board, in turn, decided to fully fund the instrumentation
for installing a new applied nuclear physics laboratory. Thus, we were able to buy a 3 MV
Tandem, which could expand our IBA potential (through the possibility of higher energies and
of a larger range of ions) and start an entirely new activity in Accelerator Mass Spectrometry,
AMS, with the goal to establish a laboratory branch for radiocarbon dating (although at that
time it was not obvious that a same accelerator might be reliably used for both IBA and
AMS).

In April 2003 the dedicated building in the campus was completed; a few days afterwards
the new accelerator, a Tandetron built by High Voltage Engineering Europe, was delivered
to INFN Florence. Commissioning of sources, injection lines, accelerator, and AMS high-
energy beamline was completed one year later in collaboration and with the supervision
of HVEE. In the meantime, we had transferred the existing set-ups for IBA from the old
accelerator to the new lab, where we also installed further home-designed beamlines and
set-ups, including an external scanning ion microprobe. In parallel, the sample preparation
laboratory for radiocarbon AMS analysis was designed and installed, and since mid-2004,
both AMS and IBA were operational at the Tandetron. The new laboratory, which since then
was given the name LABEC, started its activity, and the idea of performing both AMS and
IBA at the same accelerator proved to have come true: it was indeed straightforward to switch
from one mode of operation to the other with no significant dead times.

Since then, the beamtime allocation between AMS and IBA is roughly equal; for instance,
the beamtime distribution in the past five years, excluding maintenance periods, has been
roughly: 40% for 14C AMS measurements, 40% for IBA measurements (mainly for atmo-
spheric aerosol and cultural heritage studies, but also material science and forensics), and the
remaining 20% for irradiation, detector testing and measurements of nuclear cross sections
of interest for quantitative IBA applications. Access to LABEC beamtime for external users
from public and private institutions and industry is presently possible through the transna-
tional access offered by the European Community H2020 projects RADIATE for IBA mea-
surements (www.ionbeamcenters.eu/radiate/radiate-transnational-access) and IPERION-HS
for 14C AMS measurements (www.iperionhs.eu/iperion-hsaccess), or through fee-paying
third-party services (chnet.infn.it/en/price-list). LABEC is also offering opportunities of
knowledge exchange and transfer, and scientific training on accelerator-related analytical
techniques to researchers (typically from developing or low-performing countries) through
IAEA technical cooperation programmes.

Presently (end of 2020) the full-time LABEC staff consists in nine researchers and four
technologists (all physicists, with INFN or University permanent positions at various levels),
nine post-docs, with various scientific background (heritage science, physics, chemistry) and
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two mechanical technicians. Several graduate and master students (three or four, in average),
mainly in heritage science and physics, attend yearly LABEC to work on their theses.

Excluding the costs for the permanent personnel salaries, which are in charge of the central
INFN administration and of the University of Florence, each for their respective personnel
units, the basic annual budget of LABEC for standard operation consumables, instrumen-
tation maintenance, replacements of obsolete or damaged equipment, travel expenses, etc.,
comes from INFN, directly to its Florence Unit (70 ke per year) or indirectly through an
annual money transfer of 55 ke to the Department of Physics and Astronomy of the Flo-
rence University (mainly used for personnel recruitment—grants and post-doc positions).
The University covers the costs related to the building, including energy, cleaning, air con-
ditioning, building maintenance. Additional budget for specific experiments, in the order of
several tens of ke per year as an average, comes from INFN R&D projects; some third-party
service also provides some (limited) extra budget. However, increasingly in the past few
years, the most consistent amount of money is obtained from competitive projects funded by
the Tuscany Region, by the Italian Research Ministry and by the European Community. The
amount of this additional budget is variable, depending on the years, but an average value
throughout the past five years has been around 300 ke per year, and has been used—besides
of course for implementing the project deliverables—also to cover the costs of the fixed-
term positions and grants. Considering European Community funded projects, LABEC is
presently a partner of the research infrastructures on ion beam technology applications for
fundamental, applied and industrial research with (RADIATE, www.ionbeamcenters.eu),
on heritage science (IPERION-HS, http://www.iperionhs.eu), on data for archaeological
community (ARIADNEplus, www.ariadne-infrastructure.eu), and on open science and e-
infrastructures (EOSC-Pillar, www.eosc-pillar.eu). LABEC has been also a participant to the
LIFE + AIRUSE project (www.airuse.eu), which analysed air pollution in five cities in south-
ern Europe, formulating recommendations for effective actions to reduce levels of airborne
particles, and earned the People’s Choice 2018 LIFE Award. As regards its involvement
in environmental research infrastructures, LABEC is also currently part of the European
Centre for Aerosol Calibration, ECAC (www.actris-ecac.eu), of the Aerosols, Clouds and
Trace gases Research Infrastructure (ACTRIS), hosting the European reference centre for
the elemental characterization of atmospheric aerosols.

2 Accelerator and ion sources

Our accelerator is a Tandetron (see Fig. 1) manufactured by High Voltage Engineering Europe,
with 3 MV maximum terminal voltage. As is known, Tandetrons are electrostatic Tandem
accelerators, where the central terminal voltage is produced by an electronic voltage multiplier
[11]. Stripping at the high voltage (HV) terminal is obtained through a light gas flow (Ar),
continuously recirculated within the terminal by a locally installed turbo-pump, rotating at
half velocity of its standard operating conditions to increase its lifetime. The accelerating
tubes, the HV terminal and the charging column are enclosed in a tank filled with SF6 gas,
at a pressure of 7·105 Pa.

With respect to Tandems where high voltage is produced exploiting continuously moving
belts or similar, with Tandetrons tank opening for maintenance is much less frequent. So far,
since 2004 when the final acceptance tests of the accelerator have been performed, we had
to open the tank only four times.

The flanges of the various parts of the beamlines and associated connections are all Con-
Flat, with Cu gaskets. The vacuum systems are based on hydrocarbon-free turbomolecular
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Fig. 1 Layout of the INFN LABEC accelerator

pumps in all sections, backed by scroll pumps. The choice of connecting flanges and pumping
systems has been taken to minimize contamination from carbon-containing residual gases,
which is very important for radiocarbon concentration measurements.

Three independent sources are available to produce the negative ions to be accelerated
towards the positive HV terminal in the first acceleration tube.

Two of them, a Duoplasmatron (HVEE 358) and a single-cathode Cs-sputtering source
(HVEE 860), are hosted inside the same cabinet, injecting the produced ions into the subse-
quent beamlines with an angular difference of 14° between the beam directions from the two
sources. The Duoplasmatron source is kept at 20 kV with respect to ground, the Cs-sputtering
at − 35 kV. The former is used to produce beams from gaseous elements (different bottles
can be located inside the cabinet); the Cs-sputtering source produces negative ions from any
solid material.

With the Duoplasmatron, mainly H− ions are produced in order to eventually obtain,
at the exit from the Tandetron, accelerated protons. With the exception of He, so far other
gaseous elements have only been used very rarely. 4He+ and 4He++ (alpha) beams, instead,
have been obtained, although not so frequently, after the final acceleration, by feeding the
source with He gas. In that case the ions exiting the Duoplasmatron are mainly positive, so
the source in this case is kept at + 20 kV, and after the pre-acceleration to 20 keV the positive
ions are converted into negative by passing through a Li-vapour charge-exchange canal. The
maximum extracted currents from this source are typically several tens of μA for H− ions,
and a factor of 10–20 lesser for 4He− (after the charge-exchange canal).

