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Abstract
Emergent paradigms of Industry 4.0 and Industrial Internet of Things expect cyber-
physical systems to reliably provide services overcoming disruptions in operative
conditions and adapting to changes in architectural and functional requirements.
In this paper, we describe a hardware/software framework supporting operation
and maintenance of software-controlled systems enhancing resilience by promot-
ing a Model-Driven Engineering (MDE) process to automatically derive structural
configurations and failure models from reliability artifacts. Specifically, a reflective
architecture developed around digital twins enables representation and control of sys-
tem Configuration Items properly derived from SysML Block Definition Diagrams,
providing support for variation. Besides, a plurality of distributed analytic agents for
qualitative evaluation over executable failure models empowers the system with run-
time self-assessment and dynamic adaptation capabilities. We describe the framework
architecture outlining roles and responsibilities in a System of Systems perspective,
providing salient design traits about digital twins and data analytic agents for failure
propagation modeling and analysis. We discuss a prototype implementation following
the MDE approach, highlighting self-recovery and self-adaptation properties on a real
cyber-physical system for vehicle access control to Limited Traffic Zones.
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1 Introduction

1.1 Motivation

In the agenda of Industry 4.0 (I4.0), resilience of cyber-physical systems is expected to
be supported bymonitoring and control capabilities provided by software components
exposing an agile interface for integration and processing of data carrying information
at different levels of granularity, according to various pillars, notably Industrial Internet
of Things (IIoT), big data and analytics, simulation, horizontal and vertical integra-
tion, and cloud computing [42,46]. This gives raise to a class of software-controlled
systems that can afford functional, structural, and behavioural complexity while still
maintaining commitment for high levels of reliability [1,34,45]. Effective exploitation
of this potential largely depends on architectural choices that shape integration between
physical, hardware, software, and human operators, and by development practices that
preserve reliability while increasing agility and complexity.

1.2 Contribution

In this paper, we describe a hardware/software framework developed in an indus-
trial research project [33], named JARVIS (Just-in-time ARtificial intelligence for the
eValuation of Industrial Signals), which supports system reliability and recoverability
through runtimemonitoring, remote actuation capabilities, and predictivemaintenance
processes by leveraging a software architecture that facilitates development and ver-
ification of the integration of physical IoT devices, enterprise scale software agents,
data analytics, and human operators.

At the core of its architecture, JARVIS supports creation of a Knowledge Base pro-
viding an executable representation of the systemConfiguration that mirrors each Item
through adigital twin [48] implemented as a software object exposingmethods for Item
monitoring and control operations. Digital twins are organized according to theReflec-
tion architectural pattern [6], separating a layer of concrete objects that represent state
and identity of individual Items from an abstract layer that represents Item types and
composition topology. This organization facilitates construction of digital twins and
promotes maintainability [44] by accommodating changes over time or within a prod-
uct line and by making the representation verifiable through concrete configurations.

Besides, a variety of analytic agents deployed incrementally and with loose cou-
pling in the shape ofmicroservices, empowers the frameworkwith intelligence [43,47]
for complex decision-making by interacting with digital twins based on extraction and
processing of IoT data streams. In particular, analytic agents performing Fault Tree
Analysis (FTA) over executable failure models provide runtime self-assessment and
dynamic adaptation capabilities.

Both system configurations and failure models can be conveniently derived fol-
lowing a Model-Driven Engineering (MDE) process based on semi-formal artifacts
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from the practice of Reliability Engineering (i.e., SysML diagrams and Fault Trees)
widespread in industrial documental standards and formal methods. This reduces the
gap between reliability engineers and software architects, allowing a more direct cast
of human expertise into the cyber-side logic of the system. In so doing, JARVIS sup-
ports system resilience by promoting semi-formal specification of structural aspects,
functional requirements, and behavioural characteristics of subsystems in a System of
Systems perspective.

According to this, the main contributions of this paper are: (i) a framework sup-
porting development of resilient cyber-physical systems through connection of digital
twins representing Configuration Items with a suite of diagnostic, predictive, and pre-
scriptive analytics based on reliability engineering artifacts; (ii) an implementation of
digital twins based on the architectural pattern of reflection that facilitates creation
of digital twins, adaptation to configuration changes, and verification of coherence
with the actual state of the system; (iii) the description of a concrete cyber-physical
system that demonstrates the results of the JARVIS project in a Smart City context
and illustrates applicability and positive consequences of the framework in an MDE
approach.

The rest of the paper is organized as follows: Sect. 2 summarizes related works;
Sect. 3 reports a general description of the framework, outlining itsmajor requirements
and describing its architecture, in the perspective of an IoT architectural stack; Sect. 4
illustrates salient traits of software design that permit digital twins to comprise a
Knowledge Base and provide a high-level interface for remote commands actuation;
Sect. 5 describes a data analytic agent that performs failure propagation analysis over
executable representations of Fault Trees connected to digital twins of Configuration
Items; Sect. 6 outlines an MDE approach that exploits a SysML BDD and a suite of
Fault Trees to drive creation of objects representing the configuration of a system and
the dynamic of its failure logic; Sect. 7 discusses a prototype instance of the proposed
framework achieving self- recovery and adaptation in the application scenario of a real
cyber-physical system for access control to Limited Traffic Zones (LTZ). Conclusions
are drawn in Sect. 8.

