

 CNAF

 ISTITUTO NAZIONALE DI FISICA NUCLEARE

 INFN-16-02/CNAF
 4th February 2016

Feasibility study and performance evaluation of a
GPFS based storage area accessible simultaneously

through ownCloud and StoRM

Antonio Falabella, Sonia Taneja and Matteo Tenti

INFN CNAF, Viale Berti Pichat 6/2, Bologna, 40127, Italy

Abstract

In this work, we demonstrate the feasibility of a GPFS based storage area accessible through
both ownCloud and StoRM, as solution which allows VO’s with storage manager service to
access directly the files through personal computer. Furthermore, in order to study its
performance, in load situation, we set up two load balanced ownCloud web servers and a
front-end, back-end and gridFTP StoRM server. A Python script was also developed to
simulate user performing several file transfers both with ownCloud and StoRM. We employed
the average file transfer time and efficiency as a figure of merit, which was measured as a
function of the number of parallel running scripts. We observed that the average time increases
almost linearly with the number of parallel running scripts, independently of the used
software.

 Pubblicato da SIDS–Pubblicazioni
 Laboratori Nazionali di Frascati

— 2 —

1 INTRODUCTION

In order to fulfill new requests coming from small VOs which need a storage area, file manager

and transfer tools but also a direct access to the files through personal computer (i.e. direct

visualization through the personal computer of images residing at CNAF storage area), we

investigated the following solution:

 GPFS as filesystem;

 StoRM as file manager and transfer tool;

 ownCloud as tool for web access to files and synchronization of folders.

GPFS (General Parallel File System) [1] is a high-performance clustered file system developed

by IBM. StoRM (STOrage Resource Manager) [2] is a light, scalable, flexible, high-

performance, file system independent, storage manager service (SRM) for generic disk based

storage systems. ownCloud [3] is a suite of client-server software for creating file hosting

services and using them.

Our aim was to test the feasibility, reliability and performance of this solution under high load

situation. For this purpose, we employed 10 machines (named ds-06-xx.cr.cnaf.infn.it with xx

ranging from 01 to 10) with configuration listed below in Table 1. It is worth to note that all

machines mounted the same GPFS filesystem.

RAM 16 GB

Number of CPUs 2

Number of Cores 8

Disk Size 126 GB

GPFS Area Size 72 TB

Operating System Scientific Linux 6.3

Tab. 1 - Configuration of machines used for the tests.

The StoRM server setup is described in section 2. The ownCloud instance implementation is

reported in section 3, while the setup for the tests, their description and results are summarized

in sections 4, 5 and 6 respectively. The conclusions are in section 7.

2 STORM

StoRM provides data management capabilities in a Grid environment to share, access and

transfer data among heterogeneous and geographically distributed data centers. The main

components of StoRM implementation are:

 Front-end

 Back-end

 GridFTP

— 3 —

We installed all the components on a single machine (ds-06-10) and the machine was configured

so that storage area resided in the GPFS filesystem.

3 SETUP OF OWNCLOUD INSTANCE

OwnCloud is a self-hosted file synchronization and share server. It provides access to data

through a web interface, synchronization clients or WebDAV protocol [4] while providing a

platform to view, synchronize and share data across devices. Its main components are:

 Storage area;

 Database;

 Web server.

3.1 Storage Area

In our study we used the same GPFS based storage for StoRM and ownCloud storage areas.

Since StoRM requires the ownership (storm user) of all the folders and files inside its storage

area, we made the httpd service (of the ownCloud web interface) running as storm user. In this

Fig. 1 - Schema of the "quasi" high available instance of ownCloud.

— 4 —

way files uploaded with one system were automatically available to the other one. In our

implementation since ownCloud area was inside the StoRM one, user’s trash and cache is

available through StoRM to all other users and this problem can be easily solved by setting

ownCloud and StoRM into two independent areas and then linking (soft link) the StoRM area

in each user’s ownCloud area.

3.2 Web Server

We set up a round-robin based load balancing between the two ownCloud web servers (ds-06-

06 and ds-06-07) and we used keepalived [5] as load balancer which was installed and

configured on ds-06-09.

3.3 Database

We used MySQL [6] as database which resides on one of the web server (ds-06-06) while the

other one (ds-06-07) was configured to perform query to the remote database hosted on web

server ds-06-06. We deliberately did not set up a high availability instance of the database

because it is out of the scope of these tests. Thus because of the lack of the database redundancy,

we state the ownCloud instance we set up as a “quasi” high availability instance and not a fully

high availability instance.