With the single-cathode Cs-sputtering source, various kinds of ions have been extracted
for experiments carried out during the past few years: most frequently Li (a good alternative
to μ particles for standard RBS analysis) and Si beams have been used. This source can also
be used to finally produce accelerated proton beams, by using TiH2 as the solid material to
be sputtered. In this case, the maximum extracted H− current from the sputtering source is
lower than with the Duoplasmatron (a few μA).

The ions produced in the two sources are mass-analysed by an injection dipole mag-
net (83° and 97° deflection, respectively, for ions coming from the Cs-sputtering and the
Duoplasmatron) and transported to the accelerator entrance.

The third source, dedicated to AMS measurements, is a multi-cathode Cs-sputtering ion
source (HVEE 846b), used so far almost exclusively with solid graphite prepared from
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samples for 14C concentration measurements. While in the sputtering position, samples can
be moved in the transversal plane to sputter different positions, so that the possibility to
form craters on the graphite surface is minimized. (Otherwise, those craters would affect the
electric field inside the source volume.) The extracted particles are analysed according to their
mass, charge and energy: an electrostatic analyser is followed by an analysing magnet. The
magnet is equipped with a “bouncing” mechanism: the magnetic field is kept constant, but the
chamber between the polar expansions is isolated from ground potential and is sequentially
biased to different voltage values so that the ion energy during their path in the magnetic field
is properly changed in such a way as to yield the same trajectory for the three different masses
(14–13–12) to be sequentially injected into the acceleration tube downstream. Injection times
for the three masses (8 ms for 14C, 600 μs for 13C and 6 μs for 12C) are set in order not to
significantly “lose” 14C isotopes, while for the two stable isotopes they keep into account
the 13/12 isotopic ratio of about 100, in order to have similar 12C and 13C counting statistics
after acceleration (measuring with accuracy also the 13/12 ratio is important for isotopic
fractionation corrections).

Focusing in all the beam transport sections before entering the accelerator is obtained with
Einzel lenses, and x and y corrections with electrostatic dipoles. Variable-aperture slits and
retractable apertures are also present in these beam transport sections, both before and after
the analysing magnets. Monitoring devices such as beam profile monitors and retractable
Faraday cups are also present for non-destructive (transmitting) or destructive (intercepting)
beam diagnostic.

Thanks to a number of factory-design features of the tubes, the transmission efficiency
from the entrance to the exit of the accelerator is high. For protons, we can achieve a trans-
mission efficiency higher than 50%, which means beam intensities that can attain, using the
Duoplasmatron source fed with Hydrogen, above 10 μA (although most often in our appli-
cations the required current intensities are even many orders of magnitude lower). For heavy
ions, the transmission efficiency for the desired final positive charge state (and consequently
ion final energy) depends just on the charge state, on the terminal voltage, on the quantity of
charge-exchanging Ar gas we flow into the HV terminal. A typical value for C3+ ions, using
a terminal voltage of 2.5 MV, is around 50%.

We have worked to extend to much lower values the 500–3000 kV range of accelerating
voltages for which the system was designed, in particular for implantation experiments for
quantum applications, usually performed at an ion energy of few tens of keV since only
shallow centres are commonly employed. In these applications it is necessary to greatly extend
the original range towards much lower energies, in order to exploit the whole range from a
few tens to several thousands of keV and to obtain a variability in implantation depth for the
fabrication of devices typically unavailable, especially up to high energies, in the accelerators
commonly employed in ion implantation. The minimum employable accelerating voltage is
limited to 50 kV by the increased scattering in the stripper and by the out-of-design regime at
which the switching magnet and the magnetic steering and focusing system in the beamlines
operate. Consequently, the actually available range of the ion energies, exploiting the different
charge states of the ion species to be implanted, spans from 135 keV to about 15 MeV, with
ion fluences ranging from 108 to 1014 cm−2 both on large areas (mm2) and on small areas,
down to the diffraction limit (~ 1 μm2, shaping the beam by means of a pin-hole).
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3 Accelerator beamlines

When not performing AMS measurements, the 115° magnet (see below) installed at about 2 m
after the exit of the Tandetron is obviously kept off. As in the low-energy part of the beam trans-
port, x and y electrostatic deflectors, non-destructive (transmitting) and destructive (intercept-
ing) beam monitoring systems are present after the accelerator; standard focusing for all the
beamlines after the exit ports of the switching magnet (available at 0°,±10°,±20°,±30°,
and±45°), is provided before switching by an electrostatic quadrupole triplet just at the accel-
erator exit and an electrostatic quadrupole doublet before the switching magnet. Depending
on the specific kinds of measurements to which they have been dedicated, some of the
beamlines, as described in the following, are provided with further beam focusing systems.
Currently, the INFN LABEC accelerator has a total of five operational beamlines after the
switching magnet (besides the one for AMS measurements), which are used for ion beam
analysis and implantation. A sixth beamline is under construction after the + 20° exit port
of the switching, at the end of which a vacuum chamber will be installed for large area irra-
diation of devices with a few MeV energy protons. LABEC is rather unique in comparison
to other ion beam laboratories since three of the five beamlines for IBA are dedicated to
measurements with beams extracted to ambient pressure. IBA techniques performed while
maintaining the target in atmosphere avoids the need of picking up samples, reduces the
risk of damage from charge and heat effects and of selective loss of some more volatile
elements, greatly ease the object positioning (thus, precious and big artefacts can be studied,
for example, for cultural heritage), increase measurement throughput (thus a large number
of samples can be analysed in short time—which is important, for example, in studies of
long time series of atmospheric particulate matter samples for air quality and climate change
issues). Each of the five beamlines will be now briefly described (indicated with the angle of
the exit port of the switching magnet), although many share some common features, such as
standard beam diagnostic stages (insertable Faraday cup and quartz beam-viewer), or fast-
acting UHV valves, mounted in the three lines for external beam measurements just after
the switching magnet, to protect the accelerator from air inrush into the beamline, in case of
window rupture.

3.1 Beamline at + 45°

The beamline at + 45° is mainly devoted to external beam measurements of cultural heritage.
The capabilities of external IBA methods at INFN LABEC laboratory for cultural heritage
studies have been improved in the past few years implementing a “Total-IBA” analytical
approach [12]. Whereas PIXE, PIGE and EBS/RBS separately give only partial information
on the composition and layering of artistic and historical artefacts, these analyses can be per-
formed simultaneously on the sample and their synergistic use allows gathering detailed and
complete data about elemental composition and depth distribution of the analysed material.
To this purpose the already existing PIXE set-up installed at the + 45° external collimated
beam line [13] was upgraded. Moreover, the capability of performing measurements at differ-
ent beam energies (for instance, spanning from 5 to 2 MeV for protons) in very fast sequences,
just recalling pre-set configurations of accelerator terminal voltage and relevant beam trans-
port parameters, allows us to implement efficiently also “Differential PIXE” measurements
[14, 15], where a layered, or heterogeneous in depth, material is analysed (probing different
thicknesses below the surface at various beam energies).

