

CHLAMYDIA TRACHOMATIS AND INVASIVE CERVICAL CANCER: A POOLED ANALYSIS OF THE IARC MULTICENTRIC CASE-CONTROL STUDY

Jennifer S. SMITH¹, Cristina BOSETTI², Nubia Muñoz¹, Rolando HERRERO³, F. Xavier BOSCH⁴, José ELUF-NETO⁵, Chris J.L.M. MEIJER⁶, Adriaan J.C. VAN DEN BRULE⁶, Silvia FRANCESCHI^{1*} and Rosanna W. PEELING⁷ for the International Agency for Research on Cancer Multicentric Cervical Cancer Study Group

¹International Agency for Research on Cancer, Lyon, France

²Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy

³Instituto Costarricense de Investigación y Enseñanza en Nutrition y Salud (Inćiensa), San Jose, Costa Rica

⁴Department of Epidemiology and Cancer Registration, Institut Català d'Oncologia, L'Hospitalet del Llobregat, Barcelona, Spain

⁵Department of Preventive Medicine, Universidade de São Paulo, São Paulo, Brazil

⁶Department of Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

⁷National Laboratory for Sexually Transmitted Diseases, Health Canada, Winnipeg, Canada

To determine whether Chlamydia trachomatis infection is consistently associated with an increased risk of invasive cervical carcinoma (ICC) after accounting for the strong effect of human papillomavirus (HPV) infection, a case-control study of 1,238 cases of ICC and 1,100 control women from 7 countries was carried out (hospital-based studies in Thailand, the Philippines, Morocco, Peru, Brazil and population-based studies in Colombia and Spain, all coordinated by the International Agency for Research on Cancer, Lyon, France). C. trachomatis serum antibody detection was made by means of a microfluorescence assay. Among HPV DNA-positive cases and controls, the risk of squamous cell ICC was elevated in C. trachomatis seropositive women (OR = 1.8; 95% CI = 1.2-2.7) after adjustment for age, center, oral contraceptive use, history of Pap smears, number of full-term pregnancies and herpes simplex virus 2 seropositivity. The effect of C. trachomatis seropositivity on squamous cell ICC risk increased with increasing C. trachomatis antibody titers and was higher in women under 55 years of age. C. trachomatis antibodies were not associated with adeno- or adenosquamous cell carcinoma (OR = 1.0; 95% CI = 0.53-I.9) in HPV DNA-positive women. An association of C. trachomatis with squamous cell ICC was found among all cases and control women with or without adjustment for HPV.

© 2004 Wiley-Liss, Inc.

Key words: Chlamydia trachomatis; cervical cancer; human papillomavirus

Human papillomavirus (HPV) is the main, and likely necessary, cause of invasive cervical carcinoma (ICC).^{1,2} Recent studies of the etiology of ICC aim to identify factors that may influence susceptibility to or progression of HPV infection to cervical neoplasia or ICC. Identification of cofactors acting in conjunction with HPV, such as exogenous hormones,³ multiparity,⁴ smoking and other sexually transmitted infections (STIs),⁵ is important because these factors may be amenable to prevention.

Among STIs other than HPV, *Chlamydia trachomatis* may be an important HPV cofactor for cervical carcinogenesis. *C. trachomatis* are obligate intracellular bacteria that infect genital and ocular tissue. Genital *C. trachomatis* infections may induce chronic inflammation, epithelial tissue damage and pelvic inflammatory disease in some cases⁶ and have been clinically associated with cytologic cervical atypia and the induction of cervical metaplasia,⁷ which in turn may increase a woman's risk of cervical neoplasia.⁸

Positive associations between *C. trachomatis* microimmunofluorescence (MIF) seropositivity and ICC have been found in a case-control study from England (OR = 2.2)⁹ and a pooled analysis¹⁰ of cohort studies from Finland, Norway and Sweden (OR = 2.5)^{11–13} that adjusted for HPV virus-like particle seropositivity. However, residual confounding due to HPV cannot be ruled out in these studies because the serologic methods used to measure HPV infection were of limited sensitivity and narrow spectrum of HPV types.¹⁴ A Swedish cohort study indicated that *C. trachomatis* DNA was highly predictive of ICC development (OR = 17.1),¹⁵ but the yield of HPV and chlamydial DNA was low from archived Pap smear slides.

We have previously reported findings on seropositivity for *C*. *trachomatis* antibodies and ICC from 2 studies in Brazil and the Philippines and have shown an OR of 2.1 (95% CI = 1.1-4.0).⁵ To confirm and better quantify the association between prior *C*. *trachomatis* infection and ICC in different geographical settings, we expanded our pooled analyses and included 5 additional case-control studies of ICC coordinated by the International Agency for Research on Cancer (IARC).

MATERIAL AND METHODS

Contributing studies and data collection

The 7 countries in this pooled analysis include high-ICC-incidence populations in Morocco,¹⁶ Brazil,^{5,17} Peru¹⁸ and Colom-

Dr. Smith's current address is: University of North Carolina, Chapel Hill, NC, USA.

Dr. van den Brule's current address is: the PAMM Institute, Eindhoven, The Netherlands.

Dr. Peeling's current address is: the World Health Organization, Geneva, Switzerland

*Correspondence: International Agency for Research on Cancer, 150, Cours Albert Thomas, 69008 Lyon, France. Fax: +33-4-72-73-83-45. E-mail: franceschi@iarc.fr

Received 28 October 2003; Revised 12 January, 4 February 2004; Accepted 9 February 2004

Grant sponsor: the European Community; Grant number: CI 1-0371-F(CD); Grant sponsor: the Fondo de Investigaciones Sanitarias, Spain; Grant number: 86/753, 87/1513, 88/2049, 90/0901, 95/0955, 01/1237, 01/1236, BAE 01/5013; Grant sponsor: the International Agency for Research on Cancer, Lyon, France; Grant number: FI/92/3-2 PAR; Grant sponsor: Preventiefonds, The Netherlands; Grant number: 28-1502.1; Grant sponsor: Programa Interministerial de Investigación y Desarrollo, Spain; Grant number: SAF 96/0323; Grant sponsor: the Conselho Nacional de Desenvolvimiento Científico e Tecnologico, Brazil; Grant number: JEN-204453/88.7; Grant sponsor: Department of Reproductive Health and Research at the World Health Organization; Grant number: 98.101; Grant sponsor: Yamagiwa-Yoshida Memorial Union Internationale Contre le Cancer International Cancer Study Grant.

