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A B S T R A C T

The ExaNeSt project started on December 2015 and is funded by EU H2020 research framework (call H2020-
FETHPC-2014, n. 671553) to study the adoption of low-cost, Linux-based power-efficient 64-bit ARM processors
clusters for Exascale-class systems. The ExaNeSt consortium pools partners with industrial and academic re-
search expertise in storage, interconnects and applications that share a vision of an European Exascale-class
supercomputer. The common goal is designing and implementing a physical rack prototype together with its
cooling system, the non-volatile memory (NVM) architecture and a unified low-latency interconnect able to test
different options for network and storage. Furthermore, the consortium goal is to provide real HPC applications
to validate the system.

In this paper we describe the unified data and storage network architecture, reporting on the status of de-
velopment of different testbeds and highlighting preliminary benchmark results obtained through the execution
of scientific, engineering and data analytics scalable application kernels.

1. Introduction

The ExaNeSt European project (call H2020-FETHPC-2014, n.
671553) aims to develop both the system-level interconnect and a fully-
distributed Non-Volatile Memory (NVM) storage together with the

cooling infrastructure for a European Exascale-class supercomputer
based on low cost, low-power many ARM-cores plus computing accel-
erators implemented in programmable components (FPGAs).

This approach is shared with other European projects with synergic
goals: ExaNoDe [1] and ECOSCALE [2].
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The Consortium combines industrial and academic research ex-
pertise, in the areas of system cooling and packaging, storage, inter-
connects, and the HPC applications that drive all of the above: Istituto
Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica
(INAF), EnginSoft S.p.A. and eXact lab srl for Italy, Foundation for
Research and Technology - Hellas (FORTH) for Greece, Universitat
Politcnica de Valencia for Spain, Virtual Open Systems for France,
Fraunhofer Institute for Mathematics (ITWM) for Germany, MonetDB
Solutions for the Netherlands, University of Manchester, Iceotope
Technologies Ltd and Allinea Software Ltd for the UK.

The project has received a funding budget of ∼ 8 MEuro to develop
the components summarized in the following in order to integrate, at
the end of 2018, a fully working, small size but scalable prototype of an
ExaNeSt computing system (more details in [3–5]):

• A low latency, high throughput unified Remote DMA (RDMA) in-
terconnect (UNIMEM [6], APEnet [7]) enabling the scalability of
both storage and I/O bandwidth, together with the compute capa-
city. The interconnect will be designed and validated using different
topologies on the FPGA-based testbed to better exploit congestion-
minimizing routing functions and network support to system re-
siliency;

• great emphasis was placed on providing low-latency inter-process
communication, as expected of HPC networks. For this task, we have
implemented virtualized packetizers, mailboxes and RDMA engines
inside the network interface, which allow user processes to com-
municate bypassing the overhead of the operating system.
Furthermore, ExaNeSt network packets are routed to a global virtual
address, which is translated by the System Memory Management
Unit (SMMU) at the destination, thus avoiding needless data
copying. In our first prototype, we can transfer small messages be-
tween applications over the network in just 1 ÷ 2 µs;

• a novel distributed storage architecture based on local devices at-
tached to the computing nodes enabling near-data computation and
reducing the energy and latency of I/O traffic. In addition, we ex-
ploit the high bandwidth of the NVM Express (NVMe) devices by
using a custom parallel file system (BeeGFS [8]);

• a set of relevant Exa-scalable scientific and big-data applications
(DPSNN [9], GADGET-3 [10], PINOCCHIO [11], MonetDB [12],
LAMMPS [13]) needed to efficiently tune the ExaNeSt architecture
during the design phase and to benchmark and optimize the im-
plementation of the final prototype platform;

• the packaging and advanced cooling mechanism: a key component
of a system aiming to be dense and power efficient.

In Sections 2 and 3 we introduce the project hardware, in particular
the layered architecture of the ExaNeSt interconnect and the structure
of the distributed storage. The software stack, which includes an MPI
library, is described in Section 4 while the reference applications used
to benchmark the ExaNeSt prototype are described in Section 5. Two
different testbeds, addressing respectively the network and processing
sub-systems have been developed to assess the performances and to
ease the early development of system software and reference scientific
applications. A description of the testbeds together with that of the
simulator used to analyze the network scalability are included in
Section 6. Finally, in Section 6.2.1 we show the outcome of the pre-
liminary benchmarking and application porting activities.

2. ExaNeSt interconnect

The ExaNeSt interconnect — ExaNet, shown in Fig. 1 — is split into
3 main components: (i) The Network Interface (NI), implemented close
to each end-node and described in Section 2.1; (ii) the intra-rack net-
work IP based on APEnet architecture, outlined in Section 2.2; (iii) a
novel microarchitecture to be employed as Top-of-Rack switches shown
in Section 2.3. The Unit of the system is the Xilinx Zynq UltraScale+

FPGA, integrating four 64 bit ARMv8 Cortex-A53 hard-cores running at
1.5 GHz. This device provides many features, the following being the
most interesting: (i) A very low latency Advanced eXtensible Interface
(AXI) interface between the ARM subsystem and the programmable
logic; (ii) cache-coherent accesses from the programmable logic and
from the remote unit; (iii) a memory management unit (MMU) with
two-stages translation and 40 bit physical addresses, allowing external
devices to use virtual addresses and thus enabling user-level initiation
of UNIMEM communication.

The Node is the Quad-FPGA daughterboard (QFDB) (see Fig. 2),
containing four Zynq Ultrascale+ FPGAs, 64GB of DRAM and 512GB
SSD storage connected through the ExaNeSt Tier 0 network.

The inter-FPGA communication bandwidth and latency affect the
overall performance of the system. As a consequence, at QFDB level,
ExaNeSt provides two different networks: the first is dedicated to low-
latency exchanges and is based on Low-Voltage Differential Signaling
(LVDS) channels and the AXI protocol; the second is for high-
throughput transmissions and relies on the High Speed Serial links
(HSS) and the APEnet protocol.