Here we briefly recall that the beam, typically a proton beam of 3 MeV energy in vacuum
and collimated at 0.5 mm diameter, is extracted into ambient pressure through a 200 nm
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Fig. 2 View of the set-up for external beam IBA measurements of cultural heritage on the + 45° beamline at
LABEC. Starting from centre top and going clockwise, there can be seen the small area SDD for PIXE with
the tube for He flowing, a microcamera for sample inspection from remote, the large area SDD, the rotating
chopper, the aluminium case for the EBS/RBS detector and the HPGe detector for PIGE

thick Si3N4 membrane. The sample is placed at about 8 mm from the extraction window,
on a x–y remotely controlled movable stage with micrometric resolution. A laser positioning
system is used to properly align and place the sample. A chopper made of Ni evaporated over
a graphite vane rotating in front of the target is used to measure the extracted beam weak
currents by measuring the Ni X-ray yield [16] and to obtain an accurate charge-equivalent
normalization for quantitative analysis. Typical used proton beam currents range from a few
to several hundreds of pA. A new system to measure the beam intensity, based on counting
the SiX-rays emitted from the exit window traversed by the beam (see 3.4), is currently under
installation and will replace the chopper. The new detector set-up includes (see Fig. 2) now
two X-ray detectors for PIXE, a 10 mm2 (typically collimated at about 4 mm2) Ketek Silicon
Drift Detector (SDD), 450 μm thick, with 8 μm Be entrance window, placed 45 mm far from
target at 135° angle in the vertical plane, with He flow to reduce the absorption of low-energy
x-rays, for light and major elements analysis, and a 150 mm2 Ketek SDD, 450 μm thick,
with 25 μm Be entrance window and an additional 450 μm Mylar absorber to attenuate the
low-energy x-rays (other absorbers can be inserted if needed), placed 20 mm far from target
at 135° angle in the horizontal plane, for heavy and trace elements analysis. A Hamamatsu
Si-PIN diode is used as particle detector for EBS/RBS, 10×10 mm2 active area (collimated
to 2.5×5 mm2), 300 μm thick, placed at 135° scattering angle and mounted 25 mm far from
the sample in an aluminium case, kept at 10–1 mbar pressure and closed by a 2-μm-thick
aluminized Mylar window facing the target. Finally, an ORTEC HPGe gamma-ray detector
with a mechanical cooler, 23% relative efficiency, placed at 135° angle, is used for PIGE.

This set-up has been recently used to analyse, amongst others, glazed ceramics [17], coins
[18], wall-painting fragments [19] and wall-leather coverings, as well as trace evidences for
forensics science applications. In the past, a similar although less complete set-up, using
two Si(Li) detectors for PIXE and a planar Ge detector for PIGE, had been used for several
important campaigns on even very precious artworks [20].

It has to be noted that the capability of extracting proton beams with extremely low but
controlled intensity (currents in the pA range or below), benefitting from the simplicity
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of sample positioning as given by an external beam set-up, can be exploited also in other
applications beside cultural heritage, for example for direct testing of novel detectors and
devices with protons of energies up to 6 MeV.

3.2 Beamline at + 30°

The beamline at + 30° is devoted to multi-purpose measurements both for IBA, detector testing
and fundamental research under vacuum conditions [21, 22], using a dedicated scattering
chamber. The vacuum pressure in the chamber is as low as 1·10–6 mbar and pumping is
accomplished by means of an hydrocarbon-free system consisting in a dry turbo-molecular
pump backed by a scroll fore-pump. A magnetic quadrupole doublet located half-way along
the line, 3.5 m upstream of the target, focuses the beam to dimensions of several mm2 or
smaller on the target.

The flexible detection set-up inside the scattering chamber (see Fig. 3) allows for Total-IBA
measurements. Elastically scattered ions can be detected simultaneously by three Hamamatsu
Si-PIN diodes (10 mm2 area, 300 μm thickness) for RBS/EBS measurements. These detectors
are placed in IBM geometry at scattering angles of 165°, 150° and 120° and are collimated by
1×13 mm2 vertical slits set at 61 and 91 mm from the target, for the detector at 150° and for
the other two, respectively; apart from this standard geometrical configuration that improves
at the same time both mass resolution (with the detector placed a 165°) and depth resolution
(with the detector placed a 120°), the particle detectors can be mounted at different angles,
from 165° to 110° with 5° steps, at four fixed distances from the target, namely 31, 61, 91
and 121 mm. A fourth similar particle detector is placed at a 30° forward scattering angle,
at 121 mm distance from the target and collimated by a 1×2 mm2 vertical slit, and is used
typically for hydrogen detection in aerosol samples collected on thin Teflon filters applying
the Particle Elastic Scattering Analysis (PESA) technique [23, 24]. Two X-ray detectors are
used for PIXE. A 7 mm2 Ketek Silicon Drift Detector (SDD), 300 μm thick, with 8 μm
Be entrance window, placed in vacuum 110 mm far from target at 150° angle in the vertical
plane, is used for light and major elements analysis. It is equipped with a couple of NdFeB
permanent magnets (0.5 T, length 7 cm, distance between magnets 8 mm) in front of it to
divert backscattered protons preventing damage to the detector and worsening of the detector
energy resolution. A 80 mm2 Ketek SDD, 450 μm thick, with 25 μm Be entrance window
and an additional 400 μm Mylar absorber to attenuate the low-energy X-rays (other absorbers
can be inserted if needed), placed 30 mm far from target at 135° angle in the horizontal plane
is used for heavy and trace elements analysis; this detector is inserted in the chamber through
an inner protruding open flange, closed at the vacuum side by a 25 μm thick Upilex foil.
An HPGe detector is used for PIGE, with a nominal efficiency of 25%, placed at 60 mm
from the target at 45° angle in the horizontal plane, inserted in the chamber through an inner
protruding Al flange with a 1 mm thick wall facing the target.

The targets are mounted on a sample-holder wheel, that allows the remotely controlled
movement of the samples on the x–y axes (perpendicular to beam direction) to scan all the
sample surface or to aim at a specific portion of the target, and the change of the samples by
rotation of the sample-holder wheel. The beam current, in case of analysis of thin samples, is
measured using a long cylindrical graphite Faraday Cup with thick Ta bottom, placed behind
the target. In case of thick samples, the current is measured directly from the target. Faraday
cup and target can be positively biased up to + 300 V to avoid secondary electron escape.

Apart from IBA, the beamline and the scattering chamber have been used also for the
measurements of nuclear cross sections of interest for analytical applications, for instance,
for differential cross sections and thick target yields of gamma-ray producing reactions of
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Fig. 3 View of the set-up for in vacuum IBA measurements in the scattering chamber on the + 30° beamline
at LABEC. Starting from left and going clockwise, there can be seen the small area SDD for PIXE with
the proton magnetic deflector, the flange for the insertion of the large area SDD for PIXE, the flange for the
insertion of the HPGe detector for PIGE, the Faraday cup, the particle detector for PESA, the sample holder
wheel, and the three particle detectors for EBS/RBS

protons on low-Z targets [25–27], for PIGE applications, installing an additional array of three
large volume HPGe detectors at 0°, 45° and 90° angle with respect to the beam direction
around the scattering chamber.

3.3 Beamline at − 20°

The 9 m-long beamline placed 20° leftward after the switching magnet is equipped with an
electrostatic deflector (DEFEL) system to form pulsed beams down to a few nanoseconds
duration [28, 29]. The system is routinely employed both for test of ion detectors and associ-
ated front end electronics [30–32] and for ion implantation experiments [33–36]. The latter
are designed for the creation of colour centres in solid state matrices, with optical emission
properties suitable for quantum applications.