DOI 10.1002/ijc.20257

Published online 23 April 2004 in Wiley InterScience (www.interscience. wiley.com).

bia;¹⁹ intermediate-ICC-incidence populations in Thailand²⁰ and the Philippines_{5,21}; and a low-ICC-incidence population in Spain.¹⁹ Each study used a similar protocol and questionnaire for recruitment and data collection.

Methods and findings from each study have been described previously.^{16–21} In summary, eligible cases were patients with incident, histologically confirmed, squamous cell, and adeno- or adenosquamous cell ICC. Cases had had no previous treatment for cervical carcinoma. Skilled pathologists reviewed the histologic slides of carcinoma cases and confirmed diagnosis. Clinical cancer stage was defined according to the International Federation of Gynecology and Obstetrics classification system.

Controls were population-based in Spain and Colombia¹⁹ and hospital-based in the other countries and were frequency-matched to cases by quinquennium of age. For the hospital-based studies, women with conditions related to risk factors for ICC (*e.g.*, reproductive tract neoplasias or tobacco-related diseases) were not eligible to participate.

Personal interviews were conducted by trained interviewers using a standardized questionnaire including information on sociodemographic factors, smoking, sexual and reproductive history, history of Pap smears and selected STIs. Participants were asked to provide 10 ml of blood for the detection of *C. trachomatis* and herpes simplex virus type 2 (HSV-2) antibodies. Blood samples were processed by centrifugation at the site of collection. The separated serum was placed into vials, frozen at -20° C and shipped to IARC for storage. All protocols were cleared by the IARC and local ethical research committees in accordance with the Helsinki Declaration of 1983.

Chlamydia trachomatis antibody detection

C. trachomatis IgG antibodies were determined by an MIF assay,22 which is considered to be the reference standard for chlamydial serology. MIF assays were conducted without knowledge of case or control status. The antigen panel consisted of purified elementary bodies of C. trachomatis (serovar A and 3 pooled serovar groups of BDE, CJHI and FGK) and C. pneumoniae, which was included to monitor cross-reactive genusspecific antibody responses against all chlamydial species. Sera were screened for C. trachomatis at 1:8 dilution and titered to endpoint (1:8, 1:32, 1:128, \geq 1:128). An IgG titer of \geq 1:8 against any C. trachomatis serovar group was considered evidence of past C. trachomatis infection. An IgG titer of ≥ 1.16 against C. pneumoniae was considered evidence for past C. pneumoniae respiratory infections. Sera with identical titers for all C. trachomatis and C. pneumoniae species were also tested against C. psittaci (avian-strain 6BC) to determine the presence of genusspecific antibody responses. Sera from 6 cases and 11 controls with identical titers for C. trachomatis, C. pneumoniae and C. psittaci and from 20 case and 23 control participants that were seropositive for serovar A and negative for all other C. trachomatis serovars were considered noninformative as to C. trachomatis serologic status and not included in analyses. Their exclusion, however, did not significantly affect study results. This Chlamydia antibody detection strategy was identical to that previously reported in Brazil and the Philippines study,5 and these results are thus included in this article. Conversely, sera from Spain and Colombia that had already been evaluated using a simplified MIF assay based on the L2 serovar²³ were retested using the MIF assay described above in order to improve the specificity of previous findings.

A blinded reproducibility study was conducted by retesting a random sample of 222 specimens (9.5%) twice. Percent agreement for *C. trachomatis* serovars A, BDE, CJHI and FGK and *C. pneumoniae* were 85.3%, 86.2%, 86.7%, 84.9% and 89.3%, respectively.

HPV DNA detection

Detailed descriptions of sample procedures and PCR-based assays used are given in the individual study publications.¹⁶⁻²¹ Briefly, cervical exfoliated cells were collected from subjects by sampling the ectocervix and endocervix. Cervical cells were eluted and pelleted in phosphate-buffered saline and kept frozen at -70°C until shipment. Cervical biopsy specimens from cases were obtained and kept frozen at -70°C. HPV DNA testing was performed without knowledge of case or control status in a central laboratory. DNA quality was evaluated using β -globin primers. MY09/MY11 primers¹⁹ were initially used for Spain and Colombia and GP5/6/TS primers for Brazil,¹⁷ while the remaining studies employed GP5⁺/ $\hat{6}^+$ primers. Specimens classified as unknown HPV types with the MY09/MY11 or GP5/6/TS primers were retested with GP5⁺/6⁺ primers. PCR products were assessed for HPV positivity by low-stringency Southern blot hybridization. HPV-positive samples were hybridized with oligonucleotide probes for HPV types 6, 11, 16, 18, 26, 31, 33, 34, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 57, 58, 59, 61, 66, 68, 70, 72, 73, IS39, MM4, MM7, CP6108 and CP8304.20,21 E7 primers for the 14 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68) were used to reamplify case specimens positive for β-globin and classified as unknown HPV type or HPV-negative, as well as a subsample of control specimens that were β-globinpositive and HPV-negative.18

HSV-2 IgG antibody detection

Western blot (WB), the reference gold standard,²⁴ was used to detect HSV-2 antibodies in sera from Thailand, Morocco, Peru, Colombia and Spain. Sera from Brazil and the Philippines were screened for HSV-2 IgG antibodies with the Gull HSV-2 ELISA, and all sera with positive, equivocal or borderline negative results were retested with the WB to obtain type-specific results.²⁵

Statistical analysis

Only cases and controls with available and valid *C. trachomatis* serology and HPV DNA laboratory results were included in the present analysis. The number of cases and controls thus slightly differ from those in the previous publications.^{16–21}

Unconditional logistic regression models were fitted to individual data.²⁶ For squamous cell ICC, separate analyses for each study center were performed, then data from all centers were pooled together adjusted for center. Only pooled results adjusted for center are presented for adeno- or adenosquamous cell ICC due to the limited number of cases. Summary ORs and 95% CIs were computed from the above models, including terms for age, study center, history of Pap smears, oral contraceptive (OC) use, number of full-term pregnancies and HSV-2 seropositivity, plus number of lifetime sexual partners and age at first sexual intercourse when indicated. Women who reported hormonal contraceptive use were considered as oral contraceptive users because the use of injectable contraceptives was rare in study areas.³

Tests for trend were based on the likelihood ratio test between the models with and without a linear term for the variable of interest. To test for heterogeneity among the study centers, we compared the difference between the log likelihood of the model that estimated a common OR and the model that estimated an OR for each center to the chi-square distribution with degrees of freedom equal to the number of centers minus one.

