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Abstract
The attention towards robot-assisted therapies (RAT) had grown steadily in recent years
particularly for patients with dementia. However, rehabilitation practice using humanoid
robots for individuals with Mild Cognitive Impairment (MCI) is still a novel method for
which the adherence mechanisms, indications and outcomes remain unclear. An effective
computing represents a wide range of technological opportunities towards the employ-
ment of emotions to improve human-computer interaction. Therefore, the present study
addresses the effectiveness of a system in automatically decode facial expression from
video-recorded sessions of a robot-assisted memory training lasted two months involving
twenty-one participants. We explored the robot’s potential to engage participants in the
intervention and its effects on their emotional state. Our analysis revealed that the system
is able to recognize facial expressions from robot-assisted group therapy sessions han-
dling partially occluded faces. Results indicated reliable facial expressiveness recognition
for the proposed software adding new evidence base to factors involved in Human-Robot
Interaction (HRI). The use of a humanoid robot as a mediating tool appeared to promote
the engagement of participants in the training program. Our findings showed positive
emotional responses for females. Tasks affects differentially affective involvement.
Further studies should investigate the training components and robot responsiveness.

Keywords Facial expression recognition . Social robot .Memory training .Mild Cognitive
Impairment

https://doi.org/10.1007/s11042-020-10092-4

* Olimpia Pino
olimpia.pino@unipr.it

Giuseppe Palestra
giuseppepalestra@gmail.com

1 Research Department, HERO srl, Bari, Italy
2 Department of Medicine and Surgery, University of Parma, Parma, Italy

Multimedia Tools and Applications (2020) 79:35829–35844

Published online: 1 November 2020
/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-10092-4&domain=pdf
http://orcid.org/0000-0002-0159-2672
mailto:olimpia.pino@unipr.it


1 Introduction

Emotions are relevant in all aspects of human life. Few visual stimuli are as socially salient as
the faces of humans. Faces convey critically important social cues, as age, sex, and identity,
but they are also the primary vehicle for nonverbal communication and the precise interpre-
tation of facial emotions is an important predictor of the attainment in social interactions.
Theory of basic emotions posits that a core set of different emotions (e.g., Anger, Sadness, or
Happiness) derives from a distinct neural system that manifests in discrete patterns of
autonomic response, motor behavior, and facial expressions [16]. Basic and secondary emo-
tions are also classified as areas in the space defined by different dimension: activation and
evaluation. Activation refers to the predisposition of the individual to perform an action
according to her/his emotional state. Evaluation is assumed as the general appraisal of the
positive or negative feeling related with an emotional status. Alternatively, the circumplex
model of affect holds that all emotions derive from two underlying, orthogonal dimensions of
emotional experience, valence and arousal [44]. Although many others communicative chan-
nels are been explored, several studies on human emotion are addressed to facial expressive-
ness, defined by the Facial Action Coding System (FACS) [16].

Researchers have shown that facial expression recognition improves from childhood to
early adulthood and degenerates in the elderly [33]. Lacks of emotion recognition can have a
big impact on social competence of the elderly causing stress, communication problems, and
depression. Some researchers explain emotion recognition deficit as linked to cognitive
impairments such as visual impairment [1], but emotion recognition from faces is a complex
task that involves different cerebral structures and cognitive abilities that can be compromised
by neuro-psychological disease [48]. Emotion recognition impairment in dementia seems to
progress from a deficit in low-intensity facial expression recognition in MCI phase and
subsequently it extends to mild Alzheimer disease, as a possible effect of the well-known
progressive emotion processing degeneration of the brain [48]. MCI is a stage between normal
cognitive functions and early dementia [42] in which: (i) the individual shows a decline in
cognitive capacity confirmed by neuro-psychological tools; (ii) independence in activities of
daily living is present, although compromise can be observed in complex activities; and (iii)
criteria for clinical dementia are not fulfilled [39]. The prevalence of MCI in adults over
65 years old is from 10% to 20%.

It was estimated [43] that people with MCI vs. healthy older adults have triple the risk of
being diagnosed with Alzheimer’s dementia within 2–5 years. Delaying the appearing of
dementia one year could decrease the number of the Alzheimer’s patients by 9 million in 2050
[40]. The primary aim for MCI patients is to keep their cognitive ability when functional
capabilities and independence are not compromised [20].