The electrostatic deflector system is composed of two orthogonally-arranged parallel-
plates deflectors: the one closer to the exit slits (SL3), installed in the beampipe inside
two magnetic quadrupoles (Q1-Q2, see Fig. 4), is fed with square wave pulses of potential
difference from + 100 V to − 100 V, creating a very short (a few ns) bunch passing through the
exit slits. Before this deflector, an 800 V–0 V square wave pulse is applied to a pre-deflector,
so that only the falling part of the deflector square wave pulse, having a different duration
compared with the rising part, can send the beam to the exit slits. In a different configuration,
only the pre-deflector is activated, to form beams 1–5 μs long if requested. The DEFEL
beam line is also equipped with two magnetic quadrupoles (Q1–Q2) focalizing the object
formed by an entrance slits (SL1) on the plane of the exit slits (SL3), with a nearly unitary
magnification factor. The divergence of the beam is also limited by another pair of slits (SL2)
before the quadrupoles, and the beam direction is controlled by two pairs of steering magnets
(XY-ST1-2). Beam monitoring is performed by three standard beam diagnostic stages placed
along the line (QFC1-2–3), each with a Faraday cup and a quartz beam-viewer.
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Fig. 4 Layout of the DEFEL beamline: SL1-2–3, shaping slits; QFC1-2–3, beam monitor stations allowing
insertion of a luminescent quartz plate or a Faraday cup along the beam path; XY-ST1-2, magnetic steerers;
A, vacuum chamber. The deflector is installed in the beampipe inside the Q1-Q2 magnetic quadrupoles, the
pre-deflector just before it

The full pre-deflector + deflector system is mainly employed for detector testing since
it can reach, with its very short pulse width, the Poisson statistic “one particle-per-bunch”
regime on areas of the order of 1 mm2–1 cm2. On the other hand, the ~ 1 μs pulses obtained
with the pre-deflector alone can be used to reach the “one particle-per-bunch” regime across
beam-shapers of micrometric diameters, which are especially employed in ion implanta-
tion experiment designed to place single-photon sources in solid state samples with spatial
resolution comparable to the diffraction limit (a few hundreds of nm). The same line, with
the deflectors off, is employed to implant at high fluences (1012–1015 cm−2) and to obtain
luminescent properties of the implanted centres detectable at ensemble level.

At the end of the beamline a half-m3 vacuum chamber, allowing a great versatility in
testing-implantation geometries, is installed. During the implantation experiments, in partic-
ular, a variety of monitoring devices is employed: a Faraday cup and a PIN diode to monitor
the beam current in continuum-pulsed regime, a camera to aim a perforated quartz behind
which the micrometric beam-shapers are placed, a microscope equipped with a high sen-
sitivity camera observing the luminescence produced by the shaped beam on a transparent
sapphire window, in order to aim the sample which is moved behind the beam shaper by two
motorized precision linear stages with nanometric nominal resolution.

3.4 Beamline at − 30°

The external ion microprobe of the INFN-LABEC laboratory is installed on the -30° beamline
[37, 38]. The optical elements before the switching magnet (electrostatic quadrupole triplet
and doublet) produce a beam waist about 2 m after the switching magnet; in correspondence
of the beam waist, the object slits of the microbeam are installed. Vertical and horizontal
steering magnets, just after the switching magnet, allows the alignment of the beam along the
beam optical axis. Downstream the remotely controlled object slits, a beam diagnostic stage
including a beam profile monitor (BPM) is installed. About 6 m after the object slits, a second
pair of steering magnets allows aligning the beam along the magnetic axis of the subsequent
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system, composed of the beam scanning coils and a magnetic quadrupole doublet (by Oxford
Microbeams Ltd.). Collimation slits, a second BPM and the quadrupole doublet are mounted
on common granite base plate. About 20 cm downstream of the second quadrupole, the beam
is extracted in atmosphere, either air or He, passing through the exit window, typically a
100 nm thick Si3N4 membrane, and hit the target, at a typical distance of 2–3 mm.

A SDD, positioned under the nozzle, at about 40° with respect to the beam direction,
counts the Si X-rays emitted from the exit window traversed by the beam. A fraction of these
X-rays passes through an aperture in the nozzle rear-side, sealed with a 7.5 μm Upilex foil
(50% transmission factor for Si X-rays). The beam impact point on the sample to be analysed,
which is placed after the exit window, remains external to the solid angle subtended by this
SDD, so that just the Si X-rays produced in the exit window are detected. As the number of
the X-rays detected by this detector is proportional to the number of incoming particles, this
system allows us to obtain an indirect measurement of the number of particles hitting the
sample for quantitative analysis.

The scanning system makes the collection of elemental maps possible, using both the
sample displacement under fixed beam and the beam raster-scan over the static sample.

A C + + control program [39] has been developed together with the control program of
our XRF scanner [40]—see below, so they present many common solutions, starting from the
user interface. Data acquisition is based on a combined NIM-VME system; the VME part is
dedicated to signal digitizing and data writing, the NIM part is used to create the gate signal
for the peak-sensing ADC (CAEN V1785). Two motorized precision linear stages allow
moving the sample under fixed beam. The sample is in atmosphere in front of the beam and
is moved on a horizontal (or vertical) line with constant velocity (set by the user, maximum
10 mm/s). When at the end of the line, the y position (x) is incremented by a step (set by the
user) and the motion along the x direction reversed. The step is usually set of the order of
the beam spot size on sample, normally in between 10 and 30 μm. The spatial resolution is
limited by the beam size on sample, being the overall position uncertainty due to the stages
(about 6 μm) by far less influent. Otherwise, the use of the scanning coils allows us to move
the beam on the static sample on an area as wide as the beam extraction window, up to 2×2
mm2.

At our laboratory, also heavy-ion high-spatial-resolution probes have been produced [39].
Carbon microbeams with energies in the 10–15 MeV range have been produced using the Cs-
sputtering source. Carbon microbeams were extracted in He atmosphere through a 50 nm thick
Si3N4 window, with a 2 mm window-to-target distance. With a 10 MeV carbon microbeam
(charge state 4+, terminal voltage 2 MV), we can obtain good intensity, about 1 nA electrical
current and size of about 30 μm on sample. Carbon beams with these characteristics, the
range of which is a few microns in diamond, could be an interesting tool for the community
involved in the fabrication of optical devices in diamond.

The detection set-up (see Fig. 5) allows Total-IBA measurements with PIXE, PIGE, EBS
and IBIL (Ion Beam Induced Luminescence) techniques. Also, an out-of-vacuum set-up for
PESA or Forward Scattering (FS) spectrometry has been developed at the external microbeam
[41]. The system is based on two Hamamatsu windowless photodiode particle detectors,
300 μm thick, mounted in vacuum-tight cases sealed with a 2-μm-thick aluminized Mylar,
similar to the EBS detector installed in the set-up of the + 45° beamline, mounted over a
semi-circular rail, the centre of which is in the point of interaction of the beam on the sample
surface. The angle of each detector can be remotely controlled with a 1/40° angular accuracy.
Exploiting this set-up, it is possible to perform Scanning Transmission Ion Microscopy
(STIM) measurements in the on-axis, off-axis and on–off-axis configurations (these latter
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Fig. 5 View of the external microbeam set-up during a measurement on one of the lapis lazuli jewels of the
Collezione Medicea. In the picture, the PIXE, PIGE and EBS detectors are visible. In the lower part of the
photograph, under the beam extraction nozzle, the detector for beam intensity monitoring can also be noted

two configurations make it possible to perform simultaneous STIM and IBA measurements),
using different ions, energies, and scattering geometries.

The Florence external microbeam has been widely used for applications in the cultural
heritage field [13, 42, 43], and for measurements of interest in earth sciences [44], material
science [45, 46] and biology [47].

3.5 Beamline at − 45°

The beamline at − 45° is devoted to external beam measurements of atmospheric particulate
matter samples. For more than 30 years an external beam line fully dedicated to the analysis
of aerosol samples has been operational at INFN Florence, and has been constantly improved
over the years [48–50] benefitting from the progress in the state-of-the-art technology for
X-ray detectors. The present configuration makes the external beam PIXE-PIGE set-up at
LABEC the most advanced worldwide for high-throughput analysis of daily particulate matter
samples collected on filters, as well as of size-segregated and high-time-resolution aerosol
samples.