The paper significantly extends preliminary results reported in [32,33] in three
orthogonal directions: (i) from an architectural perspective, the JARVIS architec-
ture has been enhanced with reference to the four layers of an IoT architectural
stack, providing a complete description of structure of system/subsystems design,
functional requirements, behavioral and dataflow characteristics, and contribution to
system resilience by each subsystem; (ii) froma functional perspective, theKnowledge
Base, designed over the digital twins abstraction, has been enriched with IoT remote
commands representations, conferring to the framework dynamic actuation capabili-
ties and enabling agile reconfiguration of physical devices; (iii) from amethodological
perspective, in this paper we promote an MDE process to translate specifications of
the system structure and failure modes combinations into executable representations
of digital twins and Fault Trees, and we highlight the applicability of the methodology
in a real operative scenario.
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2 Related work

Technological and cultural changes promoted by IIoT and I4.0 pillars are encouraging
the adoption of advanced software-controlled systems with a continuously increasing
complexity, in terms of hardware/software components, implemented functionalities,
and offered services. In contexts where malfunctions and services disruptions have
societal, economic, or legal impact, these complex IT/OT [23] systems, based on
many interconnected, autonomous and smart devices, must inevitably guarantee an
acceptable level of reliability. In these scenarios, the cyber side may support system
resilience, exploiting monitoring and control capabilities to provide fault-tolerance,
rejuvenation, and self-adaptation mechanisms.

Software digital twins representations provide a key abstraction, providing an agile
interface on hardware components, capturing operational behaviours of physical assets
and processes, also providing refined and interpreted data, to enable diagnoses, predic-
tive maintenance tasks, process plannings, process optimizations, virtual prototyping,
and simulation. In [29], the definition, the role and the architectural aspects of digital
twins in IIoT systems are elaborated. In [41], a hierarchical digital twin model frame-
work is proposed as a way to handle advancement of product life cycle and to support
3D simulation of components for complex systems. In [20], an architectural frame-
work based on an elementary meta model for simulation analyses and online planning
is presented, primarily focusing on the event-driven information flow, extracted by
a cognitive system monitoring physical components, rather than on the design and
configuration of adopted digital twins.

Digital twins must be reliable, ensuring a consistent alignment with the character-
istics of physical counterparts over time, facilitating the system verifiability during
operation and maintenance stages. This is further exacerbated in cyber-physical sys-
tems where underlying software architectures must guarantee that the cyber side
properly controls and orchestrates the physical side.

Reflective architectures can be considered as an effective solution by enabling
dynamic strategies for changing structural aspect and runtime behaviour in response to
unpredictable circumstances such as system faults or evolving requirements. Indeed,
through the adoption of the Reflection Pattern [39], the architecture achieves self-
awareness, adaptability and reusability capabilities by representing information about
selected system properties; in particular, its meta level can be interpreted as a knowl-
edge specification layer for the base level which includes the application logic. In [11],
a reference architecture exploiting digital twins and Reflection principles to enhance
flexibility and customization in trust-based digital ecosystems is proposed. In [4], a
reference model for reflection and key reflection properties with their variation points
are promoted as prerequisites for self-adaptive systems to support runtime reconfig-
uration of component-based architectures. In [16], a set of short-term and long-term
research challenges about the adoption of model-driven approaches for assurance of
self-adaptive software systems at runtime is identified, while in [8], authors propose
an architectural approach for resilience evaluation of self-adaptive systems before
deployment to increase the predictability of adaptation mechanisms with respect to
dependability requirements. In [7], a self-adaptation paradigm including quantitative
verification and model checking techniques at runtime is addressed to realize depend-
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able self-adaptive software for detecting and predicting requirement violations and
leading to adaptive maintenance. In [27], an automation agent-based architecture per-
forming software reasoning processes over an ontological representation of low-level
functionalities is presented, so as to provide online reconfiguration abilities to indus-
trial manufacturing systems.

Model-Driven Engineering (MDE) approaches may support architectural solutions
for resilience, providing a way to connect different engineering processes through
abstractions and artifacts that meet the needs for industrial acceptance and open the
way to analytic methods, as reported in the empirical study described in [30]. The
adoption of domain-specific modeling languages, transformation engines and genera-
tors, reverse engineering, and model checking techniques offers a means for achieving
correct-by-construction executable software configurations, limiting complex and
error-prone tasks [38]. In [40], a methodology to create digital twins representations
using AutomationML meta language is described, where information about physical
systems can be captured by the definition of Computer Aided Engineering eXchange
meta models, for exchanging data between heterogeneous systems through an IoT
middleware. In [3], an approach to integrate safety analysis within an MDE process
is proposed, based on the automatic derivation of component-level and system-level
Fault Trees (FT) from SysML models annotated with relevant safety information,
with the aim of maintaining the traceability between system and analysis models. The
problem of co-evolution of architectural and quality evaluation models is developed
further in [22], where a set of transformation rules is designed to support the indepen-
dent evolution and synchronization of inter-related models, reducing the engagement
of developers expertise. In [5], a process exploiting UML specifications of software
architectures for the generation of executable models for risk analysis is illustrated.