The affective computing [41] and social computing fields started to be broadly investigated,
focusing on the new technologies that advance our understanding of emotions and their role in
human experience [9]. In recent years, new tools and technologies based on machine learning
and robotics are successfully applied to the field of psychology and robotics has become more
widely applied in elderly care [7] and social assistance for people with MCI [23, 24]. There is a
paucity in research aimed to investigate RAT for adult with MCI or mild AD [29]. A real
companion must be able to fill in for the elder’s loss of family or friends relieving the feeling of
isolation, and to send/receive emotion’s expressions [45] in a mutual adaptation with others
making behavior understandable and social interaction complete and synchronized [27]. In
[23, 31, 47] robots were successfully used to improve social communication and interaction
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among patients with dementia. They serve many functionalities [24] providing life assistance
and showing that the robot also has the potential to improve the daily life of persons with a
mild level of dementia [47]. Telepresence social robots were used in order to let patients to
communicate with family improving communication [34] because the social robots capabili-
ties are more complete [12, 13] thanks to ability to simulating emotions [12, 15] and empathy
[11]. In human interaction, emotional and social signals expressing additional information are
essential. With this aim, particular attention was devoted to quantifying the effectiveness of a
social robot on well-being of training recipients. This was accomplished measuring spontane-
ous facial expressions with a software for automatic assessment of human-robot interaction
decoding facial expressions [10]. Our purpose was to explore the response of participants (e.g.
positive or negative) in different tasks in order to see whether participants are positively
engaged during interaction or not. Our research addresses affective expression in human-robot
interactions exploiting video clips recorded during the 2-month of the previous study and
analyzing facial expressions from the participants [43].

Some research questions have led to the present paper. First, is our system a viable tool for
automatically measuring the quality of human-robot interaction? Second, is our tool able to
detect human perceivable facial expressions during HRI? Third, does the interaction with the
humanoid robot induce changes due to the gender [17] during a RAT for individuals with
MCI? The main contributions of the present paper are the following: a new computer vision-
based system able to analyze facial expression in unconstrained and real scenario of memory
training, decoding facial expression in partially occluded faces. The system recognize facial
expression in a group through a multi-face detector providing the clinical perspectives on
memory training program assisted by a social robot for the elderly. Many studies have
employed the robot NAO. If appropriately programmed, it is able to decode human emotions,
simulate emotions through the color of his eyes or the position of the body, recognize faces and
model physical exercise for seniors [2, 46], and equipped to measure of health and environ-
mental parameters [50].

2 Related work

A recent trend has moved towards generic platforms such as the NAO humanoid robot from
SoftBank, previously used in different fields as autism spectrum disorders with the aim to
expand social and communication skills [29, 37]. During human-robot interaction, the mirror
neuron system (MNS), responsible for social interaction, is verified to be active [21] suggest-
ing that humans can consider robots as real companions with their own intentions [18].
Embodied cognition paradigm [28] is widely explored in robotics to design and implement
effective HRI. According to this theoretical framework, cognitive and affective processes are
mediated by perceptual and postures of the body. An approach to enhance the HRI interaction
capacity of NAO associated its verbal communication with gestures through the movements of
hand and head as well as gaze orienting. Some studies identified also a fixed set of non-verbal
gestures of NAO used for enhancing their presentations and turn management capability of
NAO in social interactions. This emotional expressions set for NAO involving the dimensions
of arousal and valence was employed in some applications [5]. If appropriately programmed,
NAO is able to decode human emotions, simulate emotions through the color of his eyes or the
position of the body, recognize faces and model physical exercise to a group of seniors [2], and
equipped to measure of health and environmental parameters [50]. NAO was used in
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individual and group therapy sessions [32] to assist the therapist with speech, music and
movement. It was also observed a good acceptance by older adult in assisted living facilities
[49].