For inter-node communication, the QFDB provides a connector with
ten bidirectional HSS links for a peak aggregated bandwidth of 20 GB/s.
Four out of ten links connect neighbouring QFDBs hosted on the
Mezzanine (also known as Blade) (Tier 1). The first Mezzanine proto-
type (Track-1) enables the mechanical housing of 4 QFDBs hardwired in
a 2D cube topology (a square) with two HSS links (2×16Gb/s) per
edge and per direction. The remaining six HSS links, routed through
Small Form Factor Pluggable (SFP+) connectors, are mainly used to
interconnect mezzanines within the same Chassis (Tier 2). Furthermore,

Fig. 1. The building blocks of the ExaNeSt interconnect and the different Tiers.

Fig. 2. The Quad FPGA daughterboard.

M. Katevenis et al.



they can also be exploited to modify the Intra-Mezzanine topology.
ExaNeSt will develop two liquid-cooled prototypes — Track-1 and

Track-2. Track-1 will be used to test the interconnects, storage and
system software technologies developed in the project. Track-2 will
allow denser racks benefiting from the new liquid cooling that will be
developed by Iceotope.

Track-1 enables the safe mechanical housing of four QFDBs in a
custom-made blade. Nine such blades will fit within an 11 U (approx-
imate height, the blade are hosted vertically) chassis. Thus, each chassis
hosts 36 QFDBs, meaning 576 ARM cores and 2.3TB of DDR4 memory
— approximately 43 cores and 210GB of memory per 1 U of cabinet
height. Finally, each Track-1 rack will host 3 chassis.

Track-2 will enable a mezzanine made of 16 QFDBs, with 6 blades
fitting into a shorter approximately 8 U height half-depth chassis. Thus,
a “full depth” system can host 12 blades (6 blades on each side) or
192 QFDBs in 8U of cabinet height, — i.e. approximately 24 QFDBs,
384 cores and 1.5TB per 1 U of cabinet height. This translates to a
compute density of 384 cores plus 96 FPGAs and 1.5TB of DDR4
memory per 1 U of cabinet height. Table 1 summarizes the Track-1 and
Track-2 setup.

The Inter-Chassis (Tier 3) and Inter-Rack (Tier 4) interconnects
round up the multi-tiered network. ExaNeSt adopts custom-made
FPGA-based switches to support inter-chassis and inter-cabinet com-
munications.

2.1. ExaNeSt network interface

The network interface bridges the processes that run on the ARM
cores with the communication layer provided by the network. As net-
works become faster and faster, there is an increasing need to offload
many of the tasks traditionally performed by the network stack to smart
hardware in order to reduce the software stack overheads weighing on
communication latency. A smart network interface must therefore un-
dertake a number of tasks, like transferring data to and from process
memory, translating processes virtual addresses to physical memory
locations, scheduling and shaping traffic, just to name a few. In addi-
tion, the NI can implement a number of primitives that help processes
to communicate in efficient ways.

The network interface developed in ExaNeSt consists mainly of
hardware blocks, designed for optimized inter-process communication.
In addition, a number of software drivers were also developed so as to
make the complex hardware mechanisms work properly for application
purposes.

Virtualized ExaNet packetizer. A virtualized packetizer hardware block
has been developed for the network interface that allows application
processes to generate and send small, latency-sensitive ExaNet packets.
An application process can write the packet payload and its destination
virtual address inside a configuration space in the local Programmable

Logic (PL), and the hardware block creates an ExaNet packet and
forwards it to an ExaNet receiver, such as a Mailbox or a switch.

Virtualized ExaNet mailbox. The Virtualized mailbox implements
complementary functionalities to the virtualized packetizer. The first
goal is to provide a large number of mailboxes (currently 1024) with a
small FPGA area overhead. The IP hosts the mailbox buffers in coherent
main memory (DRAM) and uses FPGA embedded RAM only for the
small metadata information needed for keeping state (base addresses,
pointers and control flags). Moreover, having the mailbox buffers in
main memory allows for software-configurable mailbox sizes; our
implementation allows for a maximum size of 1 MByte (256 pages)
per mailbox. The second goal of this IP block is to reduce the software
latency of mailbox accesses. The Virtualized mailbox leverages the AXI
Accelerator Coherency Port (ACP) to deliver the packets destined to
mailboxes directly to the shared L2 cache of the ARM 4×A53
multicore processor. The mailbox access latency is similar to an L2-
cache access (∼20 processor clock cycles) and offers the opportunity to
prefetch mailbox data in the L1-cache and even hide this small latency
completely.

Axi-to-ExaNet adapter. Integrating the low-power domain zDMA engine
offered by the Xilinx Zynq UltraScale+ MPSoC into the ExaNet Trenz
prototype is achieved through two adapter blocks developed at FORTH:
one for converting the AXI transactions generated by the DMA into
ExaNet packets that can be transmitted through the ExaNet network,
and a second one that transforms the ExaNet packets into AXI
transactions at the destination. The hardware IPs for the conversions
are relatively simple and introduce a small latency — i.e. a couple of
clock cycles. The payload of each AXI burst is conveyed over a single
ExaNet packet, and each ExaNet packet is converted into a single AXI
burst transaction.

2.2. ExaNeSt intra-rack Network IP

The ExaNet intra-rack Network IP provides switching and routing
features and manages communications over HSS links through different
levels of the interconnect hierarchy: (i) The high-throughput intra-
QFDB level (Tier 0) for data transmission among the four FPGAs of an
ExaNeSt node; (ii) the intra-Mezzanine level (Tier 1) directly con-
necting the network FPGAs of different nodes within the same mezza-
nine; and (iii) inter-Mezzanine communication level (Tier 2) managing
the connectivity of the Mezzanine based on SFP+ connectors and al-
lowing for the implementation of a direct network among QFDBs within
a chassis.

The Intra-rack ExaNet architecture is based on a layered model in-
cluding physical, data-link and network layers of the OSI model.

The physical layer — APEphy— defines the data encoding scheme
for the serialization of the messages over the cable and shapes the
network topology. APEphy provides each node with point-to-point bi-
directional, full-duplex communication channels to its neighbors along
the available directions (i.e. the connectors composing the IO interface).
APEphy is strictly dependent on the embedded transceiver system
provided by the available FPGA. It is normally based on a customization
of tools provided by the FPGA vendor — i.e. DC-balance encoding
scheme, deskewing, alignment mechanism, byte ordering, equalization,
channel bonding.