Here the beam is typically a proton beam of energy between 3.2 MeV and 2.7 MeV in
vacuum. The energy to be used for a given set of measurements is chosen in such a way as to
reduce the background in PIXE spectra according to composition and thickness of the filter
used to collect the aerosol (for instance, Teflon, Nuclepore, Polypropylene or Quartz fibre).
The beam is extracted into ambient pressure through a 500 nm thick Si3N4 membrane. The
filters with the aerosol deposit are positioned at about 1 cm from this exit window. The beam
size is usually 1×2 mm2, as defined by bare collimation in vacuum in the very last section
of the beamline. The beam charge flown during the measurement is measured by simply
integrating the beam current on a graphite Faraday cup positioned just behind the (thin)
sample. Typical used proton beam currents range from tens to a few hundreds of nA. During
irradiations, the samples are continuously moved on the x–y axes (perpendicular to beam
direction) in order to scan all the sample surface and to reduce the beam charge density on
the sample. This scan is remotely controlled by the acquisition system, which also provides
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Fig. 6 View of the set-up for
external beam PIXE-PIGE
measurements of atmospheric
aerosol samples on the − 45°
beamline at LABEC, with the
SDD for low-energy X-ray
detection (upper part of the
picture, showing also the
magnetic proton deflector
assembly), the twin SDDs for
mid- high energy X-ray detection
(on the left and the right of the
beam extraction nozzle), the filter
holder wheel (with daily aerosol
samples) and the Faraday cup
behind it. The PIGE detector is
not shown in this picture

the change of the samples by rotation of the sample holder. The detector set-up (see Fig. 6)
includes a 30 mm2 Ketek SDD dedicated to low-Z elements, 450 μm thick, with 8 μm Be
entrance window, placed at about 90 mm far from target at 135° angle in the vertical plane,
with He flow enabling detection of X-rays down to 1 keV, thus the detection of elements
down to Na. A couple of NdFeB permanent magnets (0.5 T, length 8 cm, distance between
magnets 8 mm) is installed along the path of X-rays from target to detector entrance window
to divert backscattered protons, thus avoiding that they reach the detector (producing too
large pulses that would saturate the electronics and worsen the detector energy resolution,
and possibly damaging to the detector itself). Two identical KETEK 80 mm2 SDDs dedicated
to medium–high Z elements, 450 μm thick, with 25 μm Be entrance window and 450 μm
Mylar absorber to attenuate the low-energy X-rays, placed at about 20–25 mm far from target
at 135° angle in the horizontal plane on opposite sides with respect to the beam directions,
are used to double the statistics by summing offline their acquired spectra. As a whole, this
SDD array covers a total solid angle of 400 msr. For an accurate quantification of elements
like Na (key element for the study of marine aerosol), Mg, Al, Si (fundamentals for the
study of mineral dust), when the X-ray attenuation inside the sample cannot be neglected and
cannot be calculated either considering a homogeneous average composition of the aerosol
sample (because aerosol samples contain particles of different composition and size with a
distribution which is not known “a priori”) [51–53], PIGE measurements can be performed
simultaneously by using a Canberra planar Ge detector of 20% relative efficiency, that can
be placed at 45° angle in the forward direction.

3.6 AMS beamline

At LABEC, 14C-AMS measurements are routinely performed at 2.5 MV terminal voltage,
analysing the 3+ charge state on the high energy side [54]. Both 14C/12C and 13C/12C isotopic
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ratios are measured along the beamline in the same measurement run. After the accelerator,
the beam is firstly analysed through a 115° magnet, which is set to transmit 3+ 14C ions
of 10.035 MeV (the total energy gained from the ion source + acceleration in the Tandem
when the terminal voltage, TV, is at 2.5 MV and the charge exchange from 1- to 3+ has
taken place just within the TV), while 12C and 13C of the same charge state and energy are
measured through off-trajectory Faraday cups. Downstream the magnet, the beam is further
analysed through an electrostatic analyser to suppress possible residual interferences given
by non-14C that may have undergone charge–exchange interactions along the high-energy
accelerator tube, and would have the same energy-mass–charge state combination of the
14C 3+ ions of 10.035 MeV. The final part of the beam line has been modified many times,
according to the experimental needs. For instance, a Time-of-Flight (TOF) system has been
set up [55]. This system was based on the exploitation of secondary electrons emitted by
the incoming beam impinging on a thin foil, later amplified thanks to a microchannel plate,
which provides a very quick start signal. In our set-up, the stop signal was then given by
the same mechanism or, as an alternative, by the Si photodiode itself used for 14C counting.
The count rate on this Si photodiode is very low (few tens of Hz maximum). The final part
of the beam line has been recently upgraded by also installing a position sensitive silicon
detector used to monitor the position of the beam with respect to the centre of the line, in the
transversal plane [56].

4 Quality assurance procedures

The knowledge of the absolute ion beam energy is essential for depth profiling and quantifi-
cation using particle scattering techniques such as EBS/RBS. It is also important for PIGE
since the gamma-ray producing cross sections are sensitive to the particle absolute energy as
well. The accelerator terminal voltage energy is measured by a generating voltmeter (GVM).
A procedure for precisely determining the absolute energy using known sharp and isolated
resonances in nuclear reactions is employed, using (a) a thick aluminium target and the res-
onances at 991.86 keV and 1683.57 keV, respectively, in 27Al(p, γ)28Si,
Eγ � 1779 keV, and 27Al (p,p’γ)27Al, Eγ � 843 keV, reactions; b) a pressed ZnS pellet and
the resonance at 3379 keV in 32S(p,p’γ)32S,
Eγ � 2230 keV, reaction. A fit to the three calibration points is then performed using a linear
relation between the proton energy (E) and the nominally set terminal voltage (TV ), E � 2 ·
(a · T V + b) + Esource, with Esource being the H− energy once extracted from the source
(for instance, 20 keV when the Duoplasmatron source is used); the calibration allows the
determination of the terminal voltage of the accelerator with an accuracy better than 0.1%.
The accelerator energy calibration is typically performed at least once per year.

For IBA quantitative measurements, reference spectra from standard materials are
recorded for each measurement run, depending on the sample to be analysed (for instance,
thick or thin) and to the employed IBA technique, as listed in Table 1.

Since LABEC employs many particle, X-ray (SDD) and gamma-ray (HPGe or Ge) detec-
tors, the performance of such devices, in terms of detector energy resolution and energy
calibration parameters, are recorded for each measurement run, because they are integral
to obtaining accurate analysis of samples and in order to anticipate the need for detector
replacement.

For AMS (14C measurements) the measured isotopic ratios are typically normalized to
Oxalic Acid II (NIST SRM 4990C) primary standard. The evaluation of the “background
counts” due to contaminations in the chemical pre-treatments and to machine measurements
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Table 1 List of standard materials used for obtaining reference spectra for IBA measurements

Technique Standards Notes

PIXE NIST 1412, 612, 620; BCR126; high-purity
metal foils

Thick; NIST and BCR are multielemental
glass standards

NIST 2783, MicroMatter XRF standards Thin; NIST is the atmospheric particulate
matter reference sample; MicroMatter
standards are mono- or bi-elemental
(thicknesses ranging from 15 to
120 μg/cm2) deposited on 6.3 μm Mylar

PIGE NIST 1412, 620; BCR126 Thick, glass standards (for Na, B, Li)
132Ba, 152Eu, 222Rn Radioactive calibration sources

RBS/EBS IRMM-302 Sb implanted in Si/SiO2

High-purity metal foils; BCR126 Thick; BCR is a multielemental glass
standard

MicroMatter XRF standards Thin; mono- or bi-elemental standards with
thicknesses ranging from 15 to
120 μg/cm2, deposited on 6.3 μm Mylar

is performed using nominally 14C-free materials. A consistency of the internal accuracy
is routinely performed at each beam time with samples prepared from another standard
reference material IAEA C7 (secondary standard), and similar control checks but using
samples prepared from other standard reference materials such as IAEA C2 (travertine), C4
or C5 (sub fossil wood samples) are periodically performed. Moreover, when the sample mass
is sufficient, two graphite fractions are prepared from each pre-treated sample and measured
independently, as a more robust check on the presence of contaminants.