Robotics could partially fill in some of the identified gaps in current health care and home
care provisions for promising applications [8] also through the development of a coding
system aimed at measuring engagement-related behavior across activities in people with
dementia [6, 38]. With the growing incidence of pathologies and cognitive impairment
associated with aging, there will be an increasing demand for maintaining care systems and
services for elderly with the imperative of economic cost-effectiveness of care provision. This
is important for the clinician, as MCI is typically a progressive disorder and intervention is not
so much about altering the underlying neuro-psychological impairment but reducing the
disability deriving from the impairment, i.e. increasing quality of life, and sustaining indepen-
dent living [26]. Findings about stimulation therapy on optimizing cognitive function of older
adults with mild to moderate dementia are robust and promising, but the majority of studies
have focused on cognitive abilities (e.g., memory performance, problem solving, and com-
munication techniques), and both the effects of cognitive rehabilitation on MCI and social
aspects remain inconclusive [10]. Very little is known about the relationship between clinical
features (e.g. cognitive impairments and behavioral symptoms) and the characteristics of
assistive technologies that are most suitable for persons with specific impairment. Reduced
empathy [4] has been associated with greater risk for loneliness and depression, and poorer
personal life satisfaction, which are all major concerns that have been tied to increased
morbidity in older adults [3]. Emotion perception has been shown to rely on a ventral affective
system, including the amygdala, insula, ventral striatum, and ventral regions of the anterior
cingulate gyrus and prefrontal cortex. Regions in this ventral system, including the amygdala,
are also susceptible to atrophy already in the MCI stage [25]. We are only beginning to
recognize the complexity of matching individual and technology for persons with MCI and
mild dementia [47]. In [43], NAO has been involved in a robot-assisted memory-training for
people with MCI in a center for cognitive disorders and dementia. The emotional cues as
found through facial expression has shown connections in a number of cognitive tasks, and the
robot should be able to operate autonomously adapting its operations to evolving users’ needs
as well as emotional states, via learning in the context of interactions. With the purpose of
recognize emotions from facial expression several methods and approaches have been studied
and developed. Noldus FaceReader1 and Affectiva2 are well known available and validated
facial expression recognition software that could be used in our study. Unfortunately, require-
ments and constraints of our ecological experimental setting made it necessary to use a
customized system also able to support occlusions. System validation accomplished on
validated dataset with a high recognition rate provide reasonable assurance on results from
the video analysis.

3 The proposed approach

In this subsection the architecture and the pipeline of the system is given. The proposed system
includes hardware and software main components: the MCI training program, the NAO social

1 https://www.noldus.com/facereader
2 https://www.affectiva.com/
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robot, three RGB cameras, and an automatic group facial expression recognition module as
depicted in Fig. 1.

3.1 MCI memory training program

The MCI training program was developed using Choreographe (a rapid programming tool
offered by the robot’s constructor) and Python. The developed software was installed on the
robot and used robot behaviors (speech, music, and body movements) thanks to NAOqi APIs
to perform the five tasks of the training. The program aimed to train focused, divided and
alternate attention, categorization and association as learning strategies embedded in the
following five tasks:

– Reading stories (T1);
– Comprehension questions about stories (T2);
– Words learning (T3);
– Words recall (T4);
– Song-singer matching (T5).

3.2 Automatic group facial expression recognition module

In order to automatically recognize facial expression, three RGB cameras captured the
participant’s face in order to automatically recognize facial expression. The cameras acquired
a HD video at 30 frames per second. The automatic group facial expression recognition

Fig. 1 System Overview. The schema shows the participant and the systems components: the RGB cameras, the
automatic group facial expression recognition module, the social robot NAO, MCI training program module, the
NAOqi API module
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module identifies faces in the recorder videos by the cameras and then it recognizes 7 facial
expressions: anger, disgust, fear, happiness, sadness, surprise, and neutral. The module is
based on a previous study that aimed to recognize six basic emotions through facial expression
[14, 36]. The extracted features basically consist of the complete zone of the eyes and the
mouth that are merged into a single new image. In this work the system has been enhanced: to
detect multiple faces in each video frame and to recognize facial expression also in partially
occluded faces. The pipeline of the proposed system is shown in Fig. 2. Occlusions handling is
crucial in order to guarantee high performances. During the sessions of the memory training
program, the face of the participants is occasionally occluded by fingers, hair, or glasses as
shown in Fig. 3.