To the best of our knowledge, this is the first paper proposing a framework for
MDE based on a distributed and executable reflective architecture leveraging on dig-
ital twins, so as to support system resilience through runtime monitoring, remote
actuation capabilities, self-adaptability and reusability of the cyber-configurations:
only a few works in literature describe an architecture including some of these con-
cepts. In [26], a 5-level architecture is proposed, in a purely theoretical perspective, as
a guideline for implementation of resilient, intelligent, and self-adaptable I4.0 man-
ufacturing systems. In [49], a distributed communication platform for digital twins
named uDiT, acting as a simulation environment and 3D visualizer for dependable
cyber-physical systems, is proposed. In [2], a reference model for digital twin archi-
tectures is described, exploiting Bayesian belief networks and fuzzy logic to design
smart interaction controllers for cloud-based systems, focusing on operational com-
munication modes, while neglecting reliability and resilience properties and reusable
configurations.

3 HW/SW architecture for resilience

JARVIS is a hardware/software framework developed along a V-model process [18]
to evolve as a modular system within an incremental and iterative approach, so as to
promote high levels of data ingestion, fault-tolerance, portability, and adaptability. The
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functional requirements of the framework, the system/subsystem designwith allocated
requirements, and the behavioral and dataflow characteristics are explained with the
aim of highlighting their specific contributions to the system resilience, following
an organization of contents in the style of the MIL-STD-498 Software Development
and Documentation standard [35], with specific reference to the System Requirements
Specification (SRS) and the System/SubsystemDesignDescription (SSDD) documents.

3.1 System Requirements Specification

Main system requirements and their consequent structural choices to improve the
system resilience include: (RQ1) managing a plethora of IoT devices equipped with
sensors and actuators to monitor the system status and to perform self-adaptation
actions to handle disruptions through the execution of remote control commands;
(RQ2) ingesting big data (characterized by Volume, Variety, Velocity, Value, and
Veracity [13]) generated from IoT devices into a high-capacity data lake for more
in-depth analysis to detect anomalies, predict failures, and schedule recovery interven-
tions; (RQ3) providing executable digital replicas of physical assets, that update and
change as the physical counterparts change, supporting virtual troubleshooting by pro-
moting: the exploitation of simulationmodeling and analysis to predict system failures
and deviations from the expected behaviour; the implementation of different recon-
figuration strategies in response to detected/forecast disruptions by working directly
on its software representation; (RQ4) providing a swarm of enterprise scale software
agents and data analytics with different business focuses (e.g., operational moni-
toring, anomaly detection, reactive/predictive/proactive maintenance), developed as
loosely-coupled independently deployable services by different parties following the
principles of aMicroservice-Oriented Architecture [15]; (RQ5) integrating data resid-
ing in different sources to provide a unified view, and integrating services offered by
different systems to enable cross-functional and cross-organizational collaborations;
(RQ6) offering a presentation layer in the shape of intelligent operational dashboards
to provide real-time access to the volumes of data collected from the infrastructure to
expert end-users (e.g., help desk operators, domain experts, maintenance and system
technicians) for inspections and interventions; (RQ7) providing digital assistants [14]
to support human experts during configuration, monitoring, and control operations, by
promoting inversion-of-responsibility mechanisms that improve the capacity for the
system to make decisions autonomously and to perform some decision-making tasks
(e.g., system reconfiguration for dynamic self-adaptation to preserve system goals
during execution) without human intervention.

3.2 System/SubsystemDesign Description

JARVIS is developed around a System of Systems (SoS) architecture [28] (see Fig. 1),
designed with reference to the four layers of an IoT architectural stack [25], i.e. per-
ception layer, network/transport layer, processing layer, and application layer.

The Field System (FS) plays the role of IoT perception layer, acquiring and gener-
ating data streams from a variety of heterogeneous IoT devices, logging information
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Fig. 1 UML diagram of the JARVIS architecture, where each subsystem belongs to a specific layer of
an IoT architectural stack: purple components identify hardware items of monitored Field Systems; green
components describe data carriers and orchestrators; red components represent behavioural algorithms
implemented inside data analytics and chatbot agents; black components identify dedicated DBMSs; ocher
components depict the digital twins core; finally, blue components illustrate web services exposed by server
subsystems. (color figure online)

about operational status, and sampling environmental properties (i.e., RQ1). Each FS
represents a physical device composed of hardware components (e.g., motherboard,
sensors, actuators) and software controllers (e.g., embedded firmware): as an example
in the industrial context, any interconnected machinery with IoT capabilities can be
seen as a FS.

The Field Data Server (FDS) performs its functions in the IoT network/trans-
port layer, storing raw and semi-structured data coming from the Field System in
a high-capacity mid-term database, also applying analytic processes to filter, fix,
and synthesise data (i.e., RQ2). In particular, the IoT Broker component acts as
an asynchronous Message-Oriented Middleware (MOM) [12] based on the Publish-
Subscribe pattern [24], and operates ingestion of IoT data streams.
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The Enterprise Integration (EI) is responsible, in the IoT network/transport layer,
for subsystems interoperability, orchestration of services, dynamic management of
dependencies, authorizations and security of access to field devices (i.e., RQ5). The
core component is represented by the Enterprise Service Bus (ESB) [10], which acts as
a high-level broker for each message exchange (except for data ingestion) among sub-
systems, and intermediates command executions over physicalField System instances,
implementing dedicated client processes. In so doing, the ESB guarantees high decou-
pling and push communications, also exploiting some major microservices patterns
[31] to enhance availability and reliability.