5 Instrumentation for in situ cultural heritage analysis

Our laboratory is also equipped with a few portable Macro-X-Ray Fluorescence (MA-XRF)
scanners specifically customized for heritage science applications, designed and developed
in the framework of the CHNet collaboration of the INFN (http://chnet.infn.it). The design of
the equipment is primarily focused on portability, for truly compact lightweight system well
suited for in situ campaigns [57]. A detailed description, including technical characteristics,
analytical capabilities, software tools for data acquisition and elaboration, is given in [40].

Concisely, as shown in Fig. 7, the instrument consists of a measuring head with an X-
Ray tube (Moxtek, 40 kV maximum voltage, 0.1 mA maximum anode current, typically Mo
anode—tubes with other anode materials are also available), an Amptek SDD (50 mm2 area,
500 μm thick, 8 μm Be entrance window) and a telemeter (Keyence IA-100) that continuously
measures the sample-instrument distance during the scan, providing a feedback to keep it
constant. The measuring head is mounted on three linear motor stages (for the present version
300 mm and 150 mm travel range in the horizontal and vertical directions, respectively, to
allow the scan on a plane parallel to the surface to be scanned—plus a 50 mm stage along the
“z” perpendicular direction, to actively maintain the correct head-to-sample geometry, thanks
to the feedback from the telemeter). This is very helpful when scanning on uneven surfaces
such as may be those of panel paintings (nominally flat, but often in practice uneven over large
areas) and even more those of manuscript pages; or on truly three-dimensional objects (even
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Fig. 7 One of the LABEC
MA-XRF scanners during the
analysis on the Adoration of the
Magi by Leonardo da Vinci

over small areas) such as, for example, potteries. The motors are fixed on a carbon-fibre box
which contains motor controllers, the detector signal digitizer (CAEN DT5780), cooling fans,
power supplies and other auxiliary elements. Supports, holders and other mechanical parts
were produced with 3D-printing technology, providing the creative technical ability to build
some variants to fully customize the instrument for the different applications encountered.
Motion, acquisition and data elaboration are controlled via a software developed by CHNet
making use only of open-source programming software (QT platform), which allows us
total independence in making changes, improvements and new implementations. Software
protocols are fully described in the above-cited reference [40].

The whole scanner weighs less than 10 kg and measures 60×50×50 cm3, so that it
can be handled by a person alone, packed in two medium-size boxes. Compared with other
instruments with similar performance, it is thus lighter and smaller. The system can also be
battery-powered, a feature that comes decisive in campaigns such as those in archaeological
sites.

Radiation protection prescripts are respected by delimitating an appropriate no-access
area around the instrument by photoelectric sensors that switch off the tube if the area is not
free. The X-ray tube has an additional brass shielding to cut residual transmitted radiation.

Some of these spectrometers have been successfully used for a number of cultural heritage
applications, ranging from canvas, panel and mural paintings, archaeological finds, coins and
metals, porcelains and other manufacts, also thanks to the numerous national and international
collaborations as those with the Opificio delle Pietre Dure in Florence and several research
groups. In these collaborations, the analyses have been carried out following a multi-technique
approach for a comprehensive material characterization, see, for example, [18, 19, 58–61].
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Fig. 8 The MACHINA compact accelerator under assembly at LABEC

In general, however, IBA is much more effective than XRF for the compositional analysis
of materials in the field of cultural heritage. This is due to some intrinsic limitations when
using XRF in this field (much poorer sensitivity to light elements; difficulty to discrimi-
nate the layer structure of the artworks—typically present, for example, in paintings; higher
penetration of the primary X-rays with respect to protons, resulting, for example, in the “con-
fusing” presence of contributions from the preparation layer below the paintings). But more
than that, the real plus of IBA vs XRF lies in the fact that when doing an irradiation with
ions you can simultaneously exploit many different interaction products (X-rays, gamma
rays, backscattered particles, etc.) and not just the secondary X-rays obtained using XRF.
In other terms, Total-IBA is a “multi-messenger” suite of techniques, each providing—in
a single run—information that complements or reinforces the one obtained from the other
simultaneously exploited techniques.

The only real limitation of IBA remains the need to take the artworks to the accelerator
laboratory. Therefore, with the goal of building a transportable instrumentation to be used for
IBA also outside an accelerator laboratory, a project (MACHINA, Movable Accelerator for
Cultural Heritage In situ Non-destructive Analysis) has been launched at LABEC as a joint
initiative with the technical division of CERN. At CERN, relying on their huge experience
in accelerator technologies, a dedicated, very compact RFQ (Radio-Frequency Quadrupole)
proton accelerator (2 MeV proton energy, 1 m long) [62] has been built for this specific
purpose. At LABEC, we have designed and built the pre-acceleration and the high-energy
beamlines, the final external beam PIXE-PIGE-EBS set-up, and developed the driving control
electronics and software for the whole apparatus, as well as for the vacuum systems. The pre-
acceleration beamline contains what is just “essential” and can thus be very compact: after
a directly coupled RF source injecting 20 keV protons, it includes anyway all the necessary
active beam control and monitoring elements; in the post-acceleration line, also very short,
besides magnetic beam focusing and steering elements, insertable energy degraders (to also
allow for differential PIXE) are present just before the final external beam set-up. Altogether,
the length of the instrument (see Fig. 8) is less than 2.5 m and the weight is around 200 kg.

MACHINA is intended to be first installed at the Opificio delle Pietre Dure, in Florence,
one of the most prestigious public Institutions for restoration of artworks in the world, but it is
foreseen that the system, thanks to its transportability [63], can be moved to other restoration
laboratories or museums for specific diagnostic campaigns.
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The project has been presented on several occasions in workshops and conferences, and
the whole apparatus will be described in detail in a forthcoming paper.

The completion and commissioning of the system were initially foreseen at the end of
2020, but owing to the severe restrictions to laboratory activities imposed by the COVID-19
pandemic both in Italy and in Switzerland, we are experiencing a delay of about one year.
Anyway, the assembled system is by now (end of 2020) basically ready for the final technical
commissioning. Immediately afterwards, some months of further checks on test samples are
foreseen at LABEC, before starting its actual operation on artworks at OPD, what we still
hope to be able to do within one year.

6 Aerosol laboratory

The study of atmospheric aerosol is a very multi-disciplinary research field; therefore, besides
collaboration with groups with other expertise (e.g. chemists for the determination of the
ionic component or other specific compounds, geologists for a deep understanding of crustal
dust, etc.), ancillary laboratories are mandatory for optimizing the synergy among aerosol
sampling, nuclear analytical techniques and complementary analyses.

Focusing on nuclear techniques, beyond IBA, at LABEC carbonaceous aerosol may be
analysed for their radiocarbon content (in separated fractions, namely organic and elemental
carbon) by AMS thanks to the custom sample preparation line developed and realized for such
purpose. These analyses are unique for the assessment of the contribution to the carbonaceous
aerosol load from the different sources, such as biomass burning, fossil fuel combustion and
biogenic. A full description of the dedicated sample preparation line may be found in [64,
65].