When a face is identified, the automatic facial expression recognition system locating on the
detected face 77 fiducial facial landmarks. Then, the system extracts: 15 distance features, 3
polygonal area, and 7 elliptical area features. An explanation of the extracted features is given
below. A distance feature is a distance between two facial landmarks. Thus, three distance
features were used to define the the left eyebrow. Two distance features were used to describe
the left eye and one distance feature for the cheeks. Moreover, one distance feature was
employed for the nose and eight distance features were used for the mouth. Then, the features
extraction step elaborates polygonal features, calculating the area delimited by irregular
polygons created using three or more facial landmarks. One polygonal area feature was used
to describe the left eye and one polygonal area feature was exploited to describe the area
between the corners of the left eye and the left corner of the mouth. Another polygonal feature
was used for the area of the the mouth. Subsequently, the system extracts the elliptical area
features, calculated by the ratio between the major axis and the minor axis of the ellipse built
using four facial landmarks. Seven facial elliptical features were extracted by the system: one
features to define the left eyebrow, three feature to describe the left eye and eyelids. Finally,
three elliptical area features are extracted do define the the mouth, the lower lip and the upper
lip [36]. Overall, 25 facial features were gathered. These features were the input of the handle
occlusion step that uses entirely or in part the set of features in order to obtain better
performances in the classification step. The last step is the classification step used to recognize
the seven facial expressions. This step is based on the Random Forest classifier that analyzes
the extracted set of features to determine the facial expression. Accuracy of the system has
been evaluated on the Extended Cohn-Kanade (CK+) data set, a well known facial expression
image database of 123 individuals of different gender, ethnicity and age [30]. The system reach
an average accuracy facial expression recognition rate of 94,24% considering the 7 facial
expression (anger, disgust, fear, happiness, sadness, surprise, and neutral).

Fig. 2 Pipeline of the Group Facial Expression Recognition Module
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4 Experimental evaluation

4.1 Participants

Participants were recruited from the Center for Cognitive Disorders and Dementia of AUSL
Parma (Italy). Inclusion criteria were:

1. diagnosis of MCI obtained through Petersen criteria, and full marks in the two tests
measuring daily living activities (ADL and IADL);

2. both genders;
3. age range 45–85 years;
4. without specific drug treatment.

Exclusion criteria were:

1. Major Neurocognitive Disorder;
2. previous stroke;
3. other central nervous system diseases or psychiatric illness.

Participants underwent to a complete tests battery. In the center they were involved in
programs that last 8 weeks, with weekly meetings of 1 h and a half, conducted in a small
group format by an expert neuropsychologist.

The study was carried out in accordance with the ethical standards of the Italian Board of
Psychologists and of the Italian Psychological Society. Given that the experiment did not
involve clinical tests, use of pharmaceuticals or medical equipment, participant discomfort in
any other way, and because the research was scheduled within the typical activities held in the
Center, approval of Ethics Committee for Clinical Research was deemed unnecessary, in
agreement with the regulation of the Institutional Reviewing Board (IRB) of the University of
Parma. Informed consent with detailed description of research purpose and procedure with
explicit emphasis on audio-video (AV) recordings and their use for scientific aims was
obtained from all participants included in the study. The research was carried out in accordance
with the 1964 World Medical Association Declaration of Helsinki Ethical Principles for
Medical Research Involving Human Subjects and its later amendments or comparable ethical

Fig. 3 Faces occluded by fingers or eyeglasses during the experimental sessions
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standards. Twenty-one participants (10 females and 11 males) with a mean age of 73.45 years
(SD = 7.71) have been recruited for this study. The education level was of 9.90 years (SD =
4.58) with a minimum value of 5 years corresponding to the elementary school and a
maximum value of 18 years which corresponds to a bachelor degree. All participants were
native Italian speakers and had either normal or corrected vision. The data collection took
place during 2015–2017 and was scheduled during the regular activities time held by the
center. The institution provided an activity area, an additional room to ensure each informant’s
privacy during the data collection, and the neuropsychologist who helped screen participants,
to evaluate their fit for the experiment and conduct the training sessions.

4.2 Social scenario and procedure

The social scenario was structured in memory training group sessions in which patients were
with the therapist who was assisted by the robot NAO from SoftBank.