The data-link layer — APElink— establishes the logical link be-
tween nodes and guarantees reliable communication, performing error
detection and correction. APElink [14] is the INFN proprietary high-
throughput, low-latency data transmission protocol for direct network
interconnect based on word-stuffing technique, meaning that the data
transmission needs submission of a magic word every time a control
frame is dispatched to distinguish it from data frames. The APElink
manages the frame flow by encapsulating the packets into a light, low-
level protocol. Furthermore, it manages the flow of control messages for

Table 1
The ExaNeSt Track-1 and Track-2 overview.

Track-1 Track-2

Cores per blade 64 256
Memory per blade [GB] 256 1024
FPGAs per blade 16 64
Cores per chassis 576 1536
Memory per chassis [GB] 2304 6144
FPGAs per blade 144 384
Core per rack 1728 15,360
Memory per rack [GB] 6912 61,440
FPGAs per blade 432 3840
Core per equivalent 1U ∼ 43 384
Memory per equivalent 1U [GB] ∼ 173 1536
FPGAs per equivalent 1U ∼ 11 96
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the upper layers describing the status of the node (i.e. health status and
buffer occupancy) and transmitted through the APElink protocol.

The network layer — APErouter— defines the switching technique
and routing algorithm. The Routing and Arbitration Logic manages
dynamic links between blocks connected to the switch. The APErouter
applies a dimension order routing (DOR) [15] policy: It consists in re-
ducing to zero the offset between current and destination node co-
ordinates along one dimension before considering the offset in the next
dimension. The employed switching technique — i.e. when and how
messages are transferred along the paths established by the routing
algorithm, de facto managing the data flow — is Virtual Cut-Through
(VCT) [16]: The router starts forwarding the packet as soon as the al-
gorithm has picked a direction and the buffer used to store the packet
has enough space. The deadlock-avoidance of DOR routing is guaran-
teed by the implementation of two virtual channels [17] for each
physical channel.

2.3. ExaNeSt inter-rack TOR

We have designed a custom-made FPGA-based switch to support
inter-chassis and inter-cabinet communications. The custom-made
FPGA-based switch will route packets within Tier 3 and Tier 4 and,
typically, its level of granularity will be a Chassis; this means it will rely
on lower tiers of the interconnect to route packets to the specific
computing element. It uses wormhole switching in which network
packets are divided into multiple flow control units – called flits –
whose length is equal to the channel width. In our current im-
plementation 70 bits: 64 bits for data, 4 bits used in the MAC layer and
2 bits to control the end and the beginning of the packet. To reduce the
utilization of FPGA resources and, in turn, the required power we im-
plemented a table-free architecture, as content-addressable memories
(CAMs) are known to be very costly to implement within FPGAs. In
practice, this means that our custom-made switch works by performing
routing decisions arithmetically based on the local and destination
addresses. Furthermore, we implemented our switch with virtual
output queues to reduce Head-of-line blocking during transient phases
of saturation. At the moment, we are able to use our switch directly
from the processing system (PS) of our Zynq UltraScale+ FPGAs by
means of a simple packetizer which interfaces between AXI and our
custom protocol. In our first prototype, we successfully managed to run
applications and benchmarks remotely, both in a remote PS and/or
FPGA.

3. ExaNeSt storage system

In a typical traditional storage subsystem (see Fig. 3(a)), compute
nodes usually only have main memory and maybe a boot-device; they
execute application code and co-ordinate via a dedicated interconnect.
Persistent data is kept separately in a parallel file system and served by
a set of dedicated storage server nodes in Tier 1. In this architecture, the
distance between compute nodes and data is relatively long, and even a
dedicated interconnect is used for the storage traffic, it can still quickly
become a bottleneck for data access.

Nowadays, the decreasing cost of low-power fast NVMs (e.g. flash-
based) is dramatically changing the computing landscape. These de-
vices promise to narrow the storage-processor performance gap with
low latency (tens of microseconds vs. tens of milliseconds) and high I/O
operations per second (IOPS) at affordable prices, and at capacities of
several hundreds of gigabytes versus the few gigabytes of in-node
DRAMs. ExaNeSt will place NVM devices directly on the compute nodes
(see Fig. 3(b)), rather than in a centralized location. It works as follows.
Data is still stored in the protected space provided by Tier 1 file servers,
but the file system is extended to consider Tier 0 devices as large per-
sistent caches. In this way, we can shorten the common I/O path and
reduce data transfers from Tier 1 servers. This architecture would be
able to not only improve I/O performance, but also reduce the energy

consumption associated with frequent data movements to/from the
storage devices. In ExaNeSt, we use the distributed parallel file system
BeeGFS [8] to manage the storage devices. In addition, we have de-
signed extensions to it to take advantage of the NVM devices as a cache
layer (see Fig. 4).

In this two-tier storage approach, the global parallel storage layer
contains one or several big BeeGFS storage server(s) with RAIDs of
spinning disks outside of an ExaNeSt rack, which serves as the perma-
nent backing store. On the compute nodes, there is an extra storage

Fig. 3. (a) Traditional storage subsystem integrated through a separate inter-
connect with the compute nodes; (b) The ExaNeSt storage subsystem with
distributed in-node NVMs (SSDs), introduced as a new caching layer, and
unified interconnect.

Fig. 4. BeeGFS extended into a two-tier architecture.
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layer which uses the integrated SSDs as a per-job cache layer and
temporary/ephemeral scratch space. Each time a number of nodes with
SSDs are assigned to a (computing) job, we can start a light-weight
BeeGFS instance to serve those SSDs as storage for just this job. This
storage can then be used either for temporary data (snapshots, inter-
mediary results, etc.), or as a cache layer by copying data from the
global file system to this “instance store” (prefetch), so that this job
henceforth can access its data there, directly where the calculation is
going to happen — this reduces network load, latency and the load on
the global file system server. At the end of the job, the data can be
copied back to the global store if needed (flush). A further optimization
might be to share an on-demand BeeGFS instance with applications that
only need node-local storage.