Graphs are presented, displaying for each center a black square, whose center corresponds to the estimated OR and whose size is inversely proportional to the variance of the logarithm of the OR. The corresponding 95% CIs are drawn as a line. Diamonds plot the summary ORs for all squamous cell ICC or for all adeno- or adenosquamous cell ICC data together. The centers of the diamonds represent the OR and the extremes show the 95% CIs.

RESULTS

A total of 1,139 squamous cell ICC, 99 adeno- or adenosquamous cell ICC cases and 1,100 controls were included (Table I). Most squamous cell ICC (94.6%) and adeno- or adenosquamous cell ICC cases (90.9%) were HPV DNA-positive, in contrast to

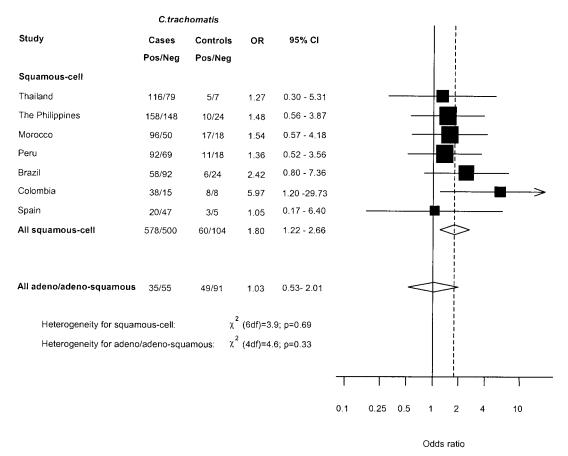
14.9% of controls. Overall, *C. trachomatis* antibodies were found more frequently in squamous cell ICC cases (53.2%) or adeno- or adenosquamous cell ICC cases (39.4%) than in control participants (30.8%). In contrast, *C. pneumoniae* seropositivity was similar in the 3 groups. *C. trachomatis* seropositivity varied significantly by country among control participants, ranging from 19.4% in Brazil to 50% in Colombia.

In control participants, *C. trachomatis* seropositivity was the highest in women under 35 years of age (Table II) and was significantly associated with indicators of sexual behavior. Independent risk factors were having no education, being single, separated, divorced or widowed, having a first sexual intercourse before 17 years of age, having 2 or more lifetime sexual partners and HSV-2 seropositivity. In contrast, *C. pneumoniae* seropositivity was not significantly associated with the indicators of sexual behavior available (data not shown), but was modestly associated with *C. trachomatis* seropositivity (OR = 1.4; 95% CI = 1.0–1.9; data not shown).

Figure 1 shows the ORs for ICC in HPV DNA-positive cases and controls according to *C. trachomatis* seropositivity by center and overall. The pooled OR was 1.80 (95% CI = 1.22-2.66) for

 TABLE II – ODDS RATIOS OF CHLAMYDIA TRACHOMATIS SEROPOSITIVITY

 AND CORRESPONDING 95% CONFIDENCE INTERVALS AMONG CONTROL


 PARTICIPANTS BY SELECTED RISK FACTORS

	Number (C. trachomati. (%)	^s OR ¹ (95% CI)
Age (years)			
< 35	162	35.2	1^{2}
35-44	315	33.3	0.77 (0.49–1.21)
45–54	311	26.1	0.55 (0.33 - 0.91)
55-64	221	29.0	0.55(0.55(0.91)) 0.72(0.42-1.25)
≥ 65	91	35.2	0.72(0.42-1.25) 0.70(0.34-1.41)
Education	71	55.2	0.70 (0.54 1.41)
Secondary or more	452	26.1	1^{2}
Primary	455	29.7	1.01 (0.70–1.46)
None	191	45.0	1.67 (1.01 - 2.74)
Marital status	171	45.0	1.07 (1.01-2.74)
Married	751	27.0	1^{2}
Cohabiting	103	43.7	1.19 (0.70–2.02)
Separated, divorced, or	105	43.7	1.17 (0.70-2.02)
widowed	246	37.0	1.43 (1.00-2.06)
Smoking	240	57.0	1.45 (1.00=2.00)
Never	933	30.4	1^{2}
Ever	159	32.1	1.07 (0.69–1.65)
Number of full-term pregna		52.1	1.07 (0.0)-1.05)
	70	18.6	12
1-2	259	33.6	1.75 (0.86–3.56)
3-4	326	27.6	1.38 (0.67–2.83)
≥ 5	444	33.6	1.77 (0.85–3.69)
Chi-square trend (p-value		55.0	0.80 (0.37)
Age at first intercourse (yea			0.00(0.57)
≥ 21	498	23.5	12
17-20	381	23.5 31.0	1.06 (0.75–1.52)
< 17	213	48.4	1.58 (1.01 - 2.48)
		40.4	3.49 (0.07)
Chi-square trend (<i>p</i> -value Total lifetime number of set		nore	3.49 (0.07)
≤ 1	838 8	25.3	12
$\frac{1}{2}$	161	47.2	1.90 (1.25–2.89)
$\stackrel{2}{\geq} 3$	101	50.0	2.25 (1.31–3.86)
Chi-square trend (<i>p</i> -value		50.0	11.91 (< 0.001)
Oral contraceptive use)		11.91 (<0.001)
Never	753	29.1	1^{2}
< 5 years	218	31.2	1.14 (0.78–1.66)
≥ 5 years	128	40.6	1.25 (0.79–1.97)
Chi-square trend (p-value		40.0	1.07 (0.30)
Herpes simplex virus 2)		1.07 (0.50)
Seronegative	806	25.1	1^{2}
Seropositive	278	47.8	2.21 (1.58–3.11)
HPV DNA	270	+7.0	2.21 (1.30-3.11)
Negative	936	29.8	12
Positive	164	36.6	1.28 (0.86–1.89)
1 0510 VC	107	50.0	1.20 (0.00-1.09)