Rich capabilities of NAO in terms of HRI motivate us to use this robot as a research
platform in MCI training program. Basing on the diagnosis of the patients, participants were
assigned at one group composed from six to eight individuals and one expert. The robot-
assisted sessions were held during a standard cognitive stimulation protocol lasting two
months. During a memory training session, the social robot was placed on an table while
the participants were seated around. In this way, NAO was approximately at the same height of
the participants’ eyes as depicted in Fig. 4.

The position of NAO sitting on the table at a distance of about one meter from each group
participant is both compatible with distances falling within the personal and the social distance
zones and robotics [35] suggestions that the most successful manner for a robot to attract
attention is by deliberately it toward a person. By orienting the robot toward each participants,
it is conceived that they are the focus of attention of NAO and that the robot is intently
attending to the participants’ communication. Experimental evidence showed that humans
interacting with a robot engaged the same social conventions for eye contact and personal
distance as they would in human relation [19].

Fig. 4 Scenario: NAO in orange,
participants in blue, cameras in
green
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NAO assisted the intervention program administrating specific memory tasks based on
cognitive stimulation exercises established in the literature [22] and on the characteristics of
the social robot. The experimenter who operated the robot was sitting back in the room with
the computer visible to the subjects. Participants respond to the social robot requests based on
the task, which were proposed in a randomized mode to avoid stereotypical responses. During
the sessions participants were seated in the chair at around the table and her/his facial
expression reactions were recorded with three cameras placed at the corners of the table at a
height of about 150 cm from the floor in the context of robot-assisted therapy room.

The training program involving five tasks was implemented in the SoftBank NAO social
robot and administered during 24 group sessions. Facial emotional reactions were analyzed
with our module in an off-line mode. For the analysis, we used a corpus of 48 video clips of
one hour belonging to 24 therapeutic sessions for automatically estimating if participants were
focusing their visual attention on the robot. Each video frame recorded three or four partici-
pants. Overall, at the end of the training for each participant a total of eight hours of video have
been collected.

5 Experimental results

Finally, participants involved in the study were twenty-one: six in the first group, eight in the
second group and seven in the last group. In this section, in order to assess the facial expression
production for each subject, during the memory training assisted by the robot, two different
kind of analysis have been carried out. The first analysis aimed to evaluate the automatic group
facial expression recognition system proposed in this paper. The second analysis aimed to
determine, thanks to the facial expression recognition system, the facial expression production
of the participants.

The video clips of the collected data have additionally been explored more deeply the
affective communications. Indeed, starting from the data of the facial expression recognition
step performed on the whole video corpus collected during the experiment, a further analysis
have been employed. The focus of this analysis has been carried out considering both the
participants’ gender and how they produce facial expression during the memory training tasks.
This analysis allowed to distinguish between the facial expressions produced by the male and
the female individuals during the training sessions. Further analysis of the videos, as men-
tioned above, was carried out in this study. This analysis concerned the recognition of facial
expressions during the 5-task program and makes it possible to obtain relevant information
across the combination of functions trained. For each participant, we compared his/her facial
expressions along the different task that he/she performed.

5.1 Analysis of the system

In order to quantitatively evaluate the automatic facial recognition system the recording
session videos have been properly trimmed and down sampled at one frame per second. After
the pre-processing, for each participant 28,800 frames have been analyzed (1 frame/s × 8 h of
recording). Two metrics have been used on the entire video data set pre-processed as described
above:

1. the number of detected face (nFD);
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2. and the number of each facial expression recognized (nFE) in every frame for each
participant.

Overall, the system was able to analyze all the video dataset and all the 21 faces of the
participants have been correctly detected. With respect to nFD, it has been observed that, in
percentage, a face has been detected in total of the corpus with a success rate of 56%.
Moreover, respect to the nFE, it has been observed that in each frame where a face had been
detected (also if partially occluded) the system was able to recognize a facial expression.
During the whole memory training program, facial expressions have been recognized in
percentage (with some cases of overlap) for all the sessions and for all the participants as
follows: anger has been founded in the 7.24% of the frames, disgust has been identified in the
2.51% of the data analyzed, fear has been recognized in the 11.83% of the video corpus,
happiness has been identified in the 16.95% of the frames analyzed, sadness has been
recognized in the 14.31% of the data, surprise has been founded in the 3.64%, and, finally,
neutral has been identified in the 43.52% of the videos. Neutral represented the most common
facial expression recognized during the whole program but not in every case participant.
Indeed, it is possible to notice that neutral is not the most common facial expression for the
participant IDs 17, 18, 19, and 20.