4. ExaNeSt software stack

4.1. Low-level software stack

In ExaNeSt, we build a Global Virtual Address Space (GVAS), in
order to allow processes to store or load data directly from (remote)
process variables and data structures, without needing to copy them in
intermediate system variables. The ExaNeSt global virtual address
space is addressed by 80 bits. A valid address identifies a global
(variable) location of data. The following fields of the global address
space are used as follows:

• The Protection Domain ID (PDID) identifies the system-level process
group to which the data belong. At each node, there is at most one
process per PDID;

• the Destination Coordinates ID (DCID) identifies the node at which
the data reside;

• the Destination Memory Address (DMAdd) identifies a virtual or
physical address of the process belonging to the group PDID and
running at node DCID.

With UNIMEM, in order to enable a global address space, each
“coherence island” (the four A53 processors inside an FPGA) has to
allocate disjoint regions of physical memory to local memory and
peripherals, and to the external world. This exposed memory is in the
form of an address “window” which enables direct memory and I/O
accesses to remote islands.

Various communication protocols (AXI, Ethernet, APElink, etc.) can
be used to address this remote world, while a translation mechanism
provides a mapping (either static or dynamic) between the island
physical address space and the global address space. In the ExaNeSt
prototype, the Zynq Ultrascale+ MPSoC will support a 448GB memory
window, i.e. more than 16GB of DRAM memory for 16 “coherence is-
lands”.

In order to perform zero-copy user-level RDMA transfers between
different boards using Global Virtual Address Space, we have to con-
figure the SMMU on the sender side (initiator of DMA) as well as on the
receiver side. Therefore, we have implemented an SMMU Virtualization
driver, which enables the processes that initiate RDMA transfers to
perform the operations needed for the translation of virtual addresses to
local physical addresses. RDMA functionality is implemented using the
low-power domain zDMA engine provided by the Xilinx Zynq
UltraScale+ MPSoC.

User-level initiation of remote operations eliminates the need of
context switch to kernel mode and thus reduces dramatically the op-
erating system overhead. Regarding the use of RDMA, instead of using
the Linux RDMA API, we set up the chosen channel’s registers and then
trigger the transaction. In order to perform user-level initiation, we
have to memory map the registers to the process that will perform the
remote operations using the mmap() system call. As arguments to the
mmap we need to pass the physical page that contains the registers of
the chosen channel and the file descriptor of our SMMU driver that will

remap the physical base address to some virtual address at process page
table using the kernel’s remap_pfn_range call. After that, we can access
the channel’s registers as standard process memory, i.e. setting registers
and polling for the end of the transfer.

As already mentioned in Section 2.1, a new virtualized packetizer
was developed in the ExaNet-based prototype along with its pairing
block, i.e. virtualized mailbox. The functionality of these two hardware
blocks was integrated into the kernel through a driver-module devel-
oped at FORTH. The functionality of the driver is used only for the
allocation and the deallocation of the hardware resources, which are
infrequent operations. For the frequent operations, such as sending and
receiving messages, the kernel is completely bypassed.

To allow user-space code on the AXI Trenz-based prototype to in-
itialize zDMA-based RDMA operations, a user-space library has been
developed at FORTH. A core notion within this library is the commu-
nication channel which consists of two main elements: (i) A zDMA
channel, (ii) a protection domain in the SMMU. The protection domain
guarantees that remote virtual addresses are translated according to the
correct page table of the protection domain process. For different pro-
cesses to communicate they must allocate the same communication
channel.

4.2. MPI library

The ExaNeSt MPI library is a partial implementation of the MPI
standard. It currently implements only the point-to-point primitives,
while the rest of primitives are delegated to a slightly modified MPICH
(an high performance portable implementation of the MPI stan-
dard) [18] implementation that relies on TCP sockets. The MPICH
modification required by our MPI library is just exporting the “context
id” related to a communicator, which is 16 bits wide and is thus more
suitable to fit in an atomic message of 256 bits — this is the current
atomic message size supported by the packetizer hardware. In order for
each MPI process to be able to participate in point-to-point based
message exchanges, it needs to allocate the following:

• Virtual mailbox;

• Virtual packetizer;

• Communication channel (DMA).

All of them are allocated through the ExaNeSt user space library.
The packetizer is used to pack and issue an atomic message of up to
256 bits. The virtual mailbox is the block that receives atomic messages.
The protection domain that is part of the communication channel
guarantees that remote virtual addresses are translated, according to
the correct page table, to the protection domain process. Two or more
processes of the same application that run on different nodes share a
Global Virtual Address Space and belong to the same protection do-
main. In order for these processes to communicate with RDMA transfers
in the GVAS and use the packetizer and mailbox, they must allocate the
same communication channel and thus participate in the associated
protection domain. The current point-to-point protocol used is ren-
dezvous-based. Support for an eager protocol, where no synchroniza-
tion is required between the sender and the receiver for a message
exchange, is part of ongoing work. Message exchanges are initiated by
the sender and are matched at the receiver. Virtualized packetizers and
virtualized mailboxes are used to send and receive control data, re-
spectively. For the current implementation, control data refers to the
MPI message envelope and the acknowledgment that will be mentioned
in the rest of this section. The actual RDMA data transfer is performed
through the zDMA engine. The sender packs the MPI message envelope
using the virtual packetizer acquired and sends it to the mailbox of the
peer process. Note that the peer process can either be running on the
same node or on a remote one. After matching has taken place at the
receiver, it performs an RDMA read operation to fetch the data from the
virtual address provided by the sender (part of the message envelope
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received in the virtual mailbox). Using the zDMA-related functionality
provided by the ExaNeSt user-space library, the receiver can determine
the completion of the transfer and use its virtual packetizer to send an
acknowledgment back to the sender. Finally, it is worth pointing out
that our MPI library is thread-safe and thus, it can support an
MPI_THREAD_MULTIPLE thread level.

5. ExaNeSt reference applications

5.1. DPSNN

The Distributed and Polychronous Spiking Neural Network
(DPSNN) simulation engine is a natively distributed mini-application
benchmark representative of plastic spiking neural network simulators,
coded as a network of C/C++ processes interfaced using a pure MPI
implementation [9,19].

Each process describes the synapses in input to a cluster of neurons
with an irregular interconnect topology, with complex inter-process
traffic patterns broadly varying in time and per process. It has been
designed to be natively distributed and parallel, with full parallelism
exploited also during the creation and initialization of the network.