 1 Adjusted for study center and all the variables in the table.– 2 Reference category.

		TABLE I-DI	STRIBUTI	ION OF CASES AND	TABLE 1 – DISTRIBUTION OF CASES OF SQUAMOUS CELL AND ADENO- OR ADENOSQUAMOUS INVASIVE CARCINOMA OF THE CERVIX AND CORRESPONDING CONTROLS ACCORDING TO SELECTED FACTORS	S CELL	AND ADENO- VTROLS ACCO	OR ADENOSQI	UAMOUS LECTED F.	INVASIVE CA ACTORS	RCINOMA OF	THE CER	VIX		
		Number		Η	HPV DNA, %		V	Median age ¹		Chlamydia tro	Chlamydia trachomatis seropositive, %	itive, %	Chlamydia pn	Chlamydia pneumoniae seropositive, %	tive, %
Study center	Squamous cell carcinoma		Controls	Adeno- or adenosquamous Controls Squamous cell carcinoma	Adeno- or adenosquamous Controls carcinoma	Controls	Squamous cell carcinoma	Adeno- or adenosquamous Controls carcinoma	Controls	Squamous cell carcinoma	Adeno- or adenosquamous Controls carcinoma	Controls	Squamous cell carcinoma	Adeno- or adenosquamous carcinoma	Controls
Thailand	201	20	76	97.0	85.0	15.8	51	44	44	59.7	60.0	31.6	73.6	70.0	67.1
The Philippines	318	31	368	96.2	90.3	9.2	48	48	47	51.9	29.0	22.8	76.7	90.3	82.6
Morocco	149	6	161	98.0	100.0	21.7	50	55	41	65.1	33.3	42.9	63.8	77.8	54.0
Peru	169	25	169	95.3	92.0	17.2	47	49	49	55.0	44.0	40.8	64.5	52.0	61.0
Brazil	155	14	180	96.8	92.9	16.7	51	4	48	37.4	28.6	19.4	74.8	78.6	68.9
Colombia	64		64	82.8		25.0	46		48	71.9		50.0	40.6		25.0
Spain	83		82	80.7		9.8	55		56	32.5		31.7	56.6		50.0
All centers	1,139	66	1,100	94.6	90.9	14.9	49	48	47	53.2	39.4	30.8	68.9	73.7	66.0
¹ Including HPV-positive women only	positive wo	men only.													

SMITH ET AL.

FIGURE 1 – Odds ratios of invasive cervical carcinoma and corresponding 95% confidence intervals among HPV-positive women according to *C. trachomatis* seropositivity. Odds ratios relative to *C. trachomatis* seronegative; adjusted for center, age, history of Pap smear, oral contraceptive use, number of full-term pregnancies and herpes simplex virus 2 seropositivity.

squamous cell ICC and 1.03 (95% CI = 0.53-2.01) for adeno- or adenosquamous cell ICC. Especially strong associations emerged in Brazil (OR = 2.42) and Colombia (OR = 5.97), whereas the OR was 1.05 in Spain. No significant heterogeneity between centers was present for either squamous cell or adeno- or adenosquamous cell ICC (Fig. 1). If the data from Colombia and Spain (*i.e.*, those centers where earlier, less sensitive tests for HPV detection were used) were eliminated, the association between *C. trachomatis* seropositivity and squamous cell ICC would persist (OR = 1.77; 95% CI = 1.16–2.70).

If only women positive for 14 high-risk HPV types were included, the OR for *C. trachomatis* seropositivity would have been 1.89 (95% CI = 1.18-3.02) for squamous cell ICC (based on 990 cases and 104 control women) and 0.95 (95% CI = 0.44-2.07) for adeno- or adenosquamous cell ICC (based on 85 cases and 85 control women). Among 1,031 HPV-positive squamous cell ICC where the clinical stage of ICC was known, the effect of *C. trachomatis* seropositivity was similar for stage I or II cancers (OR = 1.58; 95% CI = 1.04-2.40) and stage III or IV cancers (OR = 1.85; 95% CI = 1.19-2.90; data not shown).

Table III shows that elevated *C. trachomatis* antibody titers were particularly associated with an increased risk of squamous cell ICC in HPV DNA-positive women (*p* for trend < 0.001), with the highest risk in women with antibody titers ≥ 128 (OR = 3.58). The effect of *C. trachomatis* was similar for the different *C. trachomatis* serovar groups (OR = 2.17 for A, 2.21 for BED, 1.65 for CJHI and 1.87 for FGK). The presence of 2 or more serovar groups was associated with a nonsignificantly elevated OR of 1.60 (95% CI = 0.84–3.03) compared to the presence of a single serovar group of BED, CJHI or FGK (data not shown). *C. pneu*-

moniae seropositivity was not associated with an increased risk of squamous cell ICC (OR = 1.03).

When the association between *C. trachomatis* infection and squamous cell ICC was analyzed by categories of age at diagnosis (Fig. 2), the effect of *C. trachomatis* appeared to be attenuated in older-age women, with no increased risk observed over 55 years of age (OR = 0.95).

Analyses were conducted to examine the association of *C. trachomatis* seropositivity and squamous cell ICC in strata of selected indicators of socioeconomic status (data not shown). The effect of *C. trachomatis* tended to be nonsignificantly lower (p = 0.43) in women with less education (no education: OR = 1.07, 95% CI = 0.47–2.39; primary education: OR = 1.74, 95% CI = 0.95–3.19; secondary or more education: OR = 2.55, 95% CI = 1.15–5.67). Results were consistent in women with rural (OR = 1.24; 95% CI = 0.54–2.84) and urban (OR = 1.84; 95% CI = 1.08–3.07) residence.

Table IV shows the combined effect of *C. trachomatis* and selected indicators of sexual behavior and oral contraceptive use on the risk of squamous cell ICC in HPV-positive women. The association between *C. trachomatis* infection and squamous cell ICC (Fig. 1) was slightly attenuated, but remained significant, after further adjustment for number of sexual partners and age at first intercourse (OR = 1.69; 95% CI = 1.16-2.51). After additional adjustment of *C. trachomatis* in the fully adjusted model, a woman's reported number of sexual partners was not significantly associated with squamous cell ICC risk (OR = 1.29; 95% CI = 0.83-2.0), whereas young age at first intercourse (OR = 2.44 for < 17 vs. ≥ 21 years) and ≥ 5 years oral contraceptive use (OR = 2.69) remained statistically significant risk factors.