5.2 Statistical analysis

Quantitative data were presented as means and ± SD. The Shapiro-Wilk test was used to
establish data distribution. The data collected were subjected to a several statistical tests
including t-test, n-way ANOVA, and Bonferroni test for multiple comparisons. The statistical
significance level was set at α= 0.05. Figures 5 shows the percentage of each facial expression
during the memory training grouped by gender. The two groups (M and F) are then compared
with statistic analysis to better evaluate gender’ differences. A Student t-test has been
employed to statistically assessing facial expression production of male and female partici-
pants during the memory training program. Normalized results of the t-test for the male and
female participants are given in Table 1.

5.3 Results for emotions exhibited by the participants

An initial 5 (Tasks) × 2 (Gender) × 7 (Emotions expressiveness) ANOVA on the facial
expressions’ frequency of occurrence with tasks, genders and emotions as between subject
factors was performed. The prominent main effect of gender [F (1, 733) = 11.2905, p < 0.001],
indicating that emotions expressiveness differ between females and males (M= 322.63 for
females and M = 290.48 for males respectively), was further qualified by an interaction
involving gender and emotions production [F (13, 721) = 49.7924, p < .0001]. In line with
our hypothesis, female showed a higher level of emotion expressiveness respect to males.

Importantly, the main effect of emotions’ production was significant [F (6, 728) =
517.4305, p < .0001] reflecting a contrastive pattern of aftereffects for different emotions
expressiveness, which was further qualified by a two way interaction with task, [F (24,
700) = 4.1714, p < 0.0001)] suggesting that expressed emotions varied across the tasks.

Post hoc comparisons using the t-test with Bonferroni correction indicated that the mean
score for the following comparisons between emotions expressiveness showed significant
differences: AN-DI, AN-FE, AN-HA, AN-NE, AN-SA, AN-SU, DI-FE, DI-HA, DI-NE, DI-
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SA, DI-SU, FE-HA, FE-NE, FE-SA, HA-NE, HA-SU, NE-SA, NE-SU, SA-SU with a
p – value < .001. On the contrary, the comparisons between FE-SU (p – value = .179) and
HA-SA (p – value = .572) were not statistically different.

Because of the first analysis revealed an higher level for neutral expressiveness, we
calculated the magnitude of emotions’ expression effect for gender and each experimental
condition by subtracting the proportions of neutral responses in all tasks. We then computed a
5 (Tasks) × 2 (Gender) X 6 (Emotions expressiveness) ANOVA on the facial expressions’
frequency of occurrence with tasks, genders and emotions as between subject factors. There
was a prominent main effect of gender, [F (1, 628) = 10.43, p < .0012)]. There was a strong
significant difference for the expressiveness effect [F (5, 624) = 348.3533, p < .001]. Pair wise
comparisons suggested that the following pair showed significant differences: AN-DI, AN-FE,
AN-HA, AN-SA, AN-SU, DI-FE, DI-HA, DI-SA, DI-SU, FE-HA, FE-SA, FE-SU, HA-SU,
SA-SU with a p value < .001.

The comparisons between HA-SA (p value = .0939) did not reach statistical significance.
The main effect of gender was qualified by an interaction with the expressiveness, [F (5,

Fig. 5 Percentage of facial expression recognized for male and female participant during all tasks. AN = anger,
FE = fear, DI = disgust, HA = happiness, SA = sadness, SU= surprise, NE = neutral

Table 1 Comparisons between male and female participants for each facial expression (T and p value from the
t-test)

Facial Expression t -test p value Significance

DI AN 2.1169 = 6.934 57 0.023844 0.000 01 ***
FE 7.7306− 0.000 01 ***
HA 1.538 03− 0.070265
SA 4.6157− 0.000094 ***
SU 3.1167− 0.002 84 **
NE 10.5153 0.000 01 ***