The Enterprise Information Server (EIS) plays the role of IoT application layer—
except for presentation—maintaining information on the status of monitored Field
Systems, adopting the abstraction of digital twins to keep a long-term consistent and
context-unaware Knowledge Base about system configurations and available remote
control commands, and interpreting and refining the mid-term Field Data Server raw
data into a high-level semantic (i.e., RQ3). The EIS operates as a full-fledged passive
module which defines a complex persistence logic with useful querying interfaces.

TheData Analytics Server (DAS) acts as IoT processing layer and is composed by a
plurality of software agents executing dynamic context interpretation, data extrapola-
tion, and data synthesis, and enabling descriptive (e.g., diagnoses on the actual status
of monitored Configuration Items), predictive (e.g., forecasting of runtime failure
events), and prescriptive analysis (e.g., decision-making processes, reacting or recov-
ering in response to occurred system failures), through machine learning mechanisms
and stochastic modeling techniques. Consequently, analytic modules can be deployed
as a collection of loosely-coupled microservices to accomplish specific tasks, strictly
dependent on the application context and also related to the quality of raw data stored
into the Field Data Server (i.e., RQ4).

The User Terminal (UT) is responsible for exposing a decoupled presentation tier
to the end-users in the IoT application layer, and can be concretely realized as a web
application client which consumes the exposed services of other subsystems (i.e.,
RQ6).

The Chatbot Services (CS) expose alternative User Interfaces (UIs) in the IoT
application layer and implement the internal logic of real-time messaging assistant,
enabling both push and pull duplex communications among human operators and
physical devices, and promoting machine-to-human and machine-to-machine interac-
tions that can support inmonitoring stage, exploiting instant messaging paradigms and
remote command triggering (i.e., RQ7). In order to facilitate timely human reactions,
the CS could be accompanied by smart devices able to receive push notifications.

The proposed framework implements and interprets all the responsibilities of a
complete IoT architectural stack, supporting—in a holistic vision—system resilience
at each tier: the perception layer enables monitoring and self-adaptation capabilities
over Field System instances using smart motherboards equipped with sensors and
actuators; the network/transport layer promotes a scalable message-oriented com-
munication platform supporting the adaptation to unexpected conditions through the
integration of Field Data Server and Enterprise Integration subsystems; the process-
ing layer provides intelligence by a variety of Data Analytics Server agents capable
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Fig. 2 The data stream ingestion process from Sensors of a Field System (FS) to the DBMS of the Field
Data Server (FDS)

of detecting anomalies, predicting failure events, and applying adaptive just-in-time
strategies starting from the analysis of raw and refined data; finally, the application
layer contributes to system resilience in two ways: while the Enterprise Informa-
tion Server exploits the digital twin representation to support real-time monitoring
of physical components, User Terminal and Chatbot Services keep end-users in the
loop through push notifications with the dual aim of providing up-to-date information
about the system status and promoting timely manual and automated reconfigurations.

Note that, in the perspective of batch and stream processing of massive quantities
of data, the system/subsystem design gives rise to a so-called Lambda architecture,
where the Enterprise Information Server implements the batch layer, the Field Data
Server acts as the speed layer, and together with the Enterprise Information Server
and the Data Analytics Server, represents the serving layer [33].

Behavioral and dataflow characteristics of the framework and collaborations at
interfaces are illustrated here by UML sequence diagrams in Figs. 2, 3, 4. The data
stream ingestion process, started by monitored Field System sensors and terminated
by DBMS storage in the Field Data Server, is shown in Fig. 2: on the one side, the
IoTPublisher module of the Field System periodically perceives data and publishes
them on the IoTBroker of the Field Data Server for big data ingestion and filtering
operations; on the other side, the IoTSubscriber module of the Field Data Server
periodically reads synthesised data from the IoTBroker and persists them into a mid-
term DBMS.

Besides, the process of failure detection, performed by a dedicated Data Analytics
Server agent which periodically consumes the REST API exposed by the Field Data
Server through its ServingLayer module to read raw data stored in its DBMS, is
depicted in Fig. 3.
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Fig. 3 The process of failure detection performed by a FailureDetector agent deployed inside the Data
Analytics Server (DAS). Detected failures activate the process of failure notification shown in Fig. 4

Finally, the process of failure notification, performed by the Enterprise Integra-
tion and activated by the FailureDetector agent in reaction to failures occurred in
some monitored physical devices, is displayed in Fig. 4: (i) the Enterprise Infor-
mation Server, which acts as a mediator between the agent and the other involved
subsystems, updates its long-term Knowledge Base, if needed; (ii) the Chatbot Ser-
vices support end-users in implementing self-recovery policies by suggesting available
remote control commands (more details are reported in Sect. 4.2); and, finally, (iii), a
dedicated Data Analytics Server for hazard analysis (i.e., FaultTreeAnalyzer) evalu-
ates the impact of failure propagation on the overall system, restarting the process of
failure notification in the case of new inferred failures (as further developed in Sect. 5).