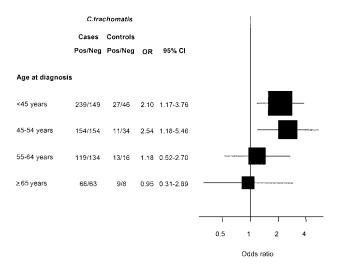

	GROUP AT DI	AGNOSIS	
	HPV ⁺ cases (%)	HPV ⁺ controls (%)	OR1 (95% CI)
Chlamydia trachomatis			
Titers			
Seronegative	500 (46.4)	104 (64.4)	1^{2}
8	176 (16.3)	25 (15.2)	1.28 (0.76–2.14)
32	239 (22.2)	24 (14.6)	1.71 (1.01-2.87)
≥ 128	163 (15.1)	11 (6.7)	3.58 (1.73-7.39)
Chi-square trend (<i>p</i> -value)	× ,		13.59 (< 0.001)
Serovars			
А			
Seronegative	640 (59.4)	123 (75.0)	12
Seropositive	438 (40.6)	41 (25.0)	2.17(1.42 - 3.32)
BED			
Seronegative	525 (48.7)	114 (69.5)	1^{2}
Seropositive	553 (51.3)	50 (30.5)	2.21 (1.49-3.29)
CJHI			
Seronegative	652 (60.5)	120 (73.2)	12
Seropositive	426 (39.5)	44 (26.8)	1.65(1.09-2.49)
FGK	× ,		
Seronegative	665 (61.7)	124 (75.6)	1^{2}
Seropositive	413 (38.3)	40 (24.4)	1.87(1.22-2.87)
Chlamydia pneumoniae	× 7	· · ·	· · · · · ·
Seronegative	322 (29.9)	61 (37.2)	12
Seropositive	756 (70.1)	103 (62.8)	1.03 (0.70-1.51)

 TABLE III – ODDS RATIOS OF SQUAMOUS CELL INVASIVE CARCINOMA OF THE CERVIX AND CORRESPONDING 95% CONFIDENCE INTERVALS AMONG

 HPV-POSITIVE WOMEN ACCORDING TO CHLAMYDIA TRACHOMATIS AND CHLAMYDIA PNEUMONIAE SEROPOSITIVITY OVERALL AND IN STRATA BY AGE

 GROUP AT DIAGNOSIS

 1 OR adjusted for age, study center, history of Pap smear, oral contraceptive use, number of full-term pregnancies and herpes simplex virus 2 seropositivity. $^{-2}$ Reference category.

FIGURE 2 – Odds ratios of squamous cell invasive carcinoma of the cervix and corresponding 95% confidence intervals among HPV-positive women according to *C. trachomatis* seropositivity and age at diagnosis. Odds ratios relative to *C. trachomatis* seronegative; adjusted for center, age, history of Pap smear, oral contraceptive use, number of full-term pregnancies and herpes simplex virus 2 seropositivity.

The OR of *C. trachomatis* in all case and control women, after adjustment for the same factors as in Figure 1, was 2.19 (95% CI = 1.80-2.67) for squamous cell ICC and 1.35 (95% CI = 0.84-2.17) for adeno- and adenosquamous cell ICC (data not shown). After additional adjustment for HPV infection, the ORs slightly diminished: 1.83 (95% CI = 1.33-2.52) for squamous cell ICC and 1.14 (95% CI = 0.63-2.08) for adeno- or adenosquamous cell ICC, again with no significant heterogeneity between centers (Fig. 3). The risk of squamous cell ICC increased with higher antibody titers: OR = 1.19 for titers of 8, OR = 2.03 for titers of 32 and OR = 3.57 for titers of ≥ 128 .

DISCUSSION

This study, based on data from 1,238 case and 1,100 control participants in 7 countries worldwide, shows that C. trachomatis serum antibodies were associated with a 1.8-fold increased risk of squamous cell ICC. An increased squamous cell ICC risk was consistently found in all countries considered, except for Spain, although C. trachomatis seropositivity in controls varied greatly by country. This risk was higher in women with elevated C. trachomatis antibody titers, and in women under 55 years of age. C. trachomatis and C. pneumoniae species-specific serum antibodies were differentiated using MIF assay, and an increased risk of squamous cell ICC was found in women with C. trachomatis but not with C. pneumoniae antibodies. Our study thus supports the possibility that C. trachomatis increases squamous cell ICC risk, after accounting for cervical HPV infection using highly sensitive PCR-based methods, and other risk factors for ICC. Our ability to restrict analyses to HPV DNA-positive case and control participants, albeit justified by the causal link between HPV infection and ICC, did not alter the relationship between C. trachomatis and squamous cell ICC risk. The effect of C. trachomatis was similar for HPV DNA-positive women and for all cases and controls after adjustment for HPV DNA status or HPV DNA type. After adjustment for major confounding factors, but not for HPV DNA status, the OR for squamous cell ICC was 2.2 (i.e., slightly more elevated than after stratification or adjustment for HPV).

Our analysis of *C. trachomatis* in 99 adeno- or adenosquamous cell ICC cases is the largest to date, given the relative rarity of cervical adenocarcinoma. Our findings are consistent with another study of those from 32 adenocarcinoma cases¹⁰ that found no effect due to *C. trachomatis*. Overall, these data support the notion that some HPV cofactors may differ according to the histologic type of ICC.

The reliability of our results is supported by the use of a multicenter study with a large sample size, a common protocol and standardized laboratory procedures for the ascertainment of HPV and *C. trachomatis* infections. To determine a woman's cumulative exposure rather than current *C. trachomatis* infection, we

SMITH ET AL.

TABLE IV - ODDS RATIOS OF SQUAMOUS CELL INVASIVE CARCINOMA OF THE CER	RVIX AND CORRESPONDING 95% CONFIDENCE INTERVALS AMONG
HPV-POSITIVE WOMEN ACCORDING TO THE COMBINED EFFECT OF CHLAMYL	DIA TRACHOMATIS SEROPOSITIVITY AND SEXUAL BEHAVIOR

	C. traci	homatis	OP ² (0577 CP)
	Seronegative cases/controls	Seropositive cases/controls	OR ² (95% CI)
Number of sexual partners			
1			
n	344/78	319/37	
OR ¹ (95% CI)	13	1.70 (1.05–2.76)	1 ³
≥ 2	-		-
n	156/26	259/23	
OR^{1} (95% CI)	1.30 (0.74–2.31)	$2.16(1.19-3.92)^4$	1.29 (0.83-2.00)
Age at first intercourse (years)			(,
≥ 21			
n	149/48	106/20	
OR ¹ (95% CI)	1^{3}	1.54 (0.80-2.97)	1 ³
17–20			
п	211/31	250/19	
OR ¹ (95% CI)	2.15 (1.18-3.90)	3.64 (1.85-7.18)	2.22 (1.36-3.63)
< 17		· · · · · ·	,
n	140/23	222/20	
OR ¹ (95% CI)	2.25 (1.14-4.45)	$4.18(2.08-8.43)^5$	2.44 (1.41-4.23)
Oral contraceptive use		× /	,
Never			
п	347/69	387/39	
OR ¹ (95% CI)	1^{3}	1.70 (1.06-2.73)	1 ³
< 5 years		× /	
n	81/28	92/15	
OR ¹ (95% CI)	0.75 (0.41-1.36)	1.32 (0.65-2.67)	0.76 (0.47-1.23)
\geq 5 years		× /	,
n	71/6	95/6	
OR ¹ (95% CI)	2.90 (1.14–7.40)	$4.21 (1.64 - 10.85)^6$	2.69 (1.35-5.35)
OR (95% CI)	1 ³	1.69 (1.14–2.51)	