Significance levels: * for p < 0.05, ** for p < 0.01, *** for p < 0.001. AN anger, DI disgust, FE fear,
HA happiness, SA sadness, SU surprise, NE neutral
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618) = 12.7038, p < .001] suggesting a different pattern of emotions’ expressiveness across the
gender. Importantly, there was a significant interaction between tasks and emotions expres-
sion, [F (20, 600) = 5.6704, p < .001] indicating that the tasks differed for emotions expressed
by the participants. In order to disentangle the role of valence from expressiveness, we
calculated the magnitude of emotions’ expression for each experimental tasks and gender by
adding the occurrences of happy and surprise for positive emotions, and anger, disgust, fear
and sadness for negative ones. We then computed a 5 (Tasks) × 2 (Gender) × 2 (Positive vs.
Negative) ANOVA with all between factors. The ANOVA test revealed a significant differ-
ence between gender, [F (1, 628) = 4.0451, p < .05]. This main effect of gender was qualified
by a strong interaction with valence of expressiveness [F (5, 618) = 44.0777, p < .001]. There
was another significant difference between experimental tasks [F (1, 628) = 6.0644, p < .001].
The main effect of tasks was qualified by an interaction with valence, [F (20, 600) = 7.4948, p
< .001]. A strong differences was revealed for the valence of emotions’ expression [F (1,
628) = 231.9942, p < .001]. With respect to the valence the largest difference was for negative
respect the positive ones; this difference can be attributed to the amount of negative emotions,
which are in greater number respect to the positive ones. Taken together, the analysis
demonstrated substantial aftereffects of expressiveness on the tasks and gender. The pattern
of observed effects comprised fewer interactions, but was generally similar along the analyses.
A visual inspection of the results also suggests that positive facial expressions were frequently
more expressed rather than negative ones; in particular, apart the neutral, the happiness was the
highest deployed (X = 550.53) followed by sadness (X = 464.86). The disgust emotion had the
lowest (X = 81.72) expression. Among potential reasons is that disgust is interpreted in relation
to specific contexts, like experiences involving food. The lack of such situations leaves the
interpretation quite undetermined.

The negative facial expressions are activated in the first task when participants were
requested to read stories and in the third and fourth tasks (X = 65.33 and X = 64.80 respec-
tively) in which subjects hold a list of couples of words that she/he must learn by association
and then must recall writing down the associated word presented before respectively. Con-
versely, users tend to show positive emotions in the second (X = 42.48) and fifth (X = 40.86)
tasks in which they received some comprehension’s questions about the stories, and have to
remember the songs title as response to NAO who sings the song with the original singers
voice. It can be observed that women showed a propensity to be more expressive compared to
males which are generally less expressive. Furthermore, the latter remain more neutral
throughout the experimental sessions. In all the other cases (AN, DI, FE, HA, SA, and SU)
female were more expressive. Data showed that males produced significantly more neutral
facial expressions than females. Concerning females, we found that they, compared to the
males, exhibited a higher expressiveness patterns along all the tasks from the training for the
expressions of anger, disgust, fear, sadness, and surprise. On the contrary, for happiness no
significant effect was shown. Conversely, males activated at a more extent than females the
neutral facial expression. It has been observed that neutral was the most common facial
expression performed by the patients. Results for each facial expression are reported in
Table 2.
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6 Discussion and conclusions