The LABEC laboratory is equipped with several aerosol sequential samplers for “stan-
dard” aerosol sampling (daily resolution on PM10/PM2.5/PM1 fractions according to the
European Reference Methods EN12341:2014), and other commercial samplers for the col-
lection of size-segregated samples: namely, DEKATI SDI impactor for the collection of
aerosol in 12-dimensional classes [52] and PIXE Int. streaker samplers for the collection
of high-time-resolution coarse and fine samples [49]. Furthermore, since commercial sam-
plers, and especially the streaker, not always fulfil the requirements for the sampling cam-
paigns and/or are not any longer available on the market, the group has developed a novel
sampler for high-time-resolution and size-resolved sample collection (STRAS—Size- and
Time-Resolved Aerosol Sampler).

The laboratory is also equipped with additional instrumentation for complementary anal-
yses. An energy dispersive XRF spectrometer with three-dimensional, polarizing optical
geometry and a set of secondary anodes, with automatic sample loading (Epsilon 5 by PAN-
alytical B.V.), is used for routine analyses or coupled to PIXE in order to optimize the beam
time request [66]. An organic carbon/elemental carbon (OC/EC) analyser by Sunset Inc.
is also available [67]: as IBA measurements do not give information on the carbonaceous
content of aerosol (or they only allow it on a few aerosol collection substrata, as reported in
[24]), this kind of analyses are very important to obtain a major piece of information (car-
bonaceous aerosol may account for up to 50% of the aerosol mass in urban environments),
complementary to the one provided by IBA in order to be able to completely reconstruct the
aerosol mass (mass closure). Besides the EC/OC lab analyser, at LABEC a semi-continuous
OC/EC field analyser (by Sunset Inc.) is also available for high-time-resolution campaigns,
to be coupled to streaker/STRAS samplings (e.g. [68]).
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Beyond instrumentation, aerosol research at LABEC benefits from a deep expertise in the
use of statistical tools for aerosol source apportionment (such as Positive Matrix Factoriza-
tion—PMF analysis) [69].

7 Radiocarbon sample preparation laboratory

The sample preparation laboratory for radiocarbon measurements is fully equipped to treat
materials like charcoals, wood, seeds, textiles, bones and carbonates [70]. As for the chemical
pre-treatment of organic samples, we usually follow the so-called ABA procedure, which
is applied when the possible contaminations are only expected to come from the natural
environment. In this procedure, samples alternatively undergo baths in acidic and/or basic
aqueous solutions to get rid of exogenous carbonates and humic substances. The procedure,
e.g. the duration of each preparation step and the molarity of the solutions, is of course
adapted according to the material to be treated and to the state of preservation of the samples.
Other procedures to be applied when anthropogenic contaminations due to past restorations
are expected have been set up and used (see, for instance, the process based on CHCl3 to
remove resins such as Paraloid B72) [71].

Extraction of carbon from the cleaned material is achieved using a CHN elemental analyser
(Thermo Flash EA 1112) and collecting only the CO2 evolving from the sample combustion.
Carbon dioxide is then converted to solid carbon, i.e. graphite, by reaction of CO2 with H2,
in the presence of Fe as catalyst and at a temperature of about 600 °C. The graphitization line
is provided with eight reaction chambers in order to allow for several reactions in parallel,
thus improving the sample preparation throughput of the laboratory. Two of the reactors have
been recently upgraded to be optimized for the graphitization of samples as small as 50 mg
of carbon (as a comparison, the mass of our “traditional” large samples is about 700 mg of
carbon) [72]. In these reactors, the internal size is minimized by reducing dead volumes, such
as those of the pressure gauge, used to monitor the behaviour and the progress of the reaction,
or of the cold finger, which traps the water forming during the graphitization reaction, or of
the valve, which isolates the reactor from the rest of the line.

The graphitization line is also equipped with a different gas inlet to allow transferring
carbon dioxide evolved from a “device” different from the elemental analyser. For example,
in the case of measurements on carbonates, when we would like to only collect specific CO2

fractions, CO2 is obtained by dissolution in H3PO4, and is injected into the reaction tube
through a syringe. The reaction tube and a water trap downstream are then directly interfaced
to the graphitization line [73].

8 Success stories

During the over 30 years of activities of our laboratory, besides a lot of more or less rou-
tine—although very useful—measurements both in the field of aerosol composition detection
and in the one of cultural heritage issues, which were performed to provide always important
but “standard” information to the specific stakeholders, we obtained several times also results
that for their specific interest or for the importance of the case under study, also gained a wide
echo in a wider community. We can quote and we will describe in detail in the following, as
to IBA measurements, the cases of elemental analysis of high-time-resolution aerosol sample
and, as to AMS measurements, the case of 14C measurements on microsamples.

123



Eur. Phys. J. Plus         (2021) 136:472 Page 21 of 28   472 

8.1 Elemental analysis of high-time-resolution aerosol samples

In environmental sciences, PIXE (sometimes complemented by other IBA techniques), thanks
to its high sensitivity for detecting trace elements, plays an important role through the mea-
surement of the elemental composition of the aerosol. The analysis of samples with very
low mass such as those collected with high time resolution is thus possible. In most of the
field campaigns, the aerosol is collected with a 24-h time resolution. However, many particu-
late emissions change within a few hours (industrial or traffic emissions, construction works,
etc.); moreover, as many meteorological parameters, like wind intensity and direction, change
within a 1-h time scale and the boundary layer evolution shows strong diurnal patterns, atmo-
spheric transport and dilution processes change within a few hours. Consequently, the aerosol
concentration and composition may significantly change within a short time and daily sam-
ples are not capable of tracking these rapid changes. For this reason, the measurement of
the aerosol composition with high time resolution is important to assess health and environ-
mental effects, understand transport processes and determine source contributions. To fully
exploit the potential of PIXE in the analysis of aerosol samples, a proper experimental set-up
such as the one available at LABEC and described in Sect. 3.5 is important.

Source apportionment analysis by PMF of hourly data reinforces the source identification
obtained by daily samples, since the impact of many sources like industries, biomass burning
or vehicular traffic is more evident on an hourly time basis. Furthermore, a more direct cor-
relation with wind direction and speed is possible, since on a daily scale the wind direction
may have strong variations. Source polar plots, which show the wind direction and inten-
sity dependence of the resolved factors, can be easily produced from PMF streaker results.
For example, in the AIRUSE project [74] the time series of the biomass burning source is
characterized by a periodic pattern with peaks starting in the evening and lasting several
hours, supporting the identification of this source as biomass burning for domestic heating.
The absence of the evening-night peak on some days is explained by the meteorological
conditions. Some peaks during the day are connected to open fires due to the pruning. Other
examples of application are studies in Madrid [75], Barcelona [76], Japan coastal areas [77]
or a megalopolis as Beijing [78].