¹Adjusted for age, study center, history of Pap smear, oral contraceptive use, number of full-term pregnancies, herpes simplex virus 2 seropositivity, number of sexual partners and age at first intercourse.⁻²Adjusted as above and for *C. trachomatis* seropositivity.⁻³Reference category.⁻⁴Chi-square for interaction = 0.00 (1 df), p = 0.95.⁻⁵Chi-square for interaction = 0.16 (2 df), p = 0.93.⁻⁶Chi-square for interaction = 0.05 (2 df), p = 0.70.

measured *C. trachomatis* serum antibodies. The specificity of the observed MIF antibody responses was validated by the observation that *C. trachomatis*, unlike *C. pneumoniae*, antibody responses were correlated with indicators of sexual behavior.

The dose-response relationship between *C. trachomatis* MIF antibody titers and squamous cell ICC risk provides further support for an etiologic role for *C. trachomatis* in cervical carcinogenesis. Elevated *C. trachomatis* titers (≥ 128) are likely to be maintained by continued antigenic stimulation, which may be due to either repeated or chronic chlamydial infections.²⁷ Elevated *C. trachomatis* titers have also been associated with adverse reproductive sequelae such as tubal infertility,²⁸ pelvic inflammatory disease²⁹ and the presence of heat shock proteins (HSPs).^{29,30} The latter finding is of particular interest given that HSPs appear to be involved in the immunopathogenesis of chlamydial infections.^{29,31}

No specific C. trachomatis serovar group had a higher association with squamous cell ICC in our study. C. trachomatis serotypes fall into 2 major antigenic groups, the B complex (consisting of serovars of B, D and E) and the C complex (consisting of serovars of C, J, H and I), with serovars of F, G and K as bridging serovars between the 2 major antigenic complexes (*i.e.*, they share minor antigenic profiles with both major complexes in addition to unique antigenic characteristics). Serologic assays such as the MIF measure cumulative exposure of an individual to antigens of C. trachomatis. An individual who is infected with one serovar and then subsequently exposed to another serovar from a heterologous antigenic complex will exhibit broad antibody reactivity to multiple serovars.32 A nested case-control study from Finland, Norway and Sweden¹⁰ found that serovar G was most strongly associated with squamous cell ICC but the confidence intervals were broad, and it is unclear how an increased risk for squamous cell carcinoma may be attributable to a single serovar using serologic

assays since complex antigenic relationships exist between serovars of C. trachomatis.^{10,32}

The association between squamous cell ICC and *C. trachomatis* seropositivity appeared to be stronger in younger women (< 55 years of age), suggesting that cumulative exposure to chlamydial infection may be less important, or less-well measured by seropositivity after middle age. The prevalence of *C. trachomatis* IgG antibodies declined with age among squamous cell ICC cases but not among control women. Few reliable data are available on the natural history of *C. trachomatis* antibodies during persistent or acute infections. *C. trachomatis* antibodies have been shown to persist for years; however, a loss of *C. trachomatis* antibodies or a decrease in IgG antibody titers over time may occur,^{29,33} particularly if there is no continued antigenic stimulation.³⁴ A case-control study showed a stronger association between *C. trachomatis* seropositivity and squamous cell ICC when the serum sampling was closer in time to ICC diagnosis.¹³

C. trachomatis infection may increase the risk of squamous cell ICC by increasing host susceptibility to HPV or enhancing the effects of HPV. Inflammation, resulting from a chronic *C. trachomatis* infection, may result in the production of reactive oxygen species that may cause DNA damage and increase the risk of HPV-associated carcinogenesis.^{35,36} *In vitro* data suggest that *Chlamydia*-infected cells are also less likely to undergo the normal process of programmed cell death.³⁷ Other laboratory data indicate that *C. trachomatis* may disrupt the normal structure of cadherin-catenin junctions in cervical epithelial cells,³⁸ resulting in increased susceptibility to HPV and other infections. Alternatively, *C. trachomatis* seropositive women may be more likely to elicit a humoral-mediated (Th2) rather than cell-mediated (Th1) immune response to particular antigens.³⁰ In this case, women infected with

FIGURE 3 – Odds ratios of invasive cervical cancer and corresponding 95% confidence intervals among all cases and controls according to *C. trachomatis* seropositivity. Odds ratios relative to *C. trachomatis* seronegative; adjusted for center, age, history of Pap smear, oral contraceptive use, number of full-term pregnancies, herpes simplex virus 2 and HPV-DNA positivity.

C. trachomatis may have an impaired ability to clear an HPV infection or control HPV-induced cervical neoplasia. In a cohort study of Swedish women aged 32-38 years, self-reported history of *C. trachomatis* was associated with a 4-fold increased risk of HPV persistence after 12-month follow-up.³⁹

We do not believe that our findings should be interpreted as *C. trachomatis* acting as a carcinogen of the cervix independently from HPV infection and note that no methods can distinguish transient from persistent HPV infection. The ascertainment of cervical HPV DNA is likely to have, for instance, a different meaning in case and control participants. HPV DNA in case women should indicate a persistent HPV infection, whereas some control women may be transiently infected or have been infected in the past and since cleared their infection. However, because the association between *C. trachomatis* and squamous cell ICC in HPV-positive women was not notably reduced after further adjustment or stratification for a woman's number of sexual partners, age at first intercourse and HSV-2 seropositivity, the effect of *C. trachomatis* is not likely to represent simply exposure to HPV or other STIs.

Another limitation of our study is that the MIF assay used does not differentiate a woman's exposure to genital or to ocular *C. trachomatis* infections. However, it is unlikely that our results are due to past exposure to ocular infections because endemic trachoma is rare or nonexistent in all study sites. Furthermore, the association between *C. trachomatis* and squamous cell ICC was consistent in strata of educational attainment and place of residence, although ocular infection should have been more frequent in low social classes and in rural areas. The use of hospital-based control subjects in 5 study sites may have also led to biased results if *C. trachomatis* seroprevalence in controls was not representative of the population source of the ICC patients. Hospital controls in our study, however, had a wide range of diagnoses and were ascertained in large public hospitals with reference populations similar to those where cases were identified.^{16–18,20,21}

In conclusion, our results indicate that *C. trachomatis* infection may act in conjunction with HPV to increase the risk of squamous cell ICC, although this association is modest compared to the strong effect of HPV infection on ICC risk. Given that *C. trachomatis* is the most common bacterial STI worldwide, with over 12 million global cases estimated annually⁴⁰ and 700,000 cases reported in the United States,⁴¹ additional data are needed to determine if screening and treatment of *C. trachomatis* infections may result in a lower incidence of low- and high-grade squamous intraepithelial lesions.