Automated systems will have a terrific impact on basic research by making facial expression
measurement more accessible as a behavioral measure, and by providing data on the dynamics
of facial behavior at a resolution that was previously unavailable. The present paper addressed
the issue of emotion recognition through facial expression using a method to automatically
detect basic facial emotional expressions with handling of occlusions in the context of a
rehabilitation memory program for individuals with MCI. A specific context such as a robot-
assisted memory training for adults can benefit from computer vision and machine learning
technologies to understand better how patients react to the robot or engage in interaction and
tasks. Moreover, from automatic facial expression recognition psychologists can keep track of
the mood of the individuals involved during the training sessions. We introduced a technique
for automatically evaluating the quality of human-robot interaction based on the analysis of
facial expressions. This test involved recognition of spontaneous facial expressions in the
continuous video stream. Satisfactory performance results were obtained for directly process-
ing the output of an automatic face detector and registration of facial features. Our findings
suggest that user independent fully automatic real time coding of basic expressions is an
achievable goal, at least for applications in which frontal views or multiple cameras can be
assumed. Our study provides compelling evidence that affective states are particularly relevant
in HRI. Participants though the interaction with NAO stimulating and many of them appre-
ciated the reminders and prompts as the fact that the humanoid robot called them by name and
started the training sessions with an orientation to time and place. The more remarkable results
were gender and task differences, with women showing mostly positive emotions probably
due to the different tasks and entangling diverse capabilities, which is fully understandable if
we take into account the variety of the nature of human emotions and the ways of expressing
them. The positive valence that the female agents express can be seen as a sort of a self-
regulation between actions and emotions. Positive emotions may influence the generation of
resources and thoughts in order to select the correct action. The evolution of the agent’s
positive behavior is motivated by a self-regulation between actions and emotions. The agent’s
reactions when it is facing a particular task could trigger a cycle of positive or negative
emotions connected to the relevant action. Through positive reinforcement, humans are
capable of improving skills and capacities in an interrelation, e.g., when humans face chal-
lenging situations and they are more likely to make more assertive decisions that when they
have a negative emotional charge. During human-robot interaction, the mirror-circuit, respon-
sible for social interaction, is verified to be active [18] suggesting that humans can consider
robots as real companions with their own intentions. This finding somehow supports evidence
from studies of facial emotion recognition in which differences in sensitivity to expressions

Table 2 Facial expressions performed in each task of the memory program in percentage (%)

Task AN DI FE HA SA SU NE

1 8.05 3.02 12.24 10.32 14.12 3.74 48.52
2 7.11 2.62 10.95 23.45 14.66 2.66 38.54
3 7.28 2.35 10.96 13.36 14.43 5.23 46.39
4 7.12 2.26 13.12 17.08 15.27 3.44 41.72
5 6.68 2.34 11.86 20.27 13.04 3.17 42.66

AN anger, DI disgust, FE fear, HA happiness, SA sadness, SU surprise, NE neutral

Multimedia Tools and Applications (2020) 79:35829–35844 35841



depending on the gender were reported. There are limited details for gender effects in
emotional processing in MCI, but further studies are necessary to elucidate this interesting
aspect.

Although facial expression has been shown to be quite effective in the communication of
affective response, some researchers feel that body movement and posture may reveal under-
lying emotions that might be hidden otherwise, because there are emotion categories that not
have a corresponding facial expression and some emotion categories could share the same facial
expression. Additionally, emotional episodes could be classified by bio-physiological signals or
by brain structures and neurotransmitters involved. This reinforces the need for redundant or
different method of affective expression such as non-facial. Despite this claim, it is shown by
our experimental results that the proposed system can detect emotions with satisfactory
accuracy, achieving the change of the emotional behavior of the agent faced with humans. In
future work, other analysis on the video corpus will be done to understand the engagement, how
the participants have been involved during the memory training program, and how to better
include the individuals with MCI in new rehabilitation training program mediated by a social
robot developing emotional companion systems with more emotional capabilities that will
connect with humans, offering improved natural interaction.

Funding Open access funding provided by Università degli Studi di Parma within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Albert MS, Cohen C, Koff E (1991) Perception of affect in patients with dementia of the alzheimer type.
Arch Neurol 48(8):791–795

2. Bäck I, Makela K, Kallio J (2013) Robot-guided exercise program for the rehabilitation of older nursing
home residents. Annals of Long Term Care 21(6):38–41

3. Bailey PE, Brady B, Ebner NC, Ruffman T (2020) Effects of age on emotion regulation, emotional
empathy, and prosocial behavior. The Journals of Gerontology B: Psychological Science and Social
Sciences 75(4):802–810. https://doi.org/10.1093/geronb/gby084

4. Beadle JN, Christine E (2019) Impact of aging on empathy: Review of psychological and neural mecha-
nisms. Frontiers in Psychiatry 10:331. https://doi.org/10.3389/fpsyt.2019.00331

5. Beck A, Cañamero L, Hiolle A, Damiano L, Cosi P, Tesser F, Sommavilla G (2013) Interpretation of
emotional body language displayed by a humanoid robot: A case study with children. International Journal
of Social Robotics 5(3):325–334

6. Boissy P, Corriveau H, Michaud F, Labonté D, Royer MP (2007) A qualitative study of in-home robotic
telepresence for home care of community-living elderly subjects. J Telemed Telecare 13(2):79–84
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