4 SETUP FOR THE TESTS

A sketch of the schema of the machines and their purpose is shown in Figure 1. In order to

perform the tests, we filled our storage area to simulate a real storage area. Then we tested the

ownCloud desktop client functionality and prepared the clients for the stress tests on the

ownCloud instance.

4.1 Storage area setup

In our storage area we created a very structured directory tree, that starts from one single folder;

then each folder contains two subdirectories for a total 10 levels corresponding to about 1000

directories. Later on we filled the storage area using 5 differently sized files (bitmap, jpeg and

tif images). The files and their size are listed in Table 2. In this setup, we filled the storage area

randomly using about 40k files for a total of about 30 TB.

File name File size (bytes)

100kB.jpg 86950

1MB.jpg 1302600

10MB.jpg 14744835

100MB.png 113357104

1GB.tif 1376498512

Tab. 2 - Name and size of the files used for the tests.

4.2 OwnCloud desktop client

Once the storage area was set up, we installed the ownCloud desktop client on ds-06-08 and we

— 5 —

synchronize a subdirectory which can be seen from the screenshot of the configuration process,

shown in Figure 2. The synchronization was successful and the client worked fine. However,

we observed that, when a subfolder of the ownCloud storage area, is synchronized through the

client, all the folders belonging to the direct tree from the ownCloud parent folder to the selected

directory are also synchronized. This feature seems to be a bug and should be investigated

further.

4.3 Setup for stress tests

To perform the load test we used 5 machines (ds-06-xx, with xx from 01 to 05), where we

installed Python client library for ownCloud [7] and the StoRM client [8]. We developed a

python script to simulate a typical usage. The script performs several sequential transfers and

for each transfer it chooses randomly:

 the service (ownCloud/StoRM)

 the operation (upload/download)

 the file size (100kB/1MB/10MB/100MB/1GB)

 the user (only for ownCloud transfer)

For an upload process an existing local file was selected and a remote not-existing file name

was chosen and vice versa for a download process. Local and remote files were different for

each process to avoid concurrent access to the same file by different processes. It has to be noted

that local files are not under StoRM/ownCloud control but the remote and local files reside on

the same GPFS filesystem.

Fig. 2 - Screenshot of ownCloud desktop client configuration process.

— 6 —

5 STRESS TESTS

To perform the stress tests, we ran Ns scripts in parallel each performing Nt sequential transfers

on Nm machines simultaneously, for a total of Np = Ns × Nm scripts running in parallel and a

total Ntot = Nt × Ns × Nm transfers. As shown in Table 3 below, six tests were performed with

different configurations. For all tests, the average transfer time and the standard deviation was

evaluated for each software, operation and file size. We also calculated efficiencies which are

defined as fraction of successful transfers.

Ns Nm Np Nt Ntot

1 1 1 1000 1000

1 5 5 200 1000

5 5 25 50 1250

10 5 50 50 2500

20 5 100 50 5000

40 5 200 20 4000

Tab. 3 - Configurations of the six performed tests.

6 RESULTS

The results of the tests are reported in Appendix A. In Table 4 and Table 5 the ownCloud

download and upload transfers time for different number of parallel running scripts are listed

respectively, while Table 6 and Table 7 shows the download and upload transfer time for

StoRM. OwnCloud and StoRM average transfer time for 1GB file size as function of the number

of parallel running scripts is compared in Figure 3, as a representative result.

Fig. 3 - Comparison of the average download/upload transfer time for 1GB

file size obtained with ownCloud (orange/blue) and StoRM (yellow/grey).

— 7 —

In general, the transfer time increases linearly with the number of parallel running scripts. This

feature is due, at least for high number of parallel scripts running, to bandwidth saturation. For

Fig. 4 - Efficiencies of the upload process for ownCloud (blue) and StoRM

(orange). The download efficiencies are 100% for both ownCloud and StoRM.

Fig. 5 - OwnCloud efficiency obtained with the quasi high availability

instance (blue) while the orange line represents the efficiency when the test

was repeated with only a single ownCloud web server.