DPSNN is based on a mixed time- and event-driven engine, dedi-
cated to the simulation of the dynamics of networks of point-like neu-
rons and synapses, optionally including synaptic spike-timing depen-
dent plasticity (STDP). During each millisecond of simulation, the
network evolution is the result of the dynamic of each single neuron,
computed at sub-millisecond time resolution. Such a simulated neural
activity generates spikes with target synapses distributed both in the
same process and in other processes. The exchange of spike messages
(i.e. the “axonal-spikes” composed of the identity of the source neuron
and the original time of emission), are the inter-process traffic payload.

Speed-up measures and strong and weak scaling analysis have been
performed to demonstrate the scalability of simulations run over MPI
processes ranging from 1 to 1024. To address this issue, we ran a
number of simulations of spiking neuron networks organized in bi-di-
mensional grids of modules, each module aiming at modeling a cortical
column, including up to 50 G synapses connecting 46 M point-like
neurons (Leaky Integrate and Fire with Spike Frequency Adaptation)
distributed over a large set of MPI processes. The execution platform
was a server composed of up to 64 dual-socket nodes, each socket was
equipped with Intel Xeon Haswell E5-2630 v3 processors (8 cores @
2.40GHz clock).

5.2. GADGET-3 and PINOCCHIO

In Astrophysics, the scientific problem under investigation often
involves complex physics, a very large dynamical range, or both. This
kind of computations requires high resolution, that translates in a very
large number of computational elements — usually particles.

In the ExaNeSt project we use the TreePM+SPH code GADGET-3,
an evolution of the public code GADGET-2 (GAlaxies with Dark matter
and Gas intEracT) [10], and PINOCCHIO semi-analytical code [11]. In
simulations used in ExaNeSt, besides gravity and hydrodynamics, the
following processes are modeled: radiative cooling of the gas, star
formation, chemical evolution, energy feedback from exploding stars,
uniform time-dependent UV background, evolution of black holes and
their energy outputs. These numerical computation are dynamical in
space and time: the computation evolves from an initially homo-
geneous, easy to balance configuration, to an extremely non-homo-
geneous one. Furthermore, galaxies move with respect to each other,
possibly colliding and clustering together. This behaviour makes load-
balancing a severe issue and those codes an excellent and challenging
candidate to design and optimize the interconnect of a supercomputer.

To test the environment and to verify our porting, we are using two
different cosmological simulations. The first one is a portion of the
Universe, a cube having a side of 25 Mpc, with relatively low resolution

(details in [20]). This simulation does not resolve the internal structure
of galaxies and is thus relatively easy to balance in all of its phases. The
second one follows the birth and the evolution of a single galaxy. Here,
the resolution is higher and the dishomogeneity towards the end of the
simulation is larger (details in [21]). In neither case we run the full
simulation, which would be very time-consuming.

5.3. LAMMPS and miniMD

The Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [13] is a classical molecular dynamics simulation package,
capable of simulating large number of atoms and molecules, with a
large variety of potential and post-processing tools. Parallelization is
supported in both shared memory (OpenMP [22]) and distributed
memory (MPI) paradigms as well as hybrid. GPU acceleration is sup-
ported via both CUDA [23] and OpenCL [24]. LAMMPS has been suc-
cessfully ported to ARM CPUs and run on ExaNeSt prototype using the
RDMA engine. Benchmark simulations were executed up to several
millions of atoms, using both Lennard-Jones, Coulomb and CHARMM
potentials. These preliminary benchmarks show that the RDMA avail-
able through the UNIMEM logic is capable of reducing communication
time up to 40%, which corresponds to a total wall time reduction of
above 7%.

Given the availability of FPGA on the QFDB, we also explored the
feasibility of porting the OpenCL kernels of LAMMPS to FPGA using
high level synthesis tools. To this end, we decided to start from a mini-
app extracted from LAMMPS, called miniMD. miniMD shares the same
computational algorithms of LAMMPS but with a limited collection of
potentials and minimal post-processing. This allows an easier porting of
the key components, in order focus on the optimizations needed to
properly take advantage of the architectural specificity of the Zync
Ultrascale+ MPSoC.

In particular, we initially focused on the most complex OpenCL,
namely the kernel used to calculate the forces between the atoms. The
kernel had to be radically modified, and the most performing strategy
was to manually replicate the block which is the result of the high level
synthesis of the OpenCL kernel. We then schedule the execution of the
working groups on the available blocks, which are then executed con-
currently. Even though the available logic on the FPGA allowed for 16
or more blocks, we saw that the speedup would rapidly saturate after 8
blocks were used, showing once more the well-known fact that main
limitation of FPGA in general, and of this kind of SoC in particular, is
the available bandwidth between the FPGA and the main memory.
Nevertheless, the use of FPGA allows a significant benefit in perfor-
mance, compared to using the ARM cores. Executing the force kernel on
the 4 ARM cores (using OpenMP parallelization) requires 1.3 s, while
running of FPGA requires 0.56 s, which is more than a factor 2 in
speedup.

5.4. MonetDB

MonetDB [12] is an open-source column-store database system. It
targets at supporting statistical analytical data warehouse applications.
Such applications have the characteristics that data are generally write-
once-read-many, updates are rare, and new data arrive at low fre-
quencies (hours, days, weeks, etc.) in big chunks (usually in the order of
GBs or even larger). Compared to HPC applications, the scope of use
cases MonetDB supports is very different. For instance, MonetDB must
be able to process any query that can be expressed in SQL on many data
types (from numerical to strings to e.g. JavaScript Object Notation,
JSON). In addition, MonetDB must be able to handle extremely dy-
namic workloads (in terms of e.g. query complexity, data size and level
of concurrency), while working with heterogeneous underlying hard-
ware/software systems. MonetDB is optimised for in-memory proces-
sing, i.e. it performs best when both the hot data (i.e., persistent data
required by a query) and all intermediates (i.e., data generated for a
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query execution) fit into the main memory. Therefore, the best practice
of getting optimal performance out of MonetDB is to i) keep I/O at an
absolute minimal, and ii) have as large as possible I/O bandwidth.
Ideally, one should immediately load the whole database into the main
memory at the start of a MonetDB server session, and provide sufficient
main memory throughout the whole session for the intermediates. In
this way, MonetDB would not need any I/O’s during the session, unless
there are updates. Since updates usually come in batches, large I/O
bandwidth and low disk latency enables lower transaction commit time.
The challenges imposed by a database system like MonetDB on the
ExaNeSt platform include i) performance: how can the abundantly
available hardware in the system be maximally utilized, and ii) elasti-
city: to what extend does the platform support scalability in all direc-
tions (i.e. scale-up/down and scale-out/in), so as to capture the sudden
changes in the application workloads, while minimizing energy con-
sumption.