Elemental concentration obtained with 1-h time resolution can give invaluable information
for the study of episodic events, lasting a few hours that may lead to an exposure problem like
the ones occurring in industrial sites. The emissions from integrated steel-making facilities
are complex. The proximity of the main steelworks processes makes it difficult to distinguish
individual processes. Identification is further complicated both by the influence of other
external anthropogenic activities and by the simultaneous presence of continuous and dis-
continuous processes over time. Because of the non-continuous nature of many steel-making
processes, daily filter sampling does not have sufficient time resolution to capture short-lived
events arising from specific emissions. The hourly data collected at two sites in Taranto area,
in southern Italy, where the biggest steel plant in Europe is located, allowed us to observe
in detail the different emissions from the integrated steel-making facility (the blast furnace,
the basic oxygen furnace, the sinter plant), and the impact of other industrial activities, like
the cement plant. The location of the sampling sites, in opposite position with respect to the
industrial site, allowed us to follow the impact of the industrial plume as a function of wind
direction (see Fig. 9). Moreover, the hourly resolution demonstrated high metal concentra-
tions lasting a few hours, which may lead to an exposure problem in this area. The presence
of other anthropogenic and natural sources was also identified. The source polar plots were
able to identify the directional locations of different sources identified by PMF [79].
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Fig. 9 a Location of the industrial area and of the sampling sites on the Taranto area map. b The temporal
patterns of two of the identified sources in the fine fraction (in arbitrary units) in both sampling sites. c Source
polar plots as a function of wind direction and speed in site A and site B for the 3 sources identified in the fine
fraction. Note the difference between the polar plots of the two sources located in the steel-making complex
and the cement plant

Another possibility is the study of pyrotechnic events, such as on New Year’s Eve, national
festivities and light festivals, which give rise to large (up to hundreds of μg/m3), but transi-
tory (up to hours) increases of urban atmospheric particulate matter mean levels, especially
metalliferous particles (K, Mg, Ba, Cu, Sr, Al, Pb) which can be dangerous for the human
health. We have studied the aerosols generated by high-intensity pyrotechnic events, called
mascletàs. The mascletàs take place during annual festivals in numerous cities in the Spanish
Valencian region. Unlike usual fireworks, mascletàs are intended largely to stimulate the
auditory system and body vibration through the strong rhythmic noise sequence produced
by the burning of a type of bangers called masclets.

The masclet is a powerful sound firecracker that can be burst both at ground level and at
low altitude 1.5–2.0 m). When it burns, a loud intensity detonation, light effects and abundant
smoke generation are produced depending on its composition. During mascletàs, hundreds
of firework shells are also shot into the air using vertical cannons. People attending these
events are directly enveloped by the aerosol clouds that are produced. In this monitoring
campaign the sampling site was located very close to the launching zone, so the emission
aerosol cloud was measured directly. Extremely high concentrations in the fine fraction were
found; maximum values above 500 μg/m3 for K, 100 μg/m3 for S and 300 μg/m3 for Cl
were reached, with increase factors of more than 1500 compared to background levels [80].
Elements related to pyrotechnic displays like Al, Mg, Cu, Co, Zn, and Pb also showed a
large rise, with increase factors above 100, mainly in the fine fraction in comparison to their
normal values. In the case of Sr and Ba, factors up to 1000 were observed. Such very high
concentrations in a short time in a place where thousands of people are gathered may be
of concern, particularly for people who suffer from chronic respiratory health problems or
cardiovascular disease.
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The final example is about the high-resolution measurements of elemental composition
of dust exported to the North Atlantic at Izaña Observatory (Tenerife). The aim of the study
was to answer three questions: how quick does dust composition change in the Saharan Air
Layer (SAL)? What is the connection to dust sources? What is the role of meteorology? A
change of a factor up to 2 in the inter-elemental ratios of crustal elements was detected in
only 6 h. During one week, 7 concatenated impacts, which were traced by the variability
in the ratios of the different elements to Al, were observed. This variability was induced
by the alternated impacts of three of the large North African dust sources. We found a
correlation between dust composition in the SAL and the variability of summer meteorology.
These results [81] show that long-term variability of meteorology in North Africa may have
implications on the composition of the dust exported to the North Atlantic and this is relevant
for the interconnection between aerosol desert dust, meteorology and climate.

8.2 14C AMS measurements on microsamples

When dealing with radiocarbon, the “natural” application one typically thinks about is its use
in archaeological contexts. However, still considering topics related to history and cultural
heritage, 14C can provide support to solve issues in most recent times as well. An example
is given by artworks authenticity problems, when the chronology of materials constitutes a
key point, even though not always sufficient.

A successful example of applying radiocarbon to the possible authentication of paintings is
represented by the case of “Contraste de formes”, a painting attributed to the French painter
Fernand Léger (1881–1955). This study was conducted by LABEC in collaboration with
the INFN division of Ferrara and the Peggy Guggenheim Collection, Venice, to which the
artwork belongs [82]. This painting was bought by Peggy Guggenheim in the early 1960s,
but it was soon suspected to be a forgery and, for this reason, it has never been displayed
to the public. We dated a sample collected from the rear edges of the canvas, obtaining a
result that was not compatible with the Léger lifespan: indeed, the oldest period the canvas
can be dated back to has resulted to be 1959, while the painter died in 1955, just before the
huge increase of the 14C concentration in atmosphere known as Bomb Peak (see Fig. 10). In
this case, when the support material is younger than the supposed artist himself, there is no
ambiguity in the interpretation of the radiocarbon result. However, the “authenticity” of the
support may not directly prove the authenticity of the artwork itself: in fact, expert forgers
could have used an old support, contemporary with the artwork they want to make a fake of.

In general, even when authenticity is not an issue, we should always consider a possible
offset between the age of the material we are dating and the “event” we are actually interested
in, since a radiocarbon measurement gives us a terminus post quem as a result. If we date
the support of an artwork, either the canvas from a painting or the paper from a written doc-
ument, we may expect a possible temporal discrepancy between the age we are measuring
and the manufacture of the artwork/document. A possible way to overcome this issue would
be directly dating the organic fraction of pigments and/or inks. Actually, we can reasonably
hypothesize that, in ancient times, inks and colours were produced in small quantities by hand
using common and natural materials, so that we can generally expect a short period between
their manufacture and their usage. Their dating would give us an age which is likely to be
closer to the age of the event we want to date (i.e. the manufacture of the document/artwork)
[83]. Such a possibility is, however, limited by the invasiveness of the measurement, con-
sidering that sampling the datable material is mandatory for a radiocarbon application, and
would be feasible only when measurements with microgram-sized samples are possible. At
LABEC, exploiting the new upgraded graphitization set-up and AMS procedures for very
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Fig. 10 Radiocarbon measurement of the canvas sample collected from “Contraste de formes” (simplified
representation of calibration); the Léger lifespan is highlighted in grey

Fig. 11 Measured radiocarbon concentrations in charcoal particles recovered from test papyrus samples
(Fi4093 and Fi2094 correspond to two separate graphite pellets prepared from the same test sample); as
a comparison, by open dot, the 14C concentration measured in the charcoal particles recovered from the ink
without being used on papyrus is also reported

small samples, we have recently investigated the possibility to directly date organic black
ink on papyrus. The choice of papyrus was given by the fact that this material has been used
in many civilizations and through many different periods, as, for instance, in ancient Egypt
[84, 85].

For the ink dating feasibility study, test papyrus samples were prepared, focusing on ink
based on charcoal particles derived from wood combustion dispersed in Arabic gum [86],
prepared following the old recipe as accurately as possible.

Considering the used materials, we expected that the datable fractions, either charcoals or
the binder, would have been collected by immersing the written papyrus in warm deionized
water, considering the high solubility of the Arabic gum. However, it is clear that the solubility
in water of the papyrus extractives is as good as that of Arabic gum. After verifying by FTIR
the basic similarities between the Arabic gum and the papyrus extractives, we decided to
focus on the possibility to use the recovered charcoal particles for the 14C measurement.
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About 0.2÷0.3 mg of charcoal particles were recovered from each of the test samples.
Graphite pellets of about 50 μg of carbon each were prepared from them. In one case, the
recovered material after the extraction procedure from ink was enough to prepare two graphite
pellets to be measured by AMS.

Measurements showed a good reproducibility among the processed samples and proved
that all possible contaminants had been removed (see Fig. 11), thus suggesting that the
extraction and measurement procedure can be applied to “real” ancient papyrus documents,
even though in such cases we can expect that some of the original material has been lost or
that a different black organic ink, produced using, for example, soot instead of wood charcoal,
might have been used.
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