— 8 —

what concerns the uploads StoRM performs better than ownCloud: StoRM transfer time is one

order of magnitude smaller then ownCloud for 1GB file size and Np = 200. The performance

for downloads instead are similar. It is to be noted that this result was expected given the

different purpose and implementation of the two software products. Figure 4 shows the

efficiency for ownCloud and StoRM as function of the number of parallel running scripts. The

StoRM upload efficiency is always around 100%, while the ownCloud upload efficiency starts

to decrease with Np = 100 and reaching about 92% for Np = 200. In Figure 5 the efficiencies of

ownCloud upload efficiency obtained with the quasi high availability instance (blue line). For

comparison, the test was repeated with a single ownCloud web server; the resulting efficiency

is also shown (orange line). It is evident that the performance improves: the efficiency increases

from 39% to 92% for the case with Np = 200.

7 CONCLUSIONS

In conclusion, we set up a simple hybrid architecture for storage management based on GPFS

filesystem and accessible through both StoRM and ownCloud. Two load balanced ownCloud

web servers and StoRM backend, frontend and gridFTP were set up. We demonstrate the

feasibility of such a solution for the use case of small VOs requiring direct access to the files

through personal computer as well as a storage area, file manager and transfer tools.

We developed a python script to simulate the user actions. Using the script, we performed load

tests measuring the ownCloud and StoRM performance in terms of average transfer time. The

transfer time increases linearly with the number of parallel transfers. In particular, during

uploads StoRM performs better than ownCloud, as expected given the different purpose of the

two software solutions however the download performances are similar. The ownCloud

efficiency is above 90% up to Np = 200 and it starts to decrease with Np = 100.

— 9 —

8 APPENDIX

In conclusion, we set up In this appendix, we reported the measurement of the ownCloud

(download: Tab. 4 and upload: Tab. 5) and StoRM (download: Tab. 6 and upload: Tab. 7)

performance in term of average time transfer.

OwnCloud / Download transfer time (seconds)

Np 1GB 100MB 10MB 1MB 100kB

1 23.9 2.4 0.7 0.4 0.3

5 24.8 2.6 0.8 0.4 0.3

25 30.1 3.5 1.5 0.6 0.8

50 31.6 4.2 1.4 0.7 0.6

100 40.2 5.7 2.6 1.6 1.7

200 62.3 7.4 2.9 1.5 1.2

Tab. 4 - Time of the download transfers performed with ownCloud.

OwnCloud / Upload transfer time (seconds)

Np 1GB 100MB 10MB 1MB 100kB

1 74.6 5.9 1.8 1.2 1.0

5 137.0 8.1 3.4 2.2 2.7

25 266.5 22.0 12.4 7.2 5.5

50 239.1 18.9 13.3 6.0 7.6

100 590.9 58.4 28.7 23.6 23.5

200 518.0 61.4 25.5 20.8 23.1

Tab. 5 - Time of the upload transfers performed with ownCloud.

StoRM / Download transfer time (seconds)

Np 1GB 100MB 10MB 1MB 100kB

1 11.56 1.37 0.66 0.39 0.26

5 17.48 2.00 0.63 0.30 0.24

25 28.73 3.29 1.01 0.41 0.38

50 30.85 3.06 1.08 0.46 0.31

100 66.87 6.75 1.71 0.86 0.51

200 101.53 11.05 2.28 0.95 1.26

Tab. 6 - Time of the download transfers performed with StoRM.

StoRM / Upload transfer time (seconds)

Np 1GB 100MB 10MB 1MB 100kB

1 11.40 1.24 0.41 0.26 0.22

5 14.93 1.76 0.61 0.30 0.24

25 26.97 2.75 0.97 0.45 0.25

50 31.04 3.03 0.86 0.38 0.31

100 57.82 6.10 1.46 0.66 0.40

200 76.95 8.22 2.03 0.79 0.87

Tab. 7 - Time of the upload transfers performed with StoRM.

— 10 —

9 REFERENCES

[1] www-03.ibm.com/software/products/en/software

[2] italiangrid.github.io/storm/index.html

[3] owncloud.org

[4] L. Dusseault, “HTTP Extensions for Web Distributed Authoring and Versioning

(WebDAV)”, RFC 4918, June 2007.

[5] www.keepalived.org

[6] www.mysql.com

[7] github.com/owncloud/pyocclient

[8] italiangrid.github.io/storm/documentation/clientsrm-guide

http://www-03.ibm.com/software/products/en/software
http://italiangrid.github.io/storm/index.html
https://owncloud.org/
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc4918
http://www.keepalived.org/
https://www.mysql.com/
https://github.com/owncloud/pyocclient
http://italiangrid.github.io/storm/documentation/clientsrm-guide