6. ExaNeSt testbed description

This section describes the prototypes that are in use for the in-
tegration activities within the ExaNeSt project. Both the presented
prototypes are based on TEBF0808 Trenz board featuring the same
Xilinx Ultrascale+ MPSoC FPGA family chosen for the final prototype
and 2 Gbytes of DDR4 memory. The differentiation in prototype ar-
chitectures reflects the fact that integration efforts have been conducted
incrementally at different levels of the HW/SW stack. The development
of user-space libraries that expose hardware functionality (virtual
packetizer, virtual mailbox, zDMA) to applications is prototype in-
dependent.

A working AXI-based prototype — described in Section 6.2 thus
allows for progress towards this direction and for testing the SMMU and
user-level, zero-copy RDMA. Further we used this prototype to port an
MPI library.

In parallel, we developed the ExaNet network primitives using a
Trenz-based system — described in Section 6.1 — which will later be
ported to the QFDB prototype.

Finally we described the results obtained with a lightweight packet-
level functional simulator — see Section 6.3 — able to scale up to tens
of thousands of nodes while still modeling accurately the different
components of the network.

6.1. ExaNet Trenz-based prototype

The ExaNet Trenz-based prototype has the Network Interface and
Intra-rack Network logic integrated into PL’s design (see Fig. 5). The
prototype presented in this section has been used to integrate and test
proper functionality of hardware blocks.

Preliminary tests were performed to validate the network inter-
connect, shaping a 2×2 mesh topology to connect four boards through
the two SFP+ ports available on each system. The testbed allows for

validation of the ExaNet architecture at both Tier 0 and Tier 1 levels.
The QFDB, composed by four FPGAs, matches perfectly with the testing
platform. Furthermore, the development platform emulates the com-
munication among the four network FPGAs of the QFDBs hosted within
the track-1 mezzanine.

The IPs compiled inside the FPGA of the Trenz boards for the
Integrated ExaNet network are listed below (see Fig. 6):

• The AXI-to-ExaNet IP will take AXI traffic from master devices in-
side the PS through the HPM_0 PS-master port and convert it to
ExaNet packets. The main source of traffic will be the DMA engines
inside the PS. In this first version, the IP will be connected to an
intra-tile port of the ExaNet Switch;

• The Packetizer is connected to the HPM_1, receiving AXI store
commands, and outputting ExaNet packets to a second intra-tile port
of the ExaNet switch;

• The Mailbox will receive ExaNet packets by the output of an intra-
tile Exanet Switch port, and will output AXI transactions on the
Accelerator Coherency Port (ACP) port, which is connected directly
to the L2 cache of the processor, without going through the Cache
Coherent Interconnect (CCI) interconnect (and the SMMU);

• The ExaNet-to-AXI will receive the ExaNet packets by the output of
an intra-tile ExaNet Switch port and it will output AXI transactions
on the HPC_0 port. This PL-master AXI port goes through the SMMU
and will be the last hop of DMA traffic before reaching the SMMU.
Therefore, it has to pass the protection domain on the AXI ID in-
terface;

• The ExaNet Switch provides three inter-tile and two intra-tile bi-
directional ports. The inter-tile ports implement the off-chip direct
connectivity, driving the FPGA embedded high-speed transceivers
via a transmission control logic block (APElink). The intra-tile ports
realize the ExaNet Switch interface with the NI and PS. The intra-tile
port consists of two independent FIFO-based physical queues, one
for packets header and footer and one for payload. Multiple intra-
tile ports will be used to setup a priority scheme.

In this first version of the integration, the AXI acknowledgments
generated at the destination will be overlaid through ExaNet Ack
packets and will be sent to the source.

We have implemented simple bare-metal tests that send packets
with varying size from one node to another, in a ping-pong fashion, and
then measure the latency. In the Figs. 7 and 8, we report the half of this
latency as a function of the packet size. As can be seen, the one-hop
latency is approximately 1.2 µs for small packets (smaller than
16 bytes), and increases linearly with the packet size, approaching 2 µs
for 256 byte packets.

The same test is repeated in Fig. 8, but now the two communicated
boards are two hops away. Effectively, packets cross a third FPGA in
their journey from source to destination. As can be seen, the latency has
now increased to 1.6 from 1.2 µs, manifesting that we spend approxi-
mately 400 ns per extra hop. This latency overhead is mostly due to the
AURORA transceiver.Fig. 5. ExaNet trenz-based prototype.

Fig. 6. Integration SoC-level design, binding the ExaNet switch with the NI
primitives.
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6.2. AXI Trenz-based prototype

The AXI Trenz-based prototype, depicted in Fig. 9, consists of four
nodes connected through a custom 10 Gbps switch. Each node is a
TEBF0808 Trenz board, equipped with a Trenz TE0808 UltraSOM+
module.

The PS of the MPSoC mainly consists of 4 × A53 ARMv8 cores
operating at 1.2 GHz. The PL that is tightly integrated with the MPSoC
uses a clock of 150 MHz. Several hardware blocks that implement part
of the functionality offered by the ExaNeSt platform are deployed into
it. Our MPI library uses the services of the virtualized mailbox, the
virtualized packetizer (a small message engine), and the Xilinx DMA
engine (zDMA) IPs. All nodes are connected through a 1 Gbps man-
agement Ethernet network. Furthermore, each node is connected to a
switch through a 10 Gbps SFP+ serial link with switching logic im-
plemented on a Kintex UltraScale FPGA.