ACKNOWLEDGEMENTS

The authors thank Dr. Keerti Shah, Dr. Kenrad Nelson and Dr. Charlotte Gaydos for their review of the manuscript, Ms. Liz Dillon for the MIF *C. trachomatis* serologic laboratory work, Dr. Rhoda Ashley for the HSV-2 serologic laboratory work, Ms. Annie Arslan for data management and Mr. Y. Guy for the handling of the serum specimens. The authors are indebted to all the study participants and gynecologists, pathologists and oncologists who facilitated the identification and contribution of the participants, as well as the supervisors of fieldwork.

SMITH ET AL.

REFERENCES

- Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, 1. Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189:12-9.
- 2. IARC. Monographs on the evaluation of carcinogenic risks to humans. Human papillomaviruses. vol. 64. Lyon: IARC, 1995.
- 3. Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, Herrero R, Franceschi S; International Agency for Research on Cancer. Multicentric Cervical Cancer Study Group. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet 2002;359:1085-92.
- Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, 4 Shah KV, Meijer CJ, Bosch FX; International Agency for Research on Cancer. Multicentric Cervical Cancer Study Group. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric casecontrol study. Lancet 2002;359:1093-101.
- Smith JS, Muñoz N, Herrero R, Eluf-Neto J, Ngelangel C, Franceschi 5 S, Bosch FX, Walboomers JM, Peeling RW. Evidence for Chlamydia trachomatis as an HPV cofactor in the etiology of cervical cancer in Brazil and the Philippines. J Infect Dis 2002,185:324–31. Stamm WE, Holmes KK. Chlamydial infections. In: Isselbacker KJ,
- 6 ed. Harrison's principles of internal medicine. New York: McGraw-Hill, 1994;759-768.
- Kiviat NB, Paavonen JA, Brockway J, Critchlow CW, Brunham RC, Stevens CE, Stamm WE, Kuo CC, DeRouen T, Holmes KK. Cyto-7. logic manifestations of cervical and vaginal infections: 1, epithelial and inflammatory cellular changes. JAMA 1985;253:989-96
- Moscicki AB, Burt VG, Kanowitz S, Darragh T, Shiboski S. The 8. significance of squamous metaplasia in the development of low grade squamous intraepithelial lesions in young women. Cancer 1999;85: 1139-44.
- 9. Jha PK, Beral V, Peto J, Hack S, Hermon C, Deacon J, Mant D, Chilvers C, Vessey MP, Pike MC, Müller M, Gissman L. Antibodies to human papillomavirus and to other genital infectious agents and invasive cervical cancer risk. Lancet 1993;341:1116-8
- Anttila T, Saikku P, Koskela P, Bloigu A, Dillner J, Ikaheimo I, 10. Jellum E, Lehtinen M, Lenner P, Hakulinen T, Narvanen A, Pukkala E. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 2001;285:47-51.
- Dillner J, Lenner P, Lehtinen M, Eklund C, Heino P, Wiklund F, 11. Hallmans G, Stendahl U. A population-based seroepidemiological study of cervical cancer. Cancer Res 1994;54:134–41.
- Lehtinen M, Dillner J, Knekt P, Luostarinen T, Aromaa A, Kirnbauer R, Koskela P, Paavonen J, Peto R, Schiller JT, Hakama M. Serologically diagnosed infection with human papillomavirus type 16 and risk for subsequent development of cervical carcinoma: nested case-control study. Br Med J 1996;312:537-9.
- Koskela P, Anttila T, Bjorge T, Brunsvig A, Dillner J, Hakama M, 13. Hakulinen T, Jellum E, Lehtinen M, Lenner P, Luostarinen T, Pukkala *E. Chlanydia trachomatis* infection as a risk factor for invasive cervical cancer. Int J Cancer 2000;85:35–9.
- 14. Gravitt PE, Castle PE. Chlamydia trachomatis and cervical squamous cell carcinoma. JAMA 2001;285:1703-4.
- Wallin KL, Wiklund F, Luostarinen T, Angstrom T, Anttila T, Berg-15 man F, Hallmans G, Ikaheimo I, Koskela P, Lehtinen M, Stendahl U, Paavonen J. A population-based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer 2002;101: 371 - 4
- 16. Chaouki N, Bosch FX, Muñoz N, Meijer CJ, El GB, El GA, Deacon J, Castellsague X, Walboomers JM. The viral origin of cervical cancer in Rabat, Morocco. Int J Cancer 1998;75:546–54. Eluf-Neto J, Booth M, Muñoz N, Bosch FX, Meijer CJ, Walboomers
- 17 JM. Human papillomavirus and invasive cervical cancer in Brazil. Br J Cancer 1994;69:114-9.
- Santos C, Muñoz N, Klug SJ, Almonte M, Guerrero I, Alvarez M, Velardo C, Galdos O, Castillo M, Walboomers J, Meijer C, Caccres 18. E. HPV types and cofactors causing cervical cancer in Peru. Br J Cancer 2001;85:966-71
- Muñoz N, Bosch FX, de Sanjosé S, Tafur L, Izarzugaza I, Gili M, Viladiu P, Navarro C, Martos C, Ascunce N, Gonzalez LC, Kaldor 19. JM. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer 1992;52:743-9.
- Chichareon S, Herrero R, Muñoz N, Bosch FX, Jacobs MV, Deacon 20 J, Santamaria M, Chongsuvivatwong V, Meijer CJ, Walboomers JM. Risk factors for cervical cancer in Thailand: a case-control study. J Natl Cancer Inst 1998;90:50-7.
- Ngelangel C, Muñoz N, Bosch FX, Limson GM, Festin MR, Deacon J, Jacobs MV, Santamaria M, Meijer CJ, Walboomers JM. Causes of 21.

cervical cancer in the Philippines: a case-control study. J Natl Cancer Inst 1998;90:43-9.