4 A reflective Knowledge Base for onlinemonitoring and reaction

In the JARVIS framework, subsystems cooperate in monitoring and controlling
interconnected physical devices with IoT capabilities. To this end, the Enterprise
Information Server (EIS) acts as a Knowledge Base by: (i) providing a digital repre-
sentation about internal status and structural relationships of monitored components
in different system configurations (Sect. 4.1); (ii) exposing remote control com-
mands for each component, that can be invoked to enact self-adaptation mechanisms
on reaction to human inputs or autonomous triggers raised by data analytic agents
(Sect. 4.2).

4.1 Digital twins for adaptable virtualisation of Configuration Items

The EIS supports resilience and adaptability by maintaining a living digital repre-
sentation of the system configurations and by monitoring macroscopic events and
failure modes through a reflective Knowledge Base populated by digital twins of
integrated physical components, that update and change as their physical counter-
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Fig. 4 The process of failure notification implemented by the Enterprise Integration (EI) in reaction to
some failure detection, triggering the process of command invocation shown in Fig. 7 and restarting the
failure notification procedure in the case of new discovered failures

parts change. Specifically, this develops around twomodeling patterns. The Reflection
architectural pattern [39] provides a mechanism to dynamically adapt, at runtime,
the structure and behaviour of modeled digital twins, by splitting the domain logic
in two parts: the meta level captures the types of physical components and their
interconnections; the base level identifies concrete instances of physical components
and their interfaces in the actual configuration of the system. From an architectural
point-of-view, this pattern provides abstraction on how systems with a wide range
of variation points can be efficiently configured and maintained at runtime, provid-
ing self-representation capabilities and moving configuration complexity from classes
to objects. Besides, the Composite design pattern [21] represents the hierarchical
compositions of Field System instances, in both the meta and base levels of the
Reflection pattern. The combination of the two patterns enables the framework to
evolve so as to cope with different primary/alternative hardware configurations and
reliably adapt to changes in operation conditions by replacing the actual running
compositional structure of some digital replica on the basis of switching policies and
quantitative cost models implemented by specific decisional Data Analytics Server
agents.

Figure 5 shows the reflective and composite nature of digital twins composing
the Knowledge Base. At the base level, a DigitalTwin instance represents a con-
crete Configuration Item (e.g., a specific power supply unit with a serial number
and a version), whose hierarchical structure enables it to become either an elementary
BasicComponent or aDigitalSystemmade bymultiple digital twins. EachDigitalTwin
is decorated with a register of MacroscopicEvent records classified over different
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Fig. 5 UML class diagram of the Knowledge Base of the Enterprise Information Server, showing the
reflective and composite nature of digital twins

EventTypes (e.g., FAILURE) and queried by analytic agents to get the status of dig-
ital twins for supporting system maintainability and reliability. On the other hand,
at the meta level, an instance of MetaDigitalTwin represents a type of Configura-
tion Items (e.g., a type of supply units with a name, a manufacturer, and a model
code), with the same composite structure of digital twins so as to connect concrete
items to types through theMetaDigitalRole association class, which supports reusable
types among different instances ofMetaDigitalSystem (e.g., a type of supply unit can
accomplish both main and spare roles). Each MetaDigitalTwin is empowered with a
set of remote control Commands which act as high-level interfaces for physical actu-
ators promoting recovery interventions by chatbots and human operators on specific
FailureModes.

4.2 IoT remote commands for agile reconfiguration of physical devices

In order to enable the framework with self-adaptation and self-recovery capabilities,
theKnowledgeBase of theEIS is enrichedwith a detailed representation of IoT control
commands, distinguishing among: (i) high-level commands, intended as conceptual-

123



A framework for MDE of resilient software-controlled systems

Fig. 6 UML class diagram focusing on the IoT control commands meta-model as part of the Knowledge
Base of the Enterprise Information Server: the Command class reported here at the command base level
corresponds to the same class depicted in Fig. 5 at the digital twins meta level, enabling each MetaDigi-
talTwin instance (and so any DigitalTwin with a counterpart in the physical world) to be controlled by one
or more commands

izations about actuation and monitoring services offered by Field System instances;
and, (ii) low-level commands, intended as executable operations written according to
the native syntax of physical devices.

Control commands are further abstracted through an additional level of Reflec-
tion (see Fig. 6) to provide a common general representation applicable to a variety
of physical devices: a second meta-tier provides a specification of supported remote
high-level command types (e.g., a HTTP REST service, a bash script, a File Transfer
Protocol connection) as expressed by instances of theMetaCommand class, while an
extra base-tier enables the configuration of concrete high-level commands in terms of
instances of theCommand class. This reflectivemodel empowers theEIS for transcod-
ing high-level command invocations, generated by end-users or autonomous analytic
agents, into low-level commands defined starting from a set of segments (i.e., Com-
mandSegment), each containing a validable template definition and a collection of
input parameters resolved at runtime.

As an example, in the scenario of a RESET command sent to a physical system in
form of a JSONHTTP POST request to a REST endpoint URI, the HTTP represents a
generic high-level MetaCommand instance, fully described by threeMetaCommand-
Segment objects termed HTTP-verb, HTTP-body, and HTTP-URI, respectively. At
the base level, a RESET Command of type HTTP is then instantiated, providing a
real concretization for the HTTP-verb (i.e., POST), the HTTP-body (i.e, the JSON
content), and the HTTP-URI (i.e., the REST endpoint URI, eventually in the form of
a parameterized template) in terms of CommandSegment objects.