6.2.1. Porting and benchmarking on the applications testbed
DPSNN. Direct porting the DPSNN application to run on the Trenz-
based prototype has not required a significant effort besides
sidestepping a couple of minor quirks in order to make either MPICH
and OpenMPI work on an ARM boards cluster.

Of course, the data-set must be sized accordingly to fit the available
memory; we note that at the moment inter-node communication has no
better channel than 1 Gb Ethernet. In this regard, some reshuffling of
allocations relieving the pressure the application put on the memory
subsystem of the Trenz boards was necessary in order to make it run;
moreover, message passing between processes was changed from vari-
able payloads to a tunable fixed length exchange plus eventual re-
mainder, which was found to work better for the range of sizes that
form the bulk of the exchanges in a DPSNN run.

We are investigating another, more complex optimization: we en-
vision a two-level hierarchy where, during collective communications,
each process distinguishes between “local” and “distal” peers and ac-
cordingly uses different communicators. In this way, exchanges be-
tween local peers — processes belonging to the same node — can be
made to employ a different channel compared to communications be-
tween distal ones — processes belonging to different nodes — which
makes available different, possibly concurrent strategies for optimiza-
tion. For example, inter-node collective communication can be made to
exploit the broadcast/multicast capabilities of a dedicated IP on the
FPGA, just like those under investigation in the APEnet+ project [25].

In Table 2 we report the simulation run-times of a reference con-
figuration (5000 simulated milliseconds of an 8 × 8 grid of cortical
columns, 1250 neurons per column) for different layouts of cores and
cluster nodes compared against those of a standard HPC platform
(nodes are dual-socket servers populated with Intel CPUs — Xeon E5-
2630 v2 clocked at 2.6GHz) interconnected with an InfiniBand network
interface.

GADGET-3 and PINOCCHIO. The porting efforts for GADGET and
PINOCCHIO are aimed at redesigning the codes to profit of Exascale
platforms and in particular the one designed by the project where a
large number of ARM cores coupled with FPGA accelerators. Actually,
we ported the code as it is on the available testbed together with all the
required libraries. Minor tests on scalability were performed together
with some integration tests to verify that both libraries and codes were
producing the same results as on Intel based clusters.

Moreover, to study the detailed network traffic produced by the
code through MPI library calls, we instrument the code and run it for
small temporal intervals at the beginning of the simulation, at inter-
mediate times and towards the end, in order to sample the different
dynamical situations, that can turn into different communication pat-
terns and workload balances. In this way we collect statistics on net-
work traffic and API usage.

Even if GADGET and PINOCCHIO are full-fledged high-performance
codes for cosmological simulations, some architectural concerns arise at
the edge of Exascale era that ponder on the necessity of redesigning the
code to fully profit of the ExaNeSt platform. On such a system, it is
crucial for codes to take advantage of spatial and temporal locality of
data, which also requires NUMA-awareness. This concept translates
into the “affinity” that a given memory segment has with a particular
computing core. The GADGET memory model is not NUMA-aware and

Fig. 7. One-way packet latency versus packet size for a single hop configura-
tion.

Fig. 8. One-way packet latency versus packet size for a double hop config-
uration.

Fig. 9. AXI Trenz-based prototype.

Table 2
DPSNN runtimes.

# Nodes ÷ # Cores Time (ARM) Time (Intel)

1 ÷ 1 3044.4 s 632.9 s
2 ÷ 2 1530.5 s 336.0 s
2 ÷ 4 777.3 s 181.6 s
4 ÷ 8 437.0 s 83.2 s
4 ÷ 16 254.8 s 40.7 s
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tries to exploit memory locality only with some basic stratagems.
Hence, the redesign of the code must start from the redesign of the
memory model in order to take into account the different affinities of
different memory regions. Due to the extreme diversity of physical
processes being modeled and algorithms implemented, this is a difficult
task that does not have a unique solution and may require memory
layout transformations in some points. Secondly, the code has been
conceived as the parallel generalization of a serial code, in a pre-mul-
tithread era. Hence, the work-flow is rigidly procedural, with this
meaning that all tasks perform the same operations — possibly in-
dividually using more threads in local loops — with frequent syn-
chronization via MPI messages. In view of this fact, it is compulsory to
adopt a different code design, i.e. to decompose the work-flow in as-
small-as-possible single tasks with clear dependencies on, and conflicts
between, each other from both the point of view of operations to be
performed and data to be processed. In such a way, the work-flow
would be translated in a queue system where idling threads perform the
first available tasks on not-under-use data. Synchronization of opera-
tions should pass as much as possible through RDMA operations and the
queue system itself.

The porting of GADGET code to the Trenz boards has been preceded
by the installation and tests of some HPC libraries: FFTW, HDF5, BLAS,
and GSL. Those libraries are optimized on the HW (in particular to
maximally benefit the CPU and accelerators capacity, e.g. cache size
and type, processors pipelines, SIMD) and has been tested on Trenz (see
Fig. 10) and results compared with Intel CPUs.

Given the constraints in terms of network, memory and CPUs of the
current prototype, we identify a standard set of cosmological initial
condition to use as a reference in any experiments that we have done
and will do in the future on the other release of the platform. This
experimental setup has been used (and will be used) also to test any HW
and SW improvements.

PINOCCHIO code has been re-engineered to match the new platform
of ExaNeSt. The tests presented have been performed on Trenz boards
using an FFTW3 and PFFT 1.8 compiled with the MPICH library
available on the boards. Some tests have been done also to compare the
FFTW and PFFT in order to verify the stability and efficiency of PFFT
(see Fig. 11). We verified that actually the PFFT library is at least as
much efficient, if not better, than the original FFTW library.

MonetDB. After having ported MonetDB to the ARM64 architecture, we
have conducted preliminary experiments with the Air Traffic
benchmark on Trenz. Air Traffic contains 22 SQL queries on 30+
years of departure and arrival information of the US commercial flights
that computes various statistics to give insights to e.g. airports, airlines

and passengers, and to produce predictions for future flights. The main
goal of these experiments is to gain basic understanding of possible
effect of on-board NVMs for distributed query executions. Fig. 12 shows
the setting and the flow of control of our experiment. On each Trenz
node, we run one MonetDB database server, so we have 1 master and 3
workers. On the master node, we also run a MonetDB client, who sends
queries to the master to be executed. The master is responsible for
generating distributed execution plans, sending subqueries to the
workers and gathering partial results to generate final answers. The
persistent data was stored in the big BeeGFS partition available to all
Trenz nodes. Each Trenz node is also directly connected to a small SSD,
which was used in our experiments to mimic the on-board NVMs of
ExaNeSt.