- 22. Wang SP, Grayston JT. Micro immunofluorescence antibody responses in Chlamydia trachomatis infection: a Review. In: Mardh PA, Holmes KK, Oriel JD, Piot P, Schacter J eds. Chlamydial infections: proceedings of the 5th International symposium on human chlamydial infections, held in Lund, Sweden, 15-19 June, 1982. Amsterdam: Elsevier Biomedical Press, 1982.
- de Sanjosé S, Muñoz N, Bosch FX, Reimann K, Pedersen NS, Orfila 23 J, Ascunce N, Gonzalez LC, Tafur L, Gili M, Lette I, Viladiu P. Sexually transmitted agents and cervical neoplasia in Colombia and Spain. Int J Cancer 1994;56:358–63. Ashley RL. Type-specific antibodies to HSV-1 and -2: review of
- 24.
- Ashrey RL. Type-specific antioedies to Trot 1 and 2. Territoria methodology. Herpes 1998;5:33–8. Smith JS, Herrero R, Muñoz N, Eluf-Neto J, Ngelangel C, Bosch FX, Ashley RL. Prevalence and risk factors for herpes simplex virus type 25. 2 infection among middle-aged women in Brazil and the Philippines. Sex Transm Dis 2001;28:187–94.
- 26. Breslow NE, Day NE, Davis W. Statistical methods in cancer research. The analysis of case-control studies. vol. 1. Lyon: IARC, 1980.
- Mol BW, van der Veen F, Bossuyt PM. Chlamydia antibody titres. 27. Hum Reprod 1999;14:268-70.
- 28. Land JA, Evers JL, Goossens VJ. How to use Chlamydia antibody Lesting in subfertility patients. Hum Reprod 1998;13:1094–8.
 Peeling RW, Kimani J, Plummer F, Maclean I, Cheang M, Bwayo J,
- 29. Brunham RC. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J Infect Dis 1997;175: 1153 - 8
- Eckert LO, Hawes SE, Wolner-Hanssen P, Money DM, Peeling RW, 30. Brunham RC, Stevens CE, Eschenbach DA, Stamm WE. Prevalence and correlates of antibody to chlamydial heat shock protein in women attending sexually transmitted disease clinics and women with confirmed pelvic inflammatory disease. J Infect Dis 1997;175:1453-8.
- Brunham RC, Peeling RW. Chlamydia trachomatis antigens: role in 31. immunity and pathogenesis. Infect Agents Dis 1994;3:218-33. Smith JS, Muñoz N, Franceschi S, Eluf-Neto J, Herrero R, Peeling
- 32 RW. Chlamydia trachomatis and cervical squamous cell carcinoma. J Am Med Assoc 2001;285:1704. 33. Puolakkainen M, Vesterinen E, Purola E, Saikku P, Paavonen J.
- Persistence of chlamydial antibodies after pelvic inflammatory disease. J Clin Microbiol 1986;23:924–8.
- Ngeow YF. Limitations of serodiagnosis in chlamydial genital tract 34. infections. Ann Acad Med Singapore 1996;25:300-4.
- Felley-Bosco E. Role of nitric oxide in genotoxicity: implication for carcinogenesis. Cancer Metastasis Rev 1998;17:25–37. 35.
- Castle PE, Hillier SL, Rabe LK, Hildesheim A, Herrero R, Bratti MC, 36. Sherman ME, Burk RD, Rodriguez AC, Alfaro M, Hutchinson ML, Morales J. An association of cervical inflammation with high-grade cervical neoplasia in women infected with oncogenic human papillomavirus (HPV). Cancer Epidemiol Biomarkers Prev 2001;10:1021-7.
- Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, 37 Zhong G. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 1998;187:487-96.
- 38. Prozialeck WC, Fay MJ, Lamar PC, Pearson CA, Sigar I, Ramsey KH. Chlamydia trachomatis disrupts N-cadherin-dependent cell-cell junctions and sequesters beta-catenin in human cervical epithelial cells. Infect Immun 2002;70:2605-13.
- 39 Dillner J, Silins I, Ryd W, Wadell G, Hansson BG, Rylander E, for the Sweden Screen Study. History of *Chlamydia trachomatis* infection is a determinant of HPV DNA persistence: a population-based cohort study. Proceedings of the 20th International Papillomavirus Conference, 2002.
- 40. World Health Organization. Global prevalence and incidence of selected curable sexually transmitted infections: overview and esti-mates. Geneva: World Health Organization, 2001.
- Centers for Disease Control and Prevention. Sexually transmitted diseases surveillance 2000 supplement: *Chlamydia* prevalence moni-41 toring project. Atlanta, GA: Department of Health and Human Services, 2001.

APPENDIX

The IARC Multicentric Cervical Cancer Study Group is composed of the following researchers: N. Muñoz, S. Franceschi, J.S. Smith, M. Plummer, IARC, Lyon, France; F.X. Bosch, V. Moreno, S. de Sanjosé, X. Castellsagué, Institut Català d'Oncologia, Barcelona, Spain; R. Herrero, Proyecto Epidemiológico Guanacaste, San José, Costa Rica; C.J.L.M. Meijer, M.V. Jacobs, Vrije Universíteit Medical Center, Amsterdam, The Netherlands; K.V. Shah, Johns Hopkins University, Baltimore, MD, USA; S. Chichareon, Prince of Songkla University, Hat-Yai, Thailand; C. Ngelangel, University of Philippines, Manila, the Phillipines; N. Chaouki, B. El Gueddari, Institut National d'Oncologie, Rabat, Morocco; J. Eluf-Neto, São Paulo University, São Paulo, Brazil; P.A. Rolón, Laboratorio de Anatomia Patológica y Citologia, Asunción, Paraguay; E. Caceres, C. Santos, Maes Heller Cancer Research Institute, Lima, Peru; S. Bayo, Institut National de Recherche en Santé Publique, Bamako, Mali; I. Izarzugaza, Euskadi Cancer Registry, Vitoria Gasteiz, Spain; M. Gili, Catedra Reynals, Barcelona, Spain; L.A. Tafur, University of Valle, Cali, Colombia; C. Navarro, Health Council, Murcia, Spain; N. Ascunce, Breast Cancer Prevention Center, Pamplona, Spain; L.C. González, Delegation of Social Welfare, Salamanca, Spain; M. Santamaria, Navarra Hospital, Pamplona, Spain; P. Alonso de Ruiz, General Hospital of Mexico, Mexico City, Mexico; N. Aristizabal, Cali, Colombia; J. Deacon, Institute of Cancer Research, Belmont, United Kingdom.