For a better understanding of the role of control commands, Fig. 7 reports the UML
sequence diagram showing the interactions in a scenario of command invocation in
response to a failure detection: first, the event is notified by a Chatbot Services agent
to some engaged end-users (in so realizing a kind of machine-to-human inversion of
responsibility process), which can timely react querying the Knowledge Base of the
Enterprise Information Server to obtain the current status of the failed device and a list
of available remote commands; then, in accordance with human choice, the command
execution process performed by the Enterprise Integration starts with a high-level
command transcoding operation and ends with the effective remote invocation of a
low-level command over the Field System. To this end, command templates are trans-
posed at invocation time by the ESB within the Enterprise Integration subsystem in
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Fig. 7 The process of command invocation performed by the Enterprise Integration (EI), which is respon-
sible for: (i) the address resolution; (ii) the mapping of transcoded segments in the low-level syntax; (iii)
the client identification and instantiation; and, finally, (iv) the concrete remote invocation of low-level
commands on the monitored Field System (FS)

a client-specific implementation constrained to theMetaCommand, mapping, orches-
trating, and combining transcoded segments, as prescribed by the low-level command
specification.

5 Fault Tree Analysis for vulnerability and resilience assessment

The Data Analytics Server is responsible for supporting operation and maintenance
processes exploiting the Knowledge Base maintained by the Enterprise Information
Server as well as raw data generated by the Field Data Server. In so doing, the
Data Analytics Server contributes to system resilience by facilitating development and
integrationof intelligent data agents able to detect failure events occurred in accordance
with a set of failure modes. This enables reactive, predictive, and proactive fault
management approaches over system failures [37] and risk analysis and assessment
techniques.
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Fig. 8 UML class diagram of the domain logic of the FaultTreeAnalyzer agent, showing the modeling
of Fault Tree digital representations in the Data Analytics Server (DAS) domain respect to its implicit
relationships in the Enterprise Information Server (EIS) domain

By design, the Data Analytics Server provides an agent named FaultTreeAnalyzer
which reacts to detected failure events performing Fault Tree Analysis (FTA) [17]
on available failure models typically expressed using the Fault Tree (FT) formalism
and built by reliability experts on top of some system’s configurations. The domain
logic of the FaultTreeAnalyzer agent is reported in Fig. 8 and mainly focuses on the
design of the compositional structure of FTs, expressed in terms of BasicEvents and
logical Gates (e.g., OR, AND, K-of-N), and its mapping with related Configuration
Items. In this perspective, each Node has a structural dependency on a FailureMode,
whose definition is directly derived from the Knowledge Base of the Enterprise Infor-
mation Server, while each Edge decorates the association between Gate and Node
so as to identify at runtime the corresponding concrete DigitalTwin starting from a
unique path of MetaDigitalRoles in the compositional hierarchy of the Enterprise
Information Server meta-level. In so doing, the FT is built on top of a meta system
rather than on its base concretisations: this choice properly reflects the causal relation-
ships among failure modes (possibly comprising a family of devices belonging to the
same hardware/software specification), enabling qualitative and quantitative analysis
starting from a collection ofMacroscopicEvent of type FAILURE generated by some
instances of DigitalTwin.

In order to infer latent high-level failures (not directly observable through moni-
toring techniques or data-driven diagnosis agents), to identify which combinations of
component failures lead to system failures, and to plan for system self-recovery, the
FaultTreeAnalyzer agent supports, natively, a mechanism of failure propagation and
Minimal Cut Sets (MCS) determination provided by the propagateFailure and com-
puteMCSmethods, implementing recursive bottom-up and top-down resolutions of the
structure according to the boolean semantics of supported logical gates, respectively.
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Finally, note that the domain logic of the FaultTreeAnalyzer agent is intentionally
designed to be general-purpose, opening the way to further extensions for quantita-
tive analysis techniques, including a variety of stochastic methods to estimate system
reliability and availability in terms of failure probabilities, in so driving the implemen-
tation of other analytics agents in support of self-adaptability and self-recoverability
processes (as concretely shown in the case study discussed in Sect. 7.2).

6 AModel-Driven Engineering process for resilient systems

In designing and shaping complex systems, reliability of physical installations must
be assured and, a fortiori, correctness of software implementations and configurations
of digital representations must be guaranteed, so as to obtain functional compliance
while satisfying Service Level Agreements.

The JARVIS framework promotes a correct-by-construction strategy, exploiting
artifacts of the industrial practice to drive the necessary configuration of executable
software instances under a Model-Driven Engineering (MDE) approach, rather than a
construct-by-correction strategy where defects and errors are discovered following a
code-and-fix style [38]. In particular, structural artifacts may capture hierarchical sys-
tem compositions and dependencies, while reliability artifacts may capture reliability
requirements and system failure logic, thus implying the definition of a set of fully-
disciplined configuration guidelines and the specification of ad hoc data contracts for
any serving layer. In so doing, guidelines drive domain experts and system engineers
in a step-by-step manual configuration of the cyber side, while data contracts drive
automated services integration and adaptation to different data inputs generated by
third-parties tools and applications.