Fig. 13 shows the execution times of the benchmark queries. We
conducted two sets of experiments: “w/o NVM” means only the RAM
and HDD were used; while “with NVM” means that the SSDs were used
by each MonetDB instance as an extra cache layer for transient data, so
as to reduce time consuming I/O to the BeeGFS storage. These results
clearly confirm our expectation that an extra fast cache layer can help

Fig. 10. Weak scaling for GADGET on Trenz board.

Fig. 11. The measured execution times for a FFT of an NNN cube of complex
values, with N equal to 250 (violet lines), 500 (yellow) and 750 (red), with 2 to
40 MPI tasks (x axis), for both FFTW (empty symbols) and PFFT (filled symbols)
for a 1D decomposition (the only possible one with FFTW): the reader can easily
appreciate the fact that the PFFT library is in average even better than the
original FFTW. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 12. The set up and flow of control of the distributed Air Traffic benchmark
experiments on Trenz.
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improving query performance. For all queries (including q02, 07, 11
and 12), their execution times are shorter with the NVM. For some
queries, the improvement is significant, e.g. q08, which generates a lot
of intermediates. On the actual ExaNeSt platform, we expect to obtain
even bigger performance gain, because we will run benchmark using
larger data sets and the distance to the main BeeGFS storage system is
much longer.

6.3. Large-scale network modelling

One of the main objectives of ExaNeSt is to analyze and understand
the scalability of interconnected systems connecting up to millions of
endpoints. Obviously performing such an analysis with real hardware
would be impossible with the resources available in ExaNeSt, so we
need to rely on simulation instead.

For this reason, we are developing two different simulators:
INSEE [26] and INRFlow [27]. The strengths of each simulator are
different: while INSEE is a flit-level simulator that uses a very detailed
model of the interconnect, INRFlow is a flow-level simulator, less de-
tailed than INSEE. This difference determines the size of the networks
that they are able to simulate. INSEE can deal with networks in the
order of thousands of nodes whilst INRFlow can scale the simulations
up to millions of nodes. Both simulators implement several types of
networks, including trees and tori, as well as some hybridizations.

Both simulators are capable of evaluating with realistic traffic by
maintaining traffic causality, either at packet- or flow-level, including
traces from the ExaNeSt applications. In addition we have implemented
a range of custom-made traffic generators modeling HPC applications,
such as stencil-based, collectives or multi-step, as well as specific Data-
driven patterns, such as MapReduce or graph-based applications.

These simulators have been used for analyzing a large number of
network-related characteristics such as topological arrangement of the
network elements [28], routing algorithms, the microarchitecture of
the router [29], several network mechanisms (deadlock avoidance [30],
prioritization, Virtual Channel (VC) management, analysis of applica-
tion traffic and their effect on the interconnect, analysis of storage
traffic and their impact on interprocessor communications [31]).

As an example of the typical utilization we show in Fig. 14 a scal-
ability analysis in which we compare a number of topologies as they
contain from a few thousands up to millions of endpoints. In the plot we
can see how the fattree and drangonfly seem to be the topologies that
are able to scale better in terms of aggregated throughput, with very
little difference among them. Then the random, Jellyfish topology
seems to have the better scalability, but not be very efficient for small
networks. Finally the torus topologies are found to be the ones that
achieve the lowest results, with the 3D torus lacking severely in terms
of performance as the system scales up.

Finally, Table 3 shows the simulated execution time of LAMMPS,
one of our applications, when run over a number of networks. There we
can see a large difference in terms of execution time and how that can
be explained by the huge difference in terms of distance. LAMMPS is a
scientific application that relies on near neighbour communication,
which is very well suited for a torus architecture in which most com-
munications are done to destinations at distance one, so there is little
contention in the network. The Fattree is the next better architecture as
it ensures lower contention than other networks due to the large path
diversity it provides. Dragonfly seems to be the one that is the worst-
suited for this specific application as it more than 3 times slower than
the torus. We believe that the reason for this is that it may enforce an
adversarial communication pattern which exacerbates congestion; Note
that Jellyfish, which has a similar average distance as Dragonfly, is
noticeably faster. In this case the random arrangement of the network
reduces the likelihood of some areas of the network to become per-
manently congested.

7. Future work and conclusions

In this paper we discussed the general overview and preliminary
results of the ExaNeSt project in terms of hardware architecture and
software development. System testbeds are fully working enabling us to
evaluate current network architecture and design enhanced IPs. Current
results are very promising: the QFDB sub-module has been produced
and it is currently under test with no major fixes required; the network
testbed shows peer-to-peer small packet latency of the order of µS and
new optimized hardware release is under development. Network
scaling for extreme size ExaNeSt based system has been demonstrated
through simulations and hardware benchmarking and applications
porting activities are in progress. Next project phases foreseen the de-
sign of the enhanced Network FPGA firmware, supporting multiple
independent inter-node network channels and implementing new
adaptive routing functions and a sub-set of optimized collective func-
tions. Final ExaNeSt prototype is expected at the end of 2018 and it will
integrate a mesh of ∼ 32 QFDB modules distributed on several Track-1
mezzanines and interconnected according Torus and experimental

Fig. 13. execution times of Air Traffic benchmark queries distributed over 4
Trenz nodes, with vs. without using an extra cache layer. For reasons of read-
ability, we omit execution times beyond 600 milliseconds. Fig. 14. Scalability analysis of state-of-the-art topologies.

Table 3
Application simulation results - INSEE.

Exec. time Avg. distance Avg. delay
(ms) (hops) (cyles)

Dragonfly 1202.06 3.53 287.23
Fattree 611.97 3.06 199.13
Jellyfish 958.21 3.48 222.67
Torus 372.12 1.80 93.48

M. Katevenis et al.



Dragonfly topology. A complete software stack, including low level
system software and MPI libraries, will be also released allowing to
benchmark the system through the execution of real and optimized
scalable applications.
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