The proposed MDE process has been addressed from two orthogonal perspectives.
On the one hand, a specification of the hierarchical composition of Configuration
Items through the adoption of SysML Block Definition Diagram (BDD) artifacts
[19] can be directly translated into a Knowledge Base of software digital twins, fol-
lowing the meta-model depicted in Fig. 5. In principle this translation can be fully
automated with relatively minor effort: each block of the BDD results into aMetaDig-
italTwin instance at runtime, so that basic and composite blocks are implemented
as meta-objects of type MetaBasicComponent and MetaDigitalSystem, respectively,
while each association results in aMetaDigitalRole instance to distinguish redundant
configurations. From this meta-level specification, leveraging the reflective structure
of digital twins, concrete installations of Field Systems can be configured as base-
objects of type DigitalTwin (and its specializations) deriving valued attributes from
the Enterprise Information Server serving layer (e.g., the serial number contains the
unique identifier assigned to each deployed component).

On the other hand, reliability requirements can be mapped to executable models of
failure modes, which can be exploited in descriptive, predictive, and prescriptive anal-
ysis driving operation and maintenance. Specifically, identification of failure modes
can be conveniently guided by artifacts of the practice of reliability engineering such
as Failure Mode and Effects Analysis (FMEA) [5], Failure Mode, Effects, and Crit-
icality Analysis (FMECA) [9], or Fault Tree Analysis (FTA) [36]. Also on this side,
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the specification of failure modes in terms of Fault Tree (FT) artifacts can be translated
into objects of the FaultTreeAnalyzer domain logic within the Data Analytics Server,
following the meta-model depicted in Fig. 8: this can be automated traversing the
FT structure and instantiating a Node instance (in the shape of BasicEvent or Gate
objects) for each corresponding element of the FT. Moreover, FMEA and FMECA
artifacts may drive stochastic characterisations of FailureMode occurrences to enable
the exploitation of quantitative analysis over the FT.

In conclusion, following the proposed MDE approach, structural aspects of sys-
tem configuration are preserved by construction guaranteeing that the meta-model
complies to, and is isomorphic with, the structure of the specification artifact. This
circumvents the need of testing the implementation of each analytic component, which
becomes particularly hard in self-adaptive systems. Synoptically, the MDE approach
results in three relevant positive side-effects: (i) bridging the gap between the insight
of SoS experts and the actual implementation of running software; (ii) reducing the
probability of introducing defective system configurations; and (iii) limiting time and
effort required by human operators in tuning the cyber side.

7 Case study

In this section, we provide concrete arguments about the practical implications, in
termsof advantages and enhancements for the overall system resilience, of applying the
proposed framework on a real case study related to a cyber-physical system prototype
for Limited Traffic Zone (LTZ) access control, developed within the Research &
Development JARVIS project [32] following the MDE approach illustrated in Sect. 6.

7.1 A LTZ cyber-physical system prototype

The increasing number of vehicles on urban roads and the consequent management
problems in terms of traffic congestion control, environmental impact, and safety driv-
ing, push the adoption of sensitive and adaptive systems to support sustainable forms
of transportation based on real-time information as demanded by future Smart Cities.
To this end, LTZs have been introduced in most of the historical centers of cities,
where only a limited number of authorized vehicles (whose license plates have been
registered with the Municipal Police) are allowed to drive. The LTZ access control
system typically consists of one or more entrances equipped with two video surveil-
lance cameras: the first one, named violation camera, automatically takes photos of all
entering vehicles; the second one, named OCR camera, is responsible for recognising
the registration numbers that are then checked with respect to authorized licenses to
detect illegal accesses.

Figure 9 illustrates the concept with reference to the primary configuration of the
LTZ gate system used for the prototype implementation of the framework, developed
by Sismic Sistemi srl1 and derived by their commercial product line (which is con-

1 Sismic Sistemi srl is an Italian company specialized in LTZ gate systems, law enforcement operations
centers, and radio systems.
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Fig. 9 SysML BDD of the LTZ gate implemented in JARVIS. Blocks internal properties, including name,
model, and manufacturer, have been omitted here for clarity of presentation

cretely installed in several Italian municipalities), here modeled as a SysML BDD
composed by: a redundant PowerSupply block containing two power supply units;
two Camera blocks, each composed by a set of Lens and an Autofocus engine which
adjusts the camera lens to focus on a target object; a Connector block that acts like
a communication system, sending raw data generated by the LTZ gate (e.g., acquired
images, telemetries) to external systems, and receiving external inputs (e.g., actuation
commands); finally, a Motherboard component hosting a series of Sensors for self-
monitoring purposes. An alternative configuration of the LTZ gate system consists of
just one camera for both violation and registration number detection.

Following the MDE approach described in Sect. 6, the BDD depicted in Fig. 9 is
translated into meta-objects (Fig. 10) so as to comprise the Knowledge Base of the
Enterprise Information Server on the primary hardware configuration of the LTZ gate
system. Besides, Fig. 11 shows one of the Fault Trees implemented in the JARVIS
framework associated to the LTZ system and a portion of the corresponding objects in
the FaultTreeAnalyzer domain logic. Note that in so doing, configurations (in terms
of Configuration Items and related failure modes) and artifacts comprise a coherent
and executable representation, that can support co-evolution at changes in the system
configuration or health status.

7.2 A real scenario of self-adaptive systemwith self-recovery capabilities

We illustrate here how the JARVIS framework can concretely support LTZ gate system
resilience through the exploitation of inversion-of-responsibilitymechanisms and self-
adaptation capabilities.

In normal conditions the system operates in its primary configuration with both
cameras properly functioning, i.e., the violation camera looking down on the gate’s
entrance to monitor all accesses to a restricted vehicle area, while the OCR camera
pointing forward and zooming in on the license plate to automatically extract the
registration number. On detection of aCamera failure for the violation cameramodule,
caused by an uncaught Dirty Lens basic event, the FailureDetector agent notifies
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Fig. 10 UML object diagram related to highlighted BDD elements of Fig. 9. For the sake of conciseness,
the diagram hides theMetaDigitalRole objects implied in one-to-one relations betweenMetaDigitalTwins

the failure to the Enterprise Information Server (EIS) which updates the status of
the DigitalSystem representing the violation camera with a new MacroscopicEvent
instance of type FAILURE.

Two sub-scenarios are then automatically activated. On the one hand, the Fault-
TreeAnalyzer agent is awakened in order to perform a top-down analysis for MCS
determination over the FT associated with the running system configuration: for each
identified basic event, available recovery commands associated with involved digital
twins are retrieved from the EIS and suggested to end-users through the Chatbot Ser-
vices subsystem.2 On the other hand, the FaultTreeAnalyzer agent starts a bottom-up
failure propagation analysis to evaluate the negative impact of the observed viola-
tion camera failure event, highlighting the failure of the overall LTZ gate system.

2 Note that, in our scenario, the RESET command provided by the Camera component can fix only an
Autofocus Engine issue, while Lens failures can only be recovered through human on-site interventions.
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Fig. 11 Fault Tree (FT) associated to the primary configuration of the LTZ system depicted in Fig. 9. Note
that, switching to the alternative configuration does not affect the structure of the FT, comprising only a
change about the camera to be considered, i.e., from the violation to the OCR camera. The internal UML
object diagram depicts the executable instances of FaultTreeAnalyzer domain logic, related to the dashed
grey area of the FT

This implies the re-evaluation of the Knowledge Base by the EIS (i.e., a new Macro-
scopicEvent object of type FAILURE is instantiated and associated to the LTZ gate
DigitalSystem), and the recommendation by the Chatbot Services to reconfigure the
system (i.e., moving from the current primary configuration to the alternative configu-
ration through the SWITCHCONFIG command). In so doing, the LTZ gate system can
continue to properly operate, exploiting the OCR camera for both violation and regis-
tration number detection tasks. Specifically, after command resolution and transcoding
processes, a set of low-level commands are sent by the EIS to: (i) switch off the vio-
lation camera; (ii) adjust the OCR camera position for looking at the gate’s entrance;
and, (iii) zoom out the OCR camera for getting a wider view of the scene.

In summary, the experimented case study lends itself very well to highlighting
and discussing the role played by the proposed framework to enhance the overall
system resilience. Specifically, data analytics agents provide advanced capacity in
real-time monitoring the status of physical components by synthesising and interpret-
ing perceived raw data in high-level events of the digital twin domain model. This
empowers the system with self-assessment capabilities by which major disruptions
can be promptly detected and handled through the scheduling of reactive, predictive,
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and proactive maintenance operations with the aim of recovering the proper function-
ing, even exploiting self-adaptation and remote actuation mechanisms to move the
system to alternative configurations. Finally, the concrete implementation of the pro-
posed MDE approach on a real system demonstrates how semi-formal specification
of structural aspects and failure logics can support agile construction and verification
of executable models.

8 Conclusions

This paper presented a hardware/software framework, designed around a SoS archi-
tecture, supporting resilience at runtime of cyber-physical systems, exploiting digital
twins and failure models to improve operation, integration, maintenance, and recover-
ability for many application scenarios, notably including Smart City and Industrial
Internet of Things contexts. In so doing, the framework promotes an MDE pro-
cess adopting SysML BDDs to automatically derive validated executable software
representations reflecting physical Configuration Items, and FTs to decorate struc-
tural aspects of the system with reliability requirements, respectively. Moreover, the
Knowledge Base developed around digital twins has been enriched with IoT control
commands design with the aim of empowering the framework with remote actuation
capabilities, enabling both recoverability and adaptability mechanisms in a proac-
tive way: in fact, data analytic agents can perform failure detection and propagation
analysis to infer disruptions and to react autonomously with resolutive actions or by
activating chatbot agents for human interventions.

The framework opens the way to various further developments. On the one hand,
the MDE process in combination with an extensive adoption of artifacts produced
by different areas of expertise inevitably leads to the problem of co-evolution of
architectural and quality evaluation models. This might be, to some extent, solved
exploiting artifacts able of subsuming information contained in BDDs and FTs, such
as Reliability Block Diagrams. The consequent synchronisation of running digital
twins instances and related reliability objects expressed in terms of failure modes
and FTs, located in separated subsystems, should also be considered, demanding for
advancedorchestration solutions tomaintain aligned the digital informationdistributed
across subsystems. Besides, the actual design of the Knowledge Base in theEnterprise
Information Server lends to investigate fault/failure propagationmechanisms, i.e., how
a failure of one component causes a fault of another component in the digital twin
hierarchy, in so enabling various quantitative analysis and simulation techniques to
drive the reconfiguration